第一篇:《长方体的体积计算》优秀教学设计
篇一:《长方体的体积计算》教学设计
教学目标:
1、让学生在观察、比较中,感知长方体的体积大小与它的长、宽、高有关。通过具体操作,探索并掌握长方体、正方体体积的计算方法,能正确计算长方体、正方体的体积,并能运用所学知识解决一些实际问题。
2、在观察、操作、探索的过程中,提高学生动手操作及合作学习能力,培养迁移、类推能力和抽象概括能力,进一步发展学生的空间观念。
3、在个人及小组的探究活动中,培养团队协作,勇于探索的品质,体会数学的应用价值。
教学重点:引导学生探索长方体体积的计算方法。教学难点:体验公式的推导过程。
教具学具准备:包装盒和一个不规则物体,每组12个棱长为1厘米的小正方体、表格。
教学过程:
一、复习比较,引入课题
1、(出示两个不同的物体)这两个物体谁比较大?我们比的是他们的什么?体积指的是什么?
2、下面的图形都是由棱长为1厘米的小正方体拼成的,它们的体积各是多少?你是怎么知道的?
3、(出示包装盒)大家认识它吧?它是什么形状的? 它的体积多大呢?请你估一估,猜猜它有多大?(生猜测)要使他说得更准确,我们用一种科学的方法来计算长方体的体积那就好了。这节课我们就来研究这个问题吧,板书课题:长方体的体积。
二、自主学习,合作探究
(一)探究长方体的体积计算
1、探究长方体的体积和那些因素有关。
师:我们都知道长方体有六个面,这6个面可能是什么形?
学生口答。
大家想一下,长方形的面积和什么有关?(学生回答)那么猜一猜,长方体的体积可能和什么有关呢?(生猜测)
老师这里有几组长方体,(课件出示)大家看,这两个长方体的长、宽、高有什么关系?
由此,我们可以得出什么结论?
2、探究长方体的体积和它的长、宽、高的关系,推导长方体体积的计算方法。
师:那么长方体的体积和它的长、宽、高到底有什么样的关系呢?(每组准备12个小正方体)
(1)老师课前叫同学们准备了一些棱长都是1厘米的小正方体,现在,小组合作,每个小组分别摆出各种长方体,记录它们的长、宽、高,并填表。(学生小组活动)
(2)(汇报交流)你们组摆的长方体的长、宽、高是多少?你能说说你们组是怎样摆的吗?体积是多少?
(3)发现总结长方体体积公式
师问:每排的个数、每层的排数、层数与长宽高有什么关系?
生一:每排的个数相当于长,每层的排数相当于宽,层数相当于高。
请同学们想一想:长方体的长、宽、高与它的体积有什么关系? 生一:因为每排的个数、每层的排数、层数相乘就是体积,所以长方体的体积=长×宽×高。
师:体积怎么求?为什么? 学生口答,教师板书。课件演示公式的推导过程
(4)如果用V表示体积,a表示长,b表示宽,h表示高,那么这个公式用字母怎样表示?
师板书:V=abh
(5)根据这个公式,要求长方体的体积,需要知道长方体的什么? 同生们学会了总结长方体体积的计算方法,真是了不起,通过猜想、实验、验证总结出了长方体的体积计算公式,今后在学习上同样可以利用这种方法学习。
3、长方体的体积计算公式的应用
(1)师问:在生活中,怎样计算长方体的体积?
例:一个长方体,长7厘米,宽4厘米,高3厘米,它的体积是多少?
学生1:长方体的体积=长×宽×高。全班动笔做一做。
(2)看立体图计算长方体的体积(只列式不计算)写在课堂作业本上。
长6分米,宽4分米,高3分米,求体积。长6厘米,宽6厘米,高5厘米,求体积。
三、学以致用,巩固提高
1、雄伟的人民英雄纪念碑矗立在天安门广场上,石碑的高是14.7米,宽2.9米,厚1米。这块巨大的花岗岩石碑的体积是多少立方米?
2、有一本新华字典,它的长、宽、高分别是2分米、1分米、0.6
分米.这本字典重多少千克?(每立方分米重500克)
3、一块砖的长是24厘米,宽是长的一半,厚是6厘米,它的体积是多少立方厘米?
