第一篇:《解决问题的策略》教学片段及反思
补充例:李叔叔想用18根1米长的栅栏围成一个长方形羊圈,他该怎么围呢?
师:猜想一下,他会怎么围?
生:用6根栅栏作长,3根栅栏作宽。
生:用8根栅栏作长,1根栅栏作宽。
生:用7根栅栏作长,2根栅栏作宽。
师:但现在李叔叔思考的问题却是怎样围面积最大。
学生有争论。
师:到底怎样围面积最大呢?光靠这样的猜想和无谓的争论是不行的。你们有没有更好的解决办法?
生:我觉得应该把周长为18米的各种情况的长方形都算一算,就知道哪种围法面积最大了。
通过列表发现:长5米,宽4米的长方形面积最大。
师:现在大家再次观察表格,你们有什么新的发现?在小组内相互交流。
结论:当长方形的长越长、宽越小时,围成的长方形就越扁,它的面积就越小。如果长为9米,宽为0米,这个长方形的面积就为零了。
反思:
《数学课程标准》提出,无论是什么样的解决问题策略的产生,都必须以“观察、思考、猜测、交流、推理”等富有思维成分的活动过程为其载体。本课例中教者紧紧扣住“数学思维发展过程”这一核心,适时引领学生不断提升策略选择的思维品质。如出示问题后,教者提出:“猜想一下,他会怎样围呢?”引导学生从数学的角度分析问题并形成策略。当学生对各种围法进行争议时,教师提出:“光靠这样猜想、争议可不行,你们有没有更好的解决办法?”学生另辟蹊径,进行策略改向。在学生以为顺利解决问题后,教师又提出:“可能有的同学猜想正确,有的猜想错误,但这些都不重要,关键是我们要通过对这个问题的探究得到一些启发。”引导学生开展交流与评价,进行策略与反思。这样,教师一步步地引导学生用数学的眼光提出问题、理解问题和解决问题,从而发展学生思维,达到优化策略的目标。
第二篇:解决问题策略反思
《解决问题的策略—转化》教学反思
转化是指把一个数学问题变更为一类已经解决或比较容易解决的问题,从而使原问题得以解决的一种策略。所以,转化是一种常见的、极其重要的解决实际问题的方法。转化的手段和具体方法是多样而灵活的,既与实际问题的内容和特点有关,也与学生的认知结构有关,掌握转化策略不仅有利于问题的解决,更有益于思维的发展。下面就解决问题的策略(转化策略)教学谈谈自己粗浅的体会:
一、感悟转化
运用转化的策略解决问题的关键是确定转化后要实现的目标和转化的具体方法。通常是把新的问题转化成熟悉的、能够解决的问题,把非常规的问题转化成常规的问题等,但要根据问题的具体情况具体分析。由于转化的手段和具体方法是多样而灵活的,既与实际问题的内容和特点有关,也与学生的认知结构有关。所以在开始的图形转化中,我放手让学生从不同的角度来理解、进行比较,感悟转化策略的优越性,这样既充分考虑了学生的思维发展水平,又便于学生实实在在地感悟转化的策略。一步步地引导学生用数学的眼光理解问题、分析问题、解决问题,发展思维,优化策略。在不断丰富解题策略的过程中,学生领略参与之乐、思维之趣、成功之悦,从而充分地感悟了转化的策略。
二、体验转化
策略不能直接从外部输入,只能在方法的实施过程中通过体验获得。体验是心理活动,是在亲身经历的过程中获得的意识与感受。例2在解决较复杂的分数问题时应用转化策略,进一步体验转化的意义。有利于学生在体验策略的同时,归纳和总结具体的操作方法,使学生对面积问题中的转化策略有一个完整、系统的再体验和升华。这不仅从数学思想层面提升学生的素养,而且更从解决问题的具体方法上面给学生以丰富的经验积累。具体方法的丰富反过来又深化了对转化策略的认识,这样形成的策略才能深深扎根学生的心田,才具有方法论意义上的指导、调控作用。
三、反思转化
策略的有效形成必然伴随着对自己行为的不断反思。在教学的过程中,及时地引导学生对自己解决问题的过程进行反思,有利于提高学生对自身形成策略过程的认识,从而也更加有利于学生加深对策略的进一步理解。在学习过程中,学会合作交流,经常反思,不断调整,是一种高层次的认知能力,因此我在本节课教学中,充分关注学生的自我评价与回顾反思等习惯的形成。
第三篇:解决问题的策略教学反思
解决问题的策略教学反思
解决问题的策略教学反思1
解决问题的策略这一内容是小学教学中很重要的知识。这一内容学生在三年级上册的时候就已经接触到,在上册的时候解决问题的策略重点是让学生利用从条件想起的策略解决问题。所以,这节课教授的解决问题的策略从问题出发去解决问题的时候,对学生来说这部分知识已经有了一定的基础。在教学过程中,为了让学生更深刻的体会到解决问题策略的重要性,并主动运用策略去解决有关问题,我重视对策略的体验,在教学的过程中,我通过设置情境,让学生在情境中去发现问题,分析问题,根据问题,列出题中的数量关系,再让学生自己试着去解决问题。由此中发现,认真分析问题再解决问题的好处,理清了数量关系。在解决问题之后进行反思、总结,提取相关的经验和技巧。让学生体会到策略的重要性,学生在课堂上的反应,也在我的预想之内,学生也在认真思考去分析问题、解决问题,总体来说本节课的教学目标基本达成。