4、有一个底面是正方形的长方体,它的棱长之和是60厘米,高
7厘米,求这个长方体的体积。
四、全课小结,布置作业
1、通过这节课你学到了哪些知识?你还有什么问题吗?值得注意的地方是什么?
2、教师总结
3、布置作业
① 课堂作业:练习七② 课外实践:找一个长方体实物量一量它的长、宽、高,并计算它的体积。
5、7
篇二:长方体体积的计算教学设计
《长方体体积的计算》教学设计
教学内容:人教版小学数学五年级下第三单元长方体体积的计算。教学目标:
1.理解并掌握长方体体积的计算方法.
2.能运用长方体体积公式进行计算解决一些简单的实际问题.3.培养学生归纳推理,抽象概括的能力. 教学重点:理解和掌握长方体体积的计算方法. 教学难点:理解长方体体积公式的推导过程. 教学用具:多媒体课件、1立方厘米的小立方体.
教学过程:
一、复习旧知,导入新课. 1.什么是物体的体积?
2、常用的体积单位有哪些?
3、1立方厘米、1立方分米、1立方米分别有多大?
4、(课件出示)下面两个长方体是用1立方厘米的小正方体拼成的,说出它们的体积各是多少。(9立方厘米、8立方米)你是怎样知道的?(数小正方体的个数)。
师:也就是说:长方体中含有多少个体积单位它的体积就是多少。
5、(生:切割成小正方体)出示微波炉,那么求这台个微波炉的体积你还想用切割的方法吗?(不能)
6、看来并不是所有的物体都适合用切割的方法,你们想不想知道更
简单更可行的求长方体体积的方法呢,这节课我们就一起来长方体体积的计算(板书课题)
二、动手操作,归纳总结
1、老师为大家准备了一些小正方体,每个小正方体的体积是1立方厘米,谁知道它的棱长是多少?(1cm)
好,下面就请同学们小组合作,用老师准备的小正方体摆成不同的长方体,把不同长方体的相关数据填在表中,然后观察表中的数据,你们能发现什么。
2、小组合作,教师巡视。
3.学生汇报展示说发现,教师板书。
4、教师课件演示.总结体积公式:长方体体积=长×宽×高。
教师:用V表示体积,a表示长,b表示宽,h表示高,公式可以写成:V=abh.教师板书。
5、教学例1.学生独立解决,全班汇报。
三、巩固练习,解决问题
5m
15cm
4m
学生口答
2、求微波炉的体积.独立完成,集体订正。
3、口答填表。
4、动手测量求数学书的体积。同桌合作测量计算,集体订正。
5、学校操场上现有15立方米的沙子,准备填入一个长7米,宽3米,深0.8米的长方体坑内,能把坑填平吗?
6、一根长方体的钢材,长是8分米,它的横截面是一个边长为5厘米的正方形。这根钢材的体积是多少立方分米?如果每立方分米钢材重7.8千克,那么这块钢材重多少千克?
7、不规则石头的体积:我们学会了计算长方体的体积,那么你能不能利用我们所学的知识求出这块石头的体积?动脑想一想,同桌讨论。
四、谈收获:这节课你有哪些收获。
五、教师总结:
这节课我们通过动手实验学会了长方体体积的计算,希望同学们平时也能多动手动脑,把我们所学知识用到生活中去,为生活服务。板书设计
长方体的体积=长×宽×高
篇三:长方体的体积教案
《长方体的体积》教学设计 瓜州乡渊泉小学 张梅
教学内容:教科书六年制五年级下册第99~102页。教学目标:
1.知识与技能目标:使学生掌握长方体体积公式的推导过程,理解长方体体积的计算公式;初步学会计算长方体的体积。
2.过程与方法目标:培养学生实际操作能力,同时发展他们的空间观念。
3.情感态度与价值观目标:在活动中使学生感受数学与实际生活的密切联系,体验学数学、用数学的乐趣,从而激发学生的学习兴趣。
教学重点:在长方体、正方体体积计算公式的探究过程中,理解长方体含体积单位的个数等于长、宽、高的乘积,进而推导出长方体(正方体)体积计算公式。教学难点:体积公式的推导。
教学准备:1立方厘米小正方块 多媒体课件 学具准备:1立方厘米的小正方体24个 教学过程:
一、创设情境 发现问题
1、(课件出示)字典是我们学习的工具书,必须要常备身边的,聪聪遇到了这样的问题,他每天都要带一本字典,现在有两本内容同样的字典,他要选择其中的哪一本经常带在书包里比较方便呢?为什么?(小本的字典。体积小)
其实刚才我们在比较他们的什么?(比较它们的体积。)体积指的是什么?(体积是指物体所占空间的大小)
常用的体积单位有那些?(立方厘米,立方分米,立方米)
2、小结:任何物体都占一定的空间大小,也就是说都有一定的体积
二、观察思考 提出猜想
1、课件出示三个长方体(下列各长方体分割成了体积为1立方厘米的小正方体,请你数出小正方体的个数,并求出长方体的体积。)
2、教师演示,学生独立完成后,指名回答
反馈交流,得出:含有多少个体积单位,它的体积就是多少。
理念依据:通过练习,使学生感知:体积是由体积单位组成的,要求长方体的体积可以用切一切、数一数小方块的方法。这既是对上节课体积单位的复习,也是这节课的教学起点。
3、师:是不是我们都可以用切一切、数一数小方块的方法来求一个物体的体积呢?