当然,本节课也存在着很多不足:在教学的过程中,教师的语言还不够严谨,我针对学生的评价还不到位,对于班级中的后进生关注度还不够。学生在分析问题、解决问题的过程中,我不敢完全放手让学生自己去解决问题,总是忍不住去提醒学生如何去分析数量关系,再解决问题,以至于个别学生没有认真的动脑思考问题。在以后的教学中,会多加注意这些问题。
解决问题的策略教学反思2
1、一节好的课必须围绕重难点,有针对性的突破,这样才会有好的效果,达到事半功倍的效果。
2、这节课上,我觉得给学生回顾策略的时间和空间少了点,虽然在教学中我注意发挥了学生的主体性,但是,本课容量较大,在某些环节我还没有很好地发掘学生的内驱力,导致学生来不及细想。要真正让学生学得主动,学得扎实,学得愉快,首先还需教师从观念上转变过来,多引导,少包办。
学生的数学学习应该是学生自主学习的过程,学生应该在活动中自主探索,发现。教师在课堂中的作用在于对学生进行有效的指导,帮助学生主动参与数学知识的发生﹑发展和形成过程,理解和掌握数学思想﹑知识和方法。
3、在今后的教学实践中,需要进一步加强自己的教学机智和敏锐的洞察力。在这节课中,对于学生在课堂上出现的一些问题,我没有能够机智地抓住,把它们作为课堂资源来及时调控课堂教学。
有人说,教师的成长就是实践加反思的过程,就是痛并快乐着的过程,是啊,实践、反思、再实践!我体验着,并实践着!
解决问题的策略教学反思3
周五,我借班上了五年级上册《解决问题的策略》一课。一节课下来,感受颇多,现反思总结如下。
一、预设要精心。
备例2时,考虑到学生已经有以往搭配的经验,预设学生会出现不同的列举方式:有可能是如数、七、科、数七、数科……用文字列举;还有可能
是……用符号列举等。设计这样的环节是想告诉学生列举的方式并不重要,关键要一一列举。可实际教学中,学生在列举时,恰恰没有出现预想的方式,清一色地在设计表格,打“”,且能完成的极少。等了一会,转了一圈也没发现不同的列举方式。无奈!只好改变预案,带着学生完成列表列举便草草收场。其实,备课时曾经在脑子里闪过“如果学生不出现多样的列举方式,怎么办”的疑虑,可总自信的认为应该不会出现这样的状况。预设的不够精心,导致了教学出现意外后,没有很好的应急处理方法,教学期望无法达成。试想,如果能未雨绸缪,当学生都在苦苦设计表格时,顺势引导:表格容易设计吗?不用表格,你能想出别的列举方式吗?帮助学生打开思维,摆脱表格的影响。之后,指出列举的方式不重要。并把表格列举留作自学,集体完成……我想就不会出现教学时的窘境。
二、备“学生”要落到实处。
教学中,处理在表格中画“”表示订阅方法这一环节时,觉得对五年级学生来说应该容易,便放手让学生尝试。结果,多数学生不知所措,几乎没有学生能不遗漏、不重复地完成。其实,在集体备课时,盛校长就曾专门分析了这张表格:指出它是个复式表格,学生很难看懂,要注意变通。可我却想当然!如果能实际地调查一下,课堂上也许就不会出现盲目的尝试以及因此而带来的时间浪费。备课要做到“心中有书、手中有法、目中有人”,真的是缺一不可呀!
可能是因为借班的原因,也可能是比较紧张,学生在发言时稍微有点偏离我心中的答案时,便急忙打断,包办代替。比如:在回答长与宽的和是为什么是9?学生李说:因为周长是18,减去…….听到用“减”我马上打断了他的话,又请了另外一位学生。下课和他聊天时,才弄明白他的想法:周长是18米,包含两组对边,减一次,再减一次。也就是18-9-9=0。所以长与宽的和是9米……一个正确的想法就这样被我一口否定了!如果当时再给些时间,或许这样的遗憾就不会发生。相信回答问题的学生,更要相信其他倾听的学生。课堂中出现错误时,我就像一个权威的裁判,忙着判断是非。设想一下,如果通过学生的评价或学生之间的辩论交流,可能效果会更好。做到善于挑动“群众斗群众”还需平时多磨炼呀!
解决问题的策略教学反思4
“解决问题的策略”教学片断与反思
新课标提出要重视培养学生“形成解决问题的基本策略,体验解决问题策略的多样性,发展实践能力与创新精神。”如何践行这一理念呢?下面结合苏教版国标本五年级上册P63“解决问题的策略”例1的教学实践谈点粗浅的认识:
教学片断
师:王大叔想用18根1米长的栅栏围成一个长方形羊圈,他会怎么围呢?
(出示例1)
师:这句话中告诉我们什么信息?
生:这个长方形羊圈的周长是18米。
师:猜想一下,他会怎么围呢?
生1:用6根栅栏做长,3根栅栏作宽。
生2:还可以用8根栅栏做长,1根作宽。
师:你们是怎么想的?
生:要围成一个长方形,就要知道这个长方形的长与宽,根据条件知道长方形的周长是18米,可以知道长与宽的和是9米。
师:有没有不同的想法?
生:我是摆出来的,用8根栅栏做长,1根栅栏作宽。
师:同学们的想法都有道理,但现在王大叔思考的问题却是怎样围面积最大?你们能帮他解决这个问题吗?
生3:应该选长为8米,宽为1米的长方形。
师:为什么呢?
生:我觉得面积最大,它的长和宽就应该最大。
生4:不对,我觉得应该选长是5米,宽为4米的长方形。5×4=20,8×1=8,20比8大。
……
师:到底怎样围面积最大?光靠这样简单的猜想和无谓的争议是不够的,你们有没有更好的解决办法吗?
生:我觉得应该把各种情况的长方形都算一算,就知道哪种面积最大了。
师:前面我们学过列表的方法整理数据,现在就请大家用列表的方法把各种情况都整理一下,再算一算。出示下表:
长(米)
宽(米)
面积(平方米)
(学生列表整理,计算汇报,教师把相应数据填入表中)
生:我们发现长5米、宽4米的长方形面积最大。
师:刚才大家用列表整理数据的办法验证了大家的猜想,可能有的同学猜想正确,也可能错误了,但都不要紧,关键的是我们通过这个问题的探究给我们一些启发。现在大家再次观察一下上面的表格,你有什么新的发现?然后在小组内相互交流交流。
生:我知道了周长相等的长方形,面积不一定相同。
生:我觉得长方形的长和宽越接近时面积越大。
生:我发现长方形的长越大,宽越小,面积就越小。
师:这是为什么呢?同学们能不能闭上眼睛在头脑里想一想围成的长方形分别是什么样的?有什么感悟?
生:老师,我明白了当长方形的长越大,宽越小,围成的长方形就越扁,它的面积就越小,如果长为9米,宽为0米,这个长方形的面积就为零了。
生:老师,还可以围成更大的面积,只要把两根栅栏都平均剪开,这样就可以围成一个正方形了,它的边长都是45分米。
师:这是一个新的发现,这个发现有没有道理呢?相信大家能得出正确的回答……
教学反思
“策略”的习得不同于知识与技能的掌握,它对学生的数学学习提出了更高的要求,也成为我们开展新课改实践的新课题。纵观本课例的教学过程,有下列启示:
1、凸现问题的探究价值与开放性——形成策略
策略的形成首先源于什么样的数学问题,而什么样的数学问题又影响着什么样的解决策略。教材上原本的设计是“围成的羊圈长8米,面积是多大呢?”教者在执教时将之巧妙地改为“王大叔会怎么围呢,怎样围面积最大?”比较两者的提法,显然后者的提法更富有探究价值,更具有开放性。正是源于问题的挑
战性,学生的学习兴趣盎然,思路放得开,能积极地尝试各种不同的策略进行探究,猜想验证、画图、列表等不同的问题解决策略自然而然生成。
2、紧扣“数学思维发展过程”这个学习活动核心——优化策略
标准提出,无论是什么样的问题解决策略的产生,都必须以“观察、思考、猜测、交流、推理”等富有思维成分的活动过程为其载体。本课例中教者紧紧扣住“数学思维发展过程”这一核心,适时地引领着学生的思维不断攀爬提升,不断提升策略选择的思维品质。如出示问题后,教者提出“猜想一下,他会怎么围呢?”引导学生从数学的角度分析问题、形成策略;当学生对各种围法进行争议时,教师提出“光靠这样猜想、争议还不够,你们有没有更好的解决办法吗?”逼着学生另辟蹊径,进行策略改向;在学生以为顺利解决问题后,教师又提出“可能有的同学猜想正确,也可能错误了,但都不要紧,关键的是我们通过这个问题的探究给我们一些启发”,引导学生开展交流与评价,进行策略反思。这样,一步步地引导学生用数学的眼光提出问题、理解问题、解决问题,发展思维,优化策略。
3、尊重学习个性,彰显创新精神——发展策略
列表收集整理信息,是本课例要求学生掌握的一个基本策略,也是一本课的重点,但教者在教学活动中充分尊重学生的个性特点,基于此又不局限于此,让学生在体验不同的策略过程中个性得到张扬,从而激起创新的火化。比如,教者在学生提出不同的围法后,让学生大胆地直觉“猜测一下,哪一种围法面积最大?”再如,学生通过列表验证了猜测解决了问题,教者却未停留在问题解决的结果上,而是进一步引导学生“能不能闭上眼睛在头脑里想一想围成的长方形分别是什么样的?有什么感悟?”这样数形结合,进一步挑起究其竟的心理冲突、不满足的欲望,为形成富有理性的数学思考积累经验与感悟。
解决问题的策略教学反思5
果然,今天教学时,自学质疑部分,孩子们对一些基本的内容都了解的较多,对部分实际问题也能列出算式计算出结果,但还是不太理解为什么要替换,特别是练一练的内容更是讳莫如深,一头雾水。
于是我引导孩子们首先理解为什么要替换。“如果不替换,题目中就有两个未知数,而且两个未知数的题目我们都是用什么方法解答的?”“用方程。”我鼓励孩子们用方程解决问题。只有三分之一的孩子很快解答完。“用方程解决问题是很好的方法。但总是很费事的。如果可以不用方程就可以很快得出结果,我们是不是更喜欢?”“是!”孩子们异口同声。
“替换就可以帮助我们解决这样的问题。”我引导孩子们按书上的替换的思路理解,大多数孩子露出了满意的神色。我还引导学生总结出两种数量有倍数关系时,可以“以一换几”或“以几换一”的替换方法。
练一练的问题,孩子也无从下笔了,因为这本来就是另一种情况的问题。我首先让孩子们理解替换的可行性方式:
一对一的替换。从而发现替换后出现的新问题。于是我让学生讨论:如果把大盒子都换成小盒子,会出现什么情况?如果把小盒子都换成大盒子,又会出现什么情况?引导孩子们发现:因为两种数量之间的不相等,替换后就出现了剩余或不足。在引导孩子比较、讨论、推论,得出剩余的部分要从总数中减去,不足的部分要在总数的基础上加上。
在后面的练习中,孩子们大多数能比较熟练地用替换的策略解决简单的实际问题。教学的难点得到了突破。
这节课的成功教学,更是我尝到了有效预习在教学新知的重要作用,它帮我节省了大量的教学时间,使课堂教学的效率大大提高。
我要大声说:预习,爱你没商量!