4、学生讨论 讨论后使学生明确:实际上,在很多情况下,往往不能用切割的方法来求长方体的体积。如:字典、洗衣机的体积、电脑主机的体积等。理念依据:从实际情况考虑,让学生体会到,要求一个物体的体积,必须有一个新的方法才能解决,激发学生的学习兴趣。)
4、师引题:这节课我们一起来学习长方体的体积计算(板书课题)师引导学生动脑思考、大胆猜想。通过刚才的观察,你认为长方体的体积大小可能和什么有关呢?(学生汇报可能与长、宽、高有关)
6、利用课件,验证猜想。动态变化长方体的长、宽、高 师:下面的长方体,什么变了?什么没变?
图(4)
先利用多媒体将上环节使用的图(1)动态变成图(2)
生:长方体的宽和高都不变。长变了,表面积变了,体积也变了。教师继续把图(2)动态变成图(3)
生:长方体的长不变,高和宽都变了,表面积和体积也变了。教师也不做评论,再把图(3)变成图(4)
生:长方体的长、宽、高都变了,表面积和体积也变了。
师:通过刚才的观察,你认为长方体的体积大小和什么有关?(长方体的体积和长、宽、高有关)
7、再次猜想
师:通过刚才的观察,我们发现长方体的体积和长、宽、高有关系。你能猜想出它们有怎样的关系?
教师板书学生的猜想:长方体的体积=长×宽×高
[设计意图]通过演示,使学生体会到长方体的体积和长、宽、高都有关系,进而大胆的提出猜想)
三、动手实践、验证猜想 课件出示小组合作要求
1、提出小组合作要求
请同学们小组合作,用你们手中的1立方厘米小正方体拼成形状不同的长方体,摆的时
候思考: 1.每排摆了几个?2.每层摆了几排?3.摆了几层?4.一共摆了多少个?你是怎样很快算出总个数?
5、你是怎样很快算出总个数的?然后把数字记录在表格里面。6、观察每个长方体的“总个数、每排个数、每层排数、层
数”分别与这个长方体的“体积、长、宽、高”有什么关系 ?然后把数字记录在表格里面。
2、小组合作学习
全班同学以小组为单位,进行分工,开始操作、计算、记录、思考、讨论。(出示课件:
师:请各小组同学利用你手中的1立方厘米的小正方体,摆成3种长方体,并把有关数据填到表格中,好吗? 生:好!
(小组活动开始,各小组学生分工合作,用体积是1立方厘米的正方体摆出三种长方体,并根据表格要求整理、填写数据。教师巡视指导,了解学生活动情况。)
3、小组派代表汇报
哪个小组愿意先汇报你们的研究过程和成果?