解决问题的策略教学反思6
教材简析:
苏教版教材从四年级起,每册安排一个单元,相对集中地介绍一些解决问题的策略,让学生把解决问题的一些具体经验上升为数学思考,形成解决问题的策略,进一步提高解决问题的能力。
本单元首先让学生学习用列表的方法收集、整理信息,并在列表的过程中,分析数量关系,寻找解决问题的有效方法。
教学反思:
本单元教学的重点是让学生体会策略的价值,并主动运用有关策略解决问题。基于这样的教学重点,我在设计时,是这样去做的:
1、重视策略的形成,而不只是关注具体问题的解法和结论。我利用教材提供的丰富信息资源,将现实情境展现给学生,让学生探索和掌握用列表法解决问题的策略和方法,在发现问题、提出问题和解决问题的过程中,反思、提炼相应的经验、技巧、方法,真正形成解决问题的策略。
2、重视对策略的体验,而不只是关注策略的应用。解决问题教学的本质应是”策略的形成”,而不是问题的解法和结论。解决问题的策略不同于解决问题的方法,方法可以在传递中习得,但策略却不能从外部直接输入,只能在方法的实施中感悟获得。
学生在反复比较中形成策略,在应用中体验策略。由”原来的不知道该如何整理”到”自觉地运用策略”解决问题。
不足之处:
我看到了论坛上,大家给我提出来的建议,我会在教学中不断反思,不断改进的。
1、想把题当中涉及到的所有知识点,全部让学生有效的掌握,所以感觉课堂上重点不是很突出。
2、课堂上教师的语言不够精炼,对学生的针对性的评价比较少。
解决问题的策略教学反思7
问题一:为什么不教列表策略,学生可能会做,教了列表策略,学生反而不会做了?
要回答这个问题,我想需要我们再次明确一下本课在整个小学数学教材体系里面的地位。从四年级上册开始教材编排了“解决问题的策略”单元,本课是学生第一次接触“策略”。为什么新教材要安排单独的策略教学单元,我们可以回顾一下老教材是怎么教学本课的应用题的,归一应用题一节课,配合相应的练习,归总一节课,做练习,后面的两种三步应用题最起码要两节课,还要配合练习。这样教学的弊端,这几年讨论得比较多,主要是学生缺乏自主整理、加工、分析信息的能力,只会套题型,解死题。学生掌握的方法(注意:是方法)不能迁移。于是,老师只能碰到一个题型讲一个题型,耗时多,效果差,极不利于学生数学素养的形成。而策略,它是对方法的提炼、总结,它能有效的驾驭、统整方法。在以后的学习中,教师如果能经常引导学生用好这种策略、反思这种策略、体悟这种策略,才能有效培育基本数学思想。
因此,现在我们回来开头的问题,对于刚接触策略的学生或老师来说,出现这样的问题是正常的。但在教学处理时,千万不能退,千万不能舍弃策略,而去教方法。
问题二:解决问题的策略究竟教什么?是偏重于解决问题?还是偏重于策略?
前几年,应该说对这个问题的认识还是比较模糊的,争论比较多。但目前来看,对这个问题的认识应该是比较明确的?——“两条腿走路”,既要解决问题,又要培养策略。讲解决问题是为了应试,是策略是为了数学思想的发展。
所以,解决问题的策略的教学比较正确的做法,应该是以具体问题的解决为依托,把它作为载体,把它作为一种手段,我们的目光应该盯在策略上面,在具体问题得以解决的同时,培养策略意识。关键词:掌握方法感悟策略
问题三:怎样培养学生的策略意识?
目前,学术界比较统一的认识是,策略是教不出来的。为什么?我们比较策略和方法这两个概念。在系统论上来看,方法是下位的,策略是上位的,再往上是数学思想。方法是外化的,是可以通过言传身教、分析演示得以传递。老师掌握了三种方法,告诉学生,那学生也就掌握了三种方法。但策略这种东西是内在的,显不出来,哪怕老师有一百种策略,也没有办法直接告诉学生,策略只能从学生的内心深处渐渐萌发起来。那么,既然这样,我们为什么还要教学“解决问题的策略”呢?因为,策略虽然不能通过直接言传身教获得,却可以在大量解决问题的过程中,教师引导不断反思,不断比较,不断提炼而形成。有几个问题,应该是教师教学时经常挂嘴边的:“为什么要用策略?”“用了策略有什么好处?”“我们是怎么来用这种策略的?”不是说每做一题都要这么问,而是要经常问,促进学生感悟、体验策略的好处。慢慢地,随着时间推移,随着经验的积累,当学生把什么都忘了的时候(具体的题目、具体的解题方法),剩下来的就是策略,再进一步就是数学思想。
解决问题的策略教学反思8
《解决问题的策略》这节课看似平平淡淡,但老师一个一个脚印地带领着学生领悟按步骤解决问题的策略,探索出解决问题的一般步骤和思考方法,一切是如此的顺理成章,又是那样的扎实平稳。
1.从学生已有的知识经验出发,为新知学生做好准备。
学生走进课堂时并不是一张白纸,他们在三年级就已经学过“从条件想起”“从问题想起”这两种解决问题的策略,而这两种策略是解决实际问题最基本的策略,也是本课按步骤解决问题的一个重点,本节课从学生已有的知识基础出发,结合具体实例,让学生用已有的策略来分析实际问题,唤起学生已有的认知,为今天策略的学习做好复习准备工作,在接下来例题的整理条件、理解题意和分析数量关系、确定解题思路时,学生的思维就显得更为顺畅。
2.站在学生的角度,顺应学生的思维进行合理设计。
如在例题的教学中,教师先让学生读题,再让学生交流读题的感受,学生在读题和交流的过程中感受到条件多而凌乱,自然引发学生整理条件的需要。又如条件的整理和摘录环节,由于在此之前,学生没有这样的经验,如果直接整理和摘录条件,学生往往无从下手,因此教师先让学生说说可以怎样整理和摘录,给学生一个方向。虽然有了一个方向,但还是有部分学生不知道怎样整理,再通过几份作业的对比,哪个整理的有序、简洁一目了然。再如检验环节,虽然在本学期学生已经接触过将 “得数代入原题”这种检验方法,但由于练习的比较少,这里又是三步计算的检验,老师用在条件上问号的方法给学生作了适当的指导。只从学生的角度出发,才能有这些合理而巧妙的教学设计,学生的思维才得以顺利展开。
3.教学语言精练、清晰,小结到位。
从这节课的教学内容多,也很繁琐,不论是理解题意,还是分析数量关系,或是检验,都需要学生有准确、完整的表述,这对于四年学生来说,还是有一定难度的,相应的,老师要强调的也就多了,但今天这节课,老师的语言精练、干脆,每个问题的指向性都很明确,每个环节的小结也很到位,也正是这些精练的小结,学生在最后的回顾反思阶段,才能将解决问题的一般步骤顺利的总结出来。
解决问题的策略教学反思9
对例题的想法。例题难度不高,小明和小芳同时从家里出发走向学校(如图,)经过4分后两人在校门口相遇。他们两家相距多少米。
这道例题并不能体现出画图这一策略在行程问题中的价值,因为许多学生根据以前的经验就可以轻松解决。在选择解决问题的策略时,几乎所有的学生都是采用列表这一策略的。有许多学生告诉我,列表这一策略其实根本也用不上,因为他们很容易就抓住了题目中的数量关系。所以,在讲解这道例题时,我把着力点放在了指导学生画图上。指导学生抓住画图的三要素:方向,条件,问题。数量关系倒是很简单的两三句话带过了。
学生对画线段图来表述行程问题这一方法不感兴趣,我认为是有原因的。第一,不习惯,虽然以前也接触过线段图,要画好线段图也是很不容易的,所以,学生更愿意选择列表这一策略。第二:往往会画线段图的也能够分析清题目的数量关系,甚至说,不画线段图也能分清。而不会做的也不会画,所以,他们觉得线段图是没有必要的。对于学生的这一问题,我们只有在平时的教学中多强调线段图的简洁,方便性,同时,只要学生的线段图上能够反映出三要素,也就应该加以鼓励。如若不然,恐怕学生会更加不喜欢线段图了。
还有,班级中大括号的画法实在是难看之极。我们同轨的老师交流了一下,总结出一个方法:先画两根直线,然后加个小帽子(中间的尖),再把两头弯一下。让学生画了几个,果然本子上的大括号漂亮多了。
解决问题的策略教学反思10