第一组:把12个正方体摆成3排,每排2个,摆2层。这个长方体的长是2厘米,宽是3厘米,高是2厘米,体积是12立方厘米。
第二组:把15个正方体摆成1排,每排5个,摆3层。这个长方体的长是6厘米,宽是1厘米,高是3厘米,体积是18立方厘米。
第三组:把24个正方体摆成3排,每排4个,摆2层。这个长方体的长是6厘米,宽是4厘米,高是1厘米,体积是24立方厘米。
师:你观察得非常仔细,解说也非常到位!真是一位小老师!谢谢你!师:通过这几个小组的拼摆再加上刚才XXX的讲解,同学们有什么新的发现?(学生略感疑惑)
师:我们一起来讨论一下,(结合课件中出示的表格边指边说)摆每个长方体的“总个数、每排个数、每层排数、层数”分别与这个长方体的“体积、长、宽、高”有什么关系吗?同学们可以先和身边的同学讨论一下,然后把你的想法和大家交流。
4、学生进行短暂的讨论后进行了交流。
生1:长方体的体积就是摆这个长方体的小正方体的个数。
生2:我想补充一下。从我们填的表格中就可以看出,每排摆几个,长方体的长就是多少,每层摆几排,它的宽就是多少,一共摆几层,高就是多少。
生3:我发现,只要知道一排摆几个、摆几排、摆几层就能知道长方体的体积了。师:大家说的不错!如果要想知道一个长方体的体积,我们可以怎么做?
生4:只要知道长方体的长、宽、高就能知道一排摆几个,摆几排,摆几层,就知道体积了。
生5:如果是教室的体积你怎么摆?
师:嗯,你这个问题提得很好,很及时。是呀,难道还要用小正方体去拼摆教室的体积吗?(有学生开始小声地笑,并交流。课堂气氛又一次变得活跃)师:谁有更切合实际生活的方法?
生6:老师,我觉得根本就不用摆了!只要量出长、宽、高就行了。
师:(疑惑状)什么叫量出长、宽、高就行了?谁听明白了?能结合表中的数据说一说吗? 生7:老师,我明白了!量出长宽高就相当于是知道了一排摆几个,摆几排,摆几层。所以,用长乘宽再乘高就是教室的体积。
师:原来是这样啊!(面向生6)XXX,你同意他的解释吗?大家同意吗? 生:同意!
5、发现总结长方体体积公式
(教师在学生回答时相机将表中“总个数、每排个数、每层排数、层数”下面显示出“体积、长、宽、高及相对应的单位。”)
(1):刚才老师把同学们的实验数据汇总了这张表,我们一起来观察。师问:每排的个数、每层的排数、层数与长、宽、高有什么关系。
汇报交流:长方体的体积就是摆这个长方体的小正方体的个数。每排摆几个,长方体的长就是多少。每层摆几排,它的宽就是多少。一共摆几层,高就是多少。(2)教师引导学生发现:小正方体的总个数=每排的个数 ×每层的排数× 层数长方体的体积= 长 × 宽 × 高 学生动笔算一算每一组的长、宽、高相乘的积,算后汇报。
(3)引导学生把计算结果与记录表中的体积进行比较,发现长×宽×高的乘积就是长方体的体积。
(4)同学们真了不起,通过猜想、实验、验证总结出了长方体的体积计算公式,今后在学习上同样可以利用这种方法学习。
(5)字母表示:长方体体积用V表示,长用a表示,宽用b表示,高用h 表示,长方体的体积公式用字母表示是V=a×b×h=abh 板书:V=a×b×h= abh 学生齐读公式。
6、长方体的体积计算公式的应用----解决课前猜想(算字典的体积)
7、迁移推导出正方体的体积计算公式 再次尝试:一个长方体提问怎样求它的体积。
课件出示:图形变化成正方体提问你能求出它的体积吗?
现在请同学们根据长方体的体积计算公式,在小组内讨论讨论:正方体体积的计算公式是什么?
学生小组讨论。
哪个同学愿意说说正方体体积的计算公式? 教师追问:你们是怎么想的?
学生:因为正方体是特殊的长方体,当长方体的长、宽、高都相等时,长宽高也就是正方体的棱长。所以正方体的体积=棱长×棱长×棱长。教师板书:正方体的体积=棱长×棱长×棱长 教师说明用字母表示V=a×a×a = a3 板书:V=a×a×a = a3
教师说明:a3读作a的立方或a的三次方,表示3个a相乘。
第二篇:长方体的体积和体积计算教学设计
学习过程:
一、板书课题
师:同学们,今天我们一起来学习“长方体和正方体的体积计算。
(板书课题)
二、出示目标
师:这节课我们的目标是(齐读):
1、探索并掌握长方体和正方体的体积公式。
2、应用公式正确计算长方体和正方体的体积,并能解决生活中有关的实际问题。
三、自学指导
(一)认真看投影出示形体,完成书本第29页的表格。
猜一猜:长方体的体积与长方体的长、宽、高之间有什么关系?
3分钟后比一比谁填写正确。
四、第一次先学后教
(一)先学
师:看书时,比谁看的最认真,坐姿最端正。下面,自学竞赛开始。
生认真自学,教师巡视,督促人人认真地看书。
(二)后教
(1)指名填空
问:有不同的答案吗?同意黑板上同学的举手?
(2)议一议
师:分组交流一下长方体的体积与它的长、宽、高之间有什么关系?
个别回答。让多名学生发言。
五、自学指导
(二)认真看书第29、30页
1、分别在表格内写出小正方体的个数和长方体的体积。
2、再次猜一猜:长方体的体积与它的长、宽、高之间有什么关系?
3、长方体的体积计算公式是什么?如何用字母表示?
4、正方体的体积计算公式是什么?如何用字母表示?
4分钟后比一比谁填写正确。
六、第二次先学后教
(一)先学
师:下面,自学竞赛开始。
生认真自学,教师巡视,督促人人认真地看书?
指名板书
(二)后教
(1)更正
师:观察黑板上的答案,发现错误的同学请举手。(用黄色粉笔更正)
(2)指名回答
师:再次猜一猜:长方体的体积与它的长、宽、高之间有什么关系?
长方体的体积计算公式是什么?如何用字母表示?
正方体的长、宽、高之间有什么关系?
正方体的体积计算公式是什么?如何用字母表示?
(3)小结
出示公式? 生齐读?
七、检测
1、课本第30页试着做一做。(只列式不计算)
要求:认真做题,并把字写端正,写大点。
(1)找3名同学上台板演,其余同学写在练习本上。
生独立完成,师巡视,发现错题板书于黑板上对应位置。
(2)更正。
师:观察黑板上的题,发现错误的同学请举手。(用黄色粉笔更正)
2、课本第31页第一题(只列式不计算)
要求:认真做题,并把字写端正,写大点。
(1)找3名同学上台板演,其余同学写在练习本上。
生独立完成,师巡视,发现错题板书于黑板上对应位置。
(2)更正。
师:观察黑板上的题,发现错误的同学请举手。(用黄色粉笔更正)
八、课堂小结
同学们,今天我们学习了长方体和正方体体积计算公式及字母表示法。
九、当堂训练
作业:练习七第8、9题。
第三篇:长方体体积教学设计
长方体体积教学设计
[教学内容]
六年级上册第25页例
9、“试一试”“练一练”,练习六第2题。
[教学目标]
1.在具体的情境中自主探索并掌握长方体体积公式,能应用公式正确计算长方体体积,并解决一些简单的实际问题。
2.通过操作、观察、猜想和归纳等数学活动,经历体积公式的探索过程,不断积累立体图形的学习经验,增强空间观念,发展数学思维。
3.进一步体会数学与实际生活的联系,获得学习成功体验,激发数学学习兴趣。
[教学准备]
教师准备用1cm3小正方体拼摆成的长方体模型,长方体包装盒,多媒体课件;各小组准备1cm3的正方体和实验记录单。
[教学过程]
一、创设情境,导入新课
谈话:上节课,我们已经认识了体积和体积单位。今天,老师带来了一个用1cm3的小正方体摆成的长方体(出示长4cm、宽3cm、高2cm的长方体模型),你有办法知道这个长方体的体积是多少立方厘米吗?
明确:要知道一个物体的体积,就要看这个物体中包含多少个体积单位。
演示:按长方体模型的长、宽、高各含有的小正方体个数,算出长方体的体积)
揭题:刚才,老师的这个长方体模型是用1立方厘米的小正方体摆成的,但生活中有很多长方体或正方体的物体是不能分割的。譬如,这个长方体的包装盒(出示),它的体积又有什么办法知道呢?这节课,我们一起来研究长方体和正方体体积的计算方法。(板书课题)
[设计意图:通过数一个长方体中含有的1cm3小正方体的个数,使学生进一步理解求一个物体的体积,就是求这个物体包含的体积单位的个数。同时也为后面有序地数出小正方体的个数作一些孕伏。]
二、操作探究,发现规律
启发:在三年级,我们学过长方形面积,还记得是怎样推导长方形面积公式的吗?