本节课是苏教版六年级下册解决问题的策略单元第一课时,内容是第71-72例一、试一试、练一练及练习十四的1-3题。本节课是在学生已经学习了用画图和列表,以及列举、倒推、替换和假设等策略基础上进行教学的,主要是让学生学会运用转化这一常见的、极其重要的解决问题的策略,通过转化能把较复杂的问题变成较简单的问题,把未知的问题变成已知的问题。而转化的手段和具体方法是多样而灵活的,既与实际问题的内容和特点有关,也与学生的认知结构有关,掌握转化策略不仅有利于问题的解决,更有益于思维的发展。所以本节课的教学不以学生能够解决教材里的各个问题为目的,而在于学生对转化策略的体验与主动应用。
基于此,我设计了以下六个教学环节:第一环节是“创设情境,导入新课”,这一环节教学例1,学生在比较两个不规则图形的面积时产生困惑,我及时引导学生运用已学过的知识来解决这一困惑,即引导学生去探索解决问题的关键是如何将不规则图形转化为规则图形,初步体验转化思想。第二环节是“回顾运用,感知转化”,在本环节中我留给学生充分的空间,让学生从图形转化和计算转化两个方面回忆以前运用转化的策略解决过哪些问题,引导学生把以往学习的一些具体的数学方法上升到转化策略的高度来认识,以增强策略意识。感知转化无所不在,真正体验到了转化的好处。 随后在第三环节“及时练习,运用转化”中我改变了教材知识的呈现方式,把练一练和练习十四第2题的前两小题作为及时练习内容,使学生初步学会运用转化解决问题,巩固知识的同时体验成功的喜悦,激发继续学习的热情。 第四环节是“观察思考,再探转化”,这一环节主要是教学“试一试”部分,把一个复杂的分数加法计算题结合图形从而转化为一个简单的计算,初步体验数形结合的思想,进一步探究转化。第五环节“应用迁移,拓展深化”中通过学生的独立思考和合作交流利用转化的策略解决实际问题,达到巩固应用和进一步体验转化的目的。第六环节是“总结转化,深化思想”,本环节包含两个部分,首先让学生自己说说本节课的收获,再让学生欣赏“曹冲称象”和“司马光砸缸”两个古代智慧故事,激发了学生的应用兴趣,使他们对使用转化策略解决问题充满信心。
课前设想总是美好的,但在实际的操作中,总会出现一些问题。 虽然整节课的设计都是围绕让学生去感知、探索、体验“转化”的策略,但上完这一课后,我感觉没有达到预期的教学目标。整节课下来,学生的收获偏重于教材和我所提供的一些关于转化的问题,学生的创造性没有得到很好的发挥,很难再以后的学习中把转化这一策略应用到新的问题上面。主要问题是学生对“转化”策略的体验不够,课堂上我没有很好地设计一些问题让学生思考:为什么在解决一些数学问题时需要用到转化的策略?在运用转化策略的过程中又有哪些具体的方法???很多时候都是作为教师的我在“唱独角戏”,一个人在那儿说着“转化”的优点,而学生并没有所想的那样对转化有认同感。并且课堂上我对学生的启发提问,知识与知识之间的过渡语言,对学生回答完问题的评价语言显得贫乏苍白。此外,对课件的操作也存在着一些问题,很多时候学生从我操作中的“蛛丝马迹”中获取了问题的解决方法而不是通过思考主动利用转化策略去解决。这是对整个教学流程的把握不够自信和熟悉的表现。
一节课下来,静心沉思 ,积累成功的经验,思考失败的原因。总之就本节课而言,增强学生的转化意识,提高学生转化的技能,让转化思想扎根学生心田,这样学生的思维才能更灵活开放。符合就是成功,不符合就是失败,我会在以后的教学中不断改进。
解决问题的策略教学反思11
在上课前,我跟学生玩一个游戏:老师手中有扑克牌方块5、6、7和红桃5、6、7这6张扑克牌,两人游戏。每人拿方块或红桃,每次出一张牌,比大小,三局两胜。在游戏里,我是先出的,学生再出,结果是每次都是我胜了。从而引出策略这个抽象的概念。利用学校开展的运动会报名整理,引出列表的策略。让学生体会到在生活中用策略解决问题的魅力所在,以此来激发学生学习的积极性,学生看完后,也有一种非常想运用自己所学的本领,来解决一些实际问题的冲动。
教学例题时,利用日常生活中常见的商店促销活动,我创设购物情境,引导学生观察,运用自己学过的知识进行整理条件和问题,学生找到了题中的条件和问题,很快就会算出小华买5本需要多少钱?我追问:你平时用哪些方法进行整理信息并解答问题的?学生不作声,给我的感觉是他们不用什么方法,只要懂得其中的数量关系,就能解题。
对于班级中聪明的孩子来说,有些题目老师不讲,他们都会做。为了照顾到全体同学,更好地帮助学生理清题目中的数量关系,我向同学们介绍了一种用列表来整理条件和问题。引导学生表述题中的条件和问题,并呈现简洁的文字摘录,学生感觉很清晰,很简便,学习兴趣逐渐加浓。我指出如果再给它们加上边线会怎样呢?操作后形成了表格,学生十分兴奋,并认为这样题目中的数量关系就更清晰了。此时,学生对列表整理的优势有了直观的感知,再通过分析表格中信息之间的数量关系,使全体学生都掌握了解题的方法。