学生回忆后,电脑演示推导长方形面积公式的过程。
出示长方体直观图,讨论:你认为,长方体的体积可能与它的什么有关?我们可以用怎样的方法研究长方体的体积?
学生可能想到长方体的体积与它的长、宽、高有关;可以把长方体分割成若干个棱长1厘米、1分米或1米的正方体,长方体中含有体积单位的个数就是它的体积。
谈话:同学们的想法有没有道理呢?我们来看大屏幕,(多媒体演示)我们来想象一下:如果一个长方体的长增加或缩短,它的体积会怎样?如果改变它的宽或者高,体积会发生怎样的变化?
谈话:看来,同学们的猜想确实有道理。要研究长方体的体积与它的长、宽、高到底有什么关系,我们需要一些长方体作为研究对象。下面,我们一起来摆出一些长方体。
明确活动要求:
(1)同桌合作,用若干个1cm3的正方体任意摆出4个不同的长方体并编上序号。
(2)观察摆出的长方体的长、宽、高,所用小正方体的个数,以及它们的体积各是多少,完成记录表。
(3)填完表格后,同桌核对数据,并交流自己的发现。
学生按要求操作、交流,教师巡视。
组织反馈。(指名汇报收集到的数据,并以其中的一个长方体为例,说说怎样看出它的长、宽、高的厘米数的。正方体的个数又是怎样数的,摆出的长方体的体积是多少,根据表中数据,自己有什么发现。)
板书:长方体的体积=长×宽×高。
启发:同学们通过用1cm3的小正方体摆长方体的活动,发现了长方体体积等于它长、宽、高的乘积。是不是所有的长方体的体积都是它长、宽、高的乘积呢?这就需要我们进一步验证。
[设计意图:引导学生由探索长方形面积的经验,通过类比把探索平面图形面积的方法迁移到立体图形中来,既有利于培养学生初步的推理能力,也是具体的学习方法的指导;用1cm3的小正方体摆长方体的操作,旨在引导学生通过操作和交流,初步发现长方体体积与它的长、宽、高的关系,并在这一过程中,培养动手操作能力,发展数学思考,感悟归纳的思想方法。]
三、再次探索,验证规律
出示4×1×1的长方体图,谈话:这是一个长4cm、宽1cm、高1cm的长方体,你知道它的体积是多少吗?
学生可能想到用4个1cm3的小正方体摆成一排正好可以得到这个长方体,它的体积是4cm3;也可能用“4×1×1”算出它的体积。
根据学生的回答在长方体上画出相应的分割线,确认这个长方体的体积是4cm3。(见图1)
出示4×3×1的长方体图,谈话:这个长方体的长、宽、高分别是几cm?如果不用1cm3的小正方体,你能想象出这个长方体中含有多少个1cm3的小正方体吗?自己先在长方体上画一画,再和同学交流。
提问:这个长方体的体积是多少?你是怎样想的?(根据学生的回答出示图2)
明确:在这个长方体中,沿着长一排可以摆4个1cm3的小正方体,沿着宽可以摆3排,所以,这个长方体的体积可以用“4×3×1”来计算。
出示4×3×2的长方体图,谈话:我们再来看这个长方体,它的长、宽、高分别是几cm?你能想象出这个长方体中含有多少个1cm3的小正方体吗?自己先试一试。
反馈:这个长方体的体积是多少cm3?你是怎样想的?(学生的回答后,出示图3)
提问:如果用的小正方体来摆第3个长方体,沿着长一排可以摆几个?沿着宽可以摆几排?沿着高可以摆几层?它的体积可以怎样计算?
再问:如果有一个长方体,长5cm,宽4cm,高3cm,摆出这个长方体一共要用多少个1cm3的正方体?它的体积是多少cm3?
引导学生用示意图表示出思考过程。
[设计意图:对三个长方体的探究,引导学生经历了“想象—画图—说理”的过程,使学生随着排数、层数的递增,清晰地体会到长方体的体积与它的长、宽、高的关系。第4个长方体只给出了长、宽、高的数据,意在促使让学生依托已经获得的直观经验,将摆的过程内化为有序地算(数)的过程。至止,长方体体积计算方法已呼之欲出。]
四、引导概括,得出公式
提问:通过刚才的活动,你认为长方体的体积与它的长、宽、高有什么关系?我们前面提出的猜想正确吗?
揭示长方体的体积公式,指出:以后我们可以直接用公式计算长方体的体积。
讲解:如果用V表示长方体的体积,a、b、h分别表示长方体的长、宽、高,你能用字母表示出长方体的体积公式吗?
板书:V=abh。
和同桌说一说你还知道了什么?
让学生口算各题的得数,并交流计算时的思考过程。
五、巩固练习,应用拓展
1.完成“试一试”。
出示长方体的包装盒,谈话:刚开始上课,我们还不能求这个包装盒的体积是多少,现在你能解决了吗?要求这个长方体包装盒的体积,需要知道哪些条件?有办法知道这些数据吗?
指导测量、记录数据后独立解答。
出示正方体的包装盒,这是一个棱长12cm的正方体纸盒,它的体积是多少cm3?
学生独立完成后,组织反馈。
2.完成第26页“练一练”第1题。
先让学生看图说一说每个长方体或正方体的长、宽、高(或棱长)各是多少cm,再口算出它们的体积,并数一数每个立体图形是由多少个1cm3的小正方体摆成的。
3.完成练习六第2题。
出示题目,让学生自由读题。
提问:计算冷藏车的容积,为什么要从里面量?
学生独立完成计算,并组织反馈。
六、全课小结,梳理学法
提问:今天,我们一起学习了什么?通过这节课的学习,你有哪些收获?回顾这堂课的学习过程,我们是怎样探索出长方体的体积公式的?
七、课堂作业
练习六第1题。
第四篇:长方体体积教学设计
长方体的体积教学设计
峨眉山市龙池镇小 童小军
教学内容:
人教版数学第十册第29页——30页的内容及相应的练习题 教学目的:
1、通过实验探究长方体的体积计算公式,并能应用公式解决相应的实际问题。
2、让学生经历长方体体积公式的推导过程,理解体积计算公式。
3、培养学生动手拼摆能力,观察、归纳推理能力。教学重点:
体积公式的推导过程、体积公式的应用。教学难点:
体积公式的推导过程(每排个数、排数、层数和长方体长、宽、高之间的关系)教学准备:
学生分成2人小组,每组准备一些数量的小正方体、练习题单。教学过程:
一、直接导入
师:前面我们学习了常用的体积单位,今天我们来探究长方体的体积求法。
板书:长方体的体积
二、猜测、为学生指名探究方向
1、课件出示:一个长方体。师:你有什么方法能知道这个长方体的体积?
2、课件演示:把长方体切割成一个个的小正方体,数出每排个数、排数和层数;并用每排个数×排数×层数=总个数(即体积数)
3、师:(1)数小正方体个数的方法能解决所有的长方体体积问题吗?看来有必要得出一个求长方体体积的计算公式。
(2)猜测一下长方体的体积可能和长方体的什么有关?
4、课件演示,让学生理解长方体的体积与长方体的长宽高都有关系。
三、探究体积公式推导过程
1、师:接下来我们就一起用小正方体通过拼摆,来探究一下长方体的体积和长宽高之间到底有什么关系。
2、同桌合作:课件出示:合作要求:(1)齐读要求
(2)先摆,再观察,最后再填表。
3、学生动手操作,教师巡视指导
4、全班交流(1)小组汇报结果
(2)观察表格思考:你有什么发现?同桌先互说(3)全班交流发现
(4)师补充提问:每排个数、排数、层数和长方体的什么有关系?它们之间有什么关系呢?