在此基础上,如果能安排几次对比,比如将列表整理与凌乱的情境图进行对比;将列表整理与学生的文字记录整理进行了对比,那就更好了。尤其是要将列表整理与文字记录整理进行对比,让学生明确“列表整理”清楚、简便、有条理,形成自愿运用“列表整理”解决问题的积极情感。在这方面我做的不够细致,只注重分析了表中的数量关系,如从条件出发,要求5本笔记本多少钱,先要求出1本的价钱,再求出5本的价钱;再如从问题出发,要求5本的价钱,必须先求出1本的价钱……看似教学效果不错,学生解答得非常正确,但是感觉此节课还应该突出如何进行列表整理……让学生真正掌握这一方法,以帮助学生解决今后出现的更复杂的题目。
在教学中,给我的感觉是单独出现条件和问题,要学生自主列表解决,问题不大,但如果几个条件和问题同时出现,有些学生就会茫然……这在教学两表合并成一张表时,感觉特别明显。
总而言之,由于此次教学,我们五个试教者都没有试教,而是备好课后直接教学,在时间的控制上做得不够到位,例题花了太多的时间,感觉很清晰的教案,在教学时总有一种不知所以的感觉。于是我在思考,一节成功的数学课,功夫也许还应花在课外,比如首先要明确今天这节课的重点难点到底是什么?是教会学生怎样进行列表,还是通过列表重点来分析数量关系?其次是到底采用什么教学方法?是先让学生自主探索?还是边引导边探索?整节课到底是学生主体还是教师主导?一系列的问题在我教完后,时时萦绕在我的脑海,一下子我就好像失去了方向……也许,教材是死的,教法是活的,我们只要采用灵活的方法使学生真正掌握解题方法便是一节成功的课。
解决问题的策略教学反思12
第一课时
假设是解决问题的常用策略之一,对学生分析实际问题的数量关系,积累解决问题的经验,感悟一些基本的数学思想方法,提高分析和解决问题的能力,都有着十分重要的意义。因此,我认真钻研教材,对照“真学课堂”的要求,精心设计了这一课时。
一、课前交流,渗透“等量代换”思想
“等量代换”是假设策略的核心思想,我在课前让学生重温了“曹冲称象”的故事,意在让学生明白曹冲用石头的重量来替代大象的重量实际上就是蕴含了一种数学思想“等量代换”,为解决课上的实际问题作了铺垫。在解决例1时,也确实起到了作用,大部分学生能很顺利的想到将大杯换成小杯,或将小杯换成大杯。
二、创设问题情境,形成认知冲突。
在学生口答完简单的只有一个未知量的题目后,出示例1含有两个未知量的题目,呈现对比强烈的问题,引导学生比较问题的结构特点,形成认知冲突,进而产生把复杂的问题转化成简单问题的心理需求,激发学生进一步探求解决问题策略的欲望。
三、以学定教,教学中适时调整教案
在教学例1时环节,我的教学预案上,我预设了学生解决问题的三种思路:第一种是全部是小杯或全部是大杯,第二种是通过画图再解答,第三种是列方程解答。但是在课堂上学生都是采用了第一种假设方法,画图也只有极个别的学生,全班没有列方程解答的学生。这时,我就调整教案,展示了第一种思路。方程的解法,我选择是一带而过,只需要让学生了解这类题目也可以用方程解答,方程也是假设的思想,而且列方程解答,相对列式解答来说就复杂一些,既然学生能掌握列式解答的方法,就不必要求他们列方程。
四、自主尝试后小组活动
非操作类小组活动,应该建立在学生充分自主的基础上。在解决例1时,我先让学生独立思考、自主尝试,列式解答。再让学生在小组内活动,说清楚每一步求的是什么。这样让组内学习较好的学生有自我展示的机会,对于后进生来说,在自主尝试的时候没有得出解决问题的方法,那么在小组活动的时候,他们可以听取组内其他成员的思路与方法,对他们理解题目起到帮助作用。个人认为在这些非操作类小组活动前,先由学生自主尝试,能培养学生面对难题时独立思考的习惯,让学生有勇气去面对难题。如果没有给予学生充分自主思考尝试的`时间就进行小组活动,这样就会让学生对他人产生依赖,形成惰性,面对难题时也就失去了战胜困难的勇气。
五、展示交流多样化。
真学课堂的要求指出:要给学生充分展示、主动交流的机会。我在本节课中运用了组内展示、全班展示,直观展示、口答展示等形式。在学生小组活动时,让学生在组内充分展示自己的思路,在小组活动结束后我选取了两种不同方法的作业纸,通过投影仪展示在前面的白板上,让学生直观清晰的看清楚他人的作业,这时我并没有请被展示作业的学生进行自己作业的讲解,而是请全班同学共同思考这份作业的每一步求的是什么?再指名回答。我认为被展示作业的学生已经在小组内展示过了,没有必要让他再讲解一遍,应该给予他们更多发言的机会,同时又给予了全班同学又一次理清算式每一步的机会,再指名回答,在倾听他人回答的时候,这时全班同学又进行了第三次思考。
在展示“试一试”解题过程时,我并没有在投影仪下展示学生的解题过程。因为我通过巡视,发现全班基本都会做这道题,所以我只是让学生站起来回答问题,同时提醒学生倾听,这样让学生一边倾听同伴的发言,一边思考同伴说的是否正确。既培养了学生倾听的习惯,同时在倾听的同时又思考了一遍,强化了解题思路。