结合学生的回答,观察一个摆好的长方体,理解每排个数、排数、层数和长宽高之间的对应关系。并多抽几个学生说说它们之间的关系。
5、师:你能推导出长方体的体积计算公式了吗? 学生回答,教师适时板书: 长方体的体积=长×宽×高
V=abh
6、回顾刚才的推导过程,同桌互说。
7、及时练习:出示一个长方体的文具盒
师:要求这个长方体文具盒的体积要知道什么条件? 教师给出长宽高,学生计算,强调书写格式。
四、课堂练习
1、口算填表(见题单)
2、小法官
(1)两个体积相等的长方体,它们的长宽高一定相等。()(2)一个长方体的长宽高都扩大到原来的2倍,它的体积就扩大到原来的2倍。()
3、建筑工地要挖一个长50米,宽30米,深50厘米的长方体土坑,一共要挖出多少方的土?(在工程中,1m3的土、沙、石等均简称“1方”)
4、考考你:下列长方体的体积各是多少立方厘米?(小正方体的棱长1厘米)(见题单)
五、小结下课
通过学习,你有什么收获?(方法和知识两个方面来说)板书:长方体的体积 长方体所含体积单位的数量=每排个数×排数×层数 长方体的体积=长×宽×高 V=abh
课后反思:
1、对推导过程的关键地方突出不够,即,每排个数、排数、层数与长方体的长宽高的关系理解说理不够,应该让学生多说,还可以通过课件演示一下。
2、教师语言还不够准确、精炼,提出的数学问题还可以更加准确具有指向性,对于关键地方的引导还不够合理。
3、应该板书出:1立方米=1方。加强学生对两个单位关系的理解。
4、本节课对于时间的安排差不多,比以前的课堂要合理得多,基本上是按照预定的时间完成的,这是我本节课最满意的地方。
2015.4
第五篇:长方体和正方体的体积计算教学设计
《长方体和正方体的体积计算》教学设计
教学内容:长方体和正方体的体积计算(教材41至42例
1、例2)
教学目标:
1、知道长方体、正方体体积的推导过程。
2、经历长方体、正方体体积计算公式的探究过程。
3、通过实验操作、讨论归纳发展学生的空间观念。
4、激发学生的学习兴趣,培养学生爱数学的好情感。
教学重点 :长方体、正方体体积公式的掌握和运用。教学难点:长方体、正方体体积公式的推导。
教学用具:
教师准备:一大块橡皮泥; 1立方厘米的正方体木块24块;投影仪。
学生准备:1 立方厘米的正方体12个 教学方法 : 实践操作法 教学过程:
一、创设情境
1、填空:
(1)()叫做物体的体积。
(2)、常用的体积单位有:()、()、()。
(3)、计量一个物体的体积,要看这个物体含有多少个()。
2、小结:我们已经知道计量一个物体的体积,要看这个物体含有多少个体积单位,那么怎样计算任意一个长方体、正方体的体积?这节
课我们就来学习长方体、正方体体积的计算方法。(板书课题)
二、实践探索
1、小组讨论、学习长方体体积的计算,然后汇报:
出示:一块长4厘米、宽3厘米、高2厘米的长方体橡皮泥,用刀将它切成一些棱长1厘米的小正方体。
2、提问:请你数一数,它的体积是多少?有许多物体不能切开,怎样计算它的体积?
3、实验:师生都拿出准备好的12个1立方厘米的小正方块,按第31页的第(1)题摆好。
观察结果:(1)摆成了一个什么?
(2)它的长、宽、高各是多少? 板书:长方体:长、宽、高(单位:厘米)含体积单位数:4×3×1=12(个)
体积:4×3×1=12(立方厘米)(3)它含有多少个1 立方厘米?(4)它的体积是多少?
同桌的同学可将你们的小正方体合起来,照上面的方法一起摆2层,再看:
(1)摆成了一个什么?(2)它的长、宽、高各是多少?
(3)它含有多少个1立方厘米?(4)它的体积是多少?(同上板书)
通过上面的实验,你发现了什么?(可让学生分小组讨论)
4、结论:长方体的体积=长×宽×高。用字母表示:V = a×b×h=abh
5、应用:出示例1 一块正方形的石料,棱长是 6 dm。这块石料的体积是多少立方分米? 学生独立解答。
6、思考并回答:长方体和正方体有什么关系?正方体的体积该怎样计算呢?
7、结论:正方体的体积=棱长×棱长×棱长 用字母表示为:V=a3 说明:a×a×a可以写成a3,读作:a的立方。应用:出示例2,让学生独立做后订正。
三、课堂实践
1、做第43页的“做一做”的第1题。(1)先让学生标出每个长方体的长、宽、高。(2)再根据公式算出它们各自的体积。(3)集体订正。
2、做练习七的第5、6题。
3、补充练习:
①、一个正方体的棱长是最小的合数(单位:分米),它的体积是多
少立方米?
②、制作一个长15分米,宽4分米,高6分米的长方体玻璃鱼缸(不带盖),至少需要玻璃多少平方分米?
四、课堂小结。