不足的地方:
一、回顾总结不到位。
教材上安排了“回顾解决问题的过程,你有什么体会?”这一环节,而我只是把这些渗透在解决具体题目中,并没有作为一个环节,回顾解决了的问题。我应该启发学生从为什么假设、怎样假设、假设后怎样思考等方面展开交流,并作适时的提炼和概括,以提升认识。
二、没有充分调动学生的积极性。
整节课,可能由于后面坐了听课的老师,学生有些紧张,举手的学生不多。我没能很好的调动他们的发言积极性,所以有很多学生会回答但是手却不举起来,这就需要我平时在教学中要注意,多使用激励性语言,多鼓励孩子。
三、关注学困生还不够。
解决问题的策略在小学阶段是比较有难度的一部分,特别是对于学困生,不容易理解。这就需要我们老师在课堂上要时时的去关注他们,不能只考虑课堂的时间安排,而忽视了他们。
解决问题的策略教学反思13
《借助画图策略解决问题》教学反思
上段时间,我在四年1班实行了一段时间的通过画图来解决问题的教学尝试。经过一段时间的练习,学生的画图能力和解决问题的能力有所上升。鉴于往后还需要在另一个班进行推广这个能力练习,故反思如下:
1. 教会学生画图的基本策略
开始时,我准备了一节以画图解决问题的主题课,通过一步计算、两步计算、三步计算的题目,结合如何画图进行教学,重点解决学生的数据的提炼、画图步骤、需要解决问题的标示等简单画图技巧。如“商店买回140个杯子,装了5箱后还剩20个,每箱装多少个?”,首先让学生读题,简单快速的找到题意“140个杯子,装了5箱后,剩20个,每箱?个”,接着画线段图或者用其它图形来表达,要让学生明确,把140个杯子分成了两部分,一部分已经装箱了,一部分是剩下来的;装箱的那部分要分成5个箱。最后在图形上,把各个数据标在合适的位置,并用问号将所求部分标示出来。
2. 通过典型例题来提升画图解决问题的能力
多次测验反馈中,学生在有关“倍”的问题上,经常出错,学生习惯用乘法来解决问题,但没有具体分析什么是什么的几倍,没有分析等量关系式。为了突破这个难点,我让学生在运用线段图解决这类问题时,首先找标准量,用一个格表示标准量,在用另一条线段表示什么是标准量的几倍,最后是标数据和问号,在观察线段图的基础上,分析1个格与几个格的关系,从而分析它们的数量关系,进而选用合适的方法进行计算。
3. 一天一练,培养学生运用画图解决问题的习惯
为了培养学生通过画图解决问题的习惯,我让学生一天进行一题练习,然后第二天进行批改和讲解,在学生养成习惯的同时,解决问题的能力也有所提高。
解决问题的策略教学反思14
与上节课相比,本课的例题中的条件和问题更加繁杂了,出现了三种不同的果树,行数每行的棵数都不相同,这需要学生根据所要求的问题,整理解决该问题所需要的不要条件,排除无关条件的干扰。学生在研究的同时更加体会到列表整理的妙用。
在实际的解决问题中,本节课的问题其实并不十分复杂,只要能够准确地列出所需的条件学生自己是能够解决的,只是在列式之后解答时需要强调运算的顺序。比较而言本节课学生掌握得要比上一节课好得多。在想想做做的第3题由于出现的步骤相对多一些,学生列综合算式有些困难。
课前思考:
1、例题是用三步计算解决的简单实际问题。先让学生认真读题,找出题中的条件,由于题中的条件较多,要引导学生找出这些条件的对应关系,然后根据题中的问题,找出相关的信息整理成表格。启发学生根据整理好的表格表达自己解决问题的思考过程,从而体会到“列表整理”的策略价值。
2、“试一试”也是用三步计算解决的实际问题,所不同的是,例题是求两积之和,这里是求两积之差。但思考的方法是相同的。教学时,可以让学生在解答例题的基础上,独立列表整理条件,再在小组里交流自己的思考过程,然后再独立解答。
3、练习中通过让学生列表整理,找出相关的信息解决问题,可以放手让学生独立去解决。教师不必一一解释了。
授课小结:
由于在第一课时让学生自己设计表格进行整理,在今天的学习中,学生能根据问题很快找出与问题相关的信息进行整理,效果比较好。在交流中、在学生的讨论中都能使学生体会到:提供的信息较多,如适当整理则有利于更清楚地分析数量关系,列表整理条件有利于发现数量关系,找出解决问题的方法。尤其是在组织学生交流中,启发学生根据整理好的表格表达自己解决问题的思考过程,以突出“列表整理”的策略价值。还是有学生较懒惰表述的太省略,意思表达不清。
解决问题的策略教学反思15
教学内容:
苏教版五年级数学(上册)第94-95页例1及随后的“练一练”,练习十七第1-3题。
教学目标:
1、使学生经历用“一一列举”的策略解决简单实际问题的过程,能运用列举的策略找到符合要求的所有答案。
2、使学生在对自己解决实际问题过程的不断反思中,感受列举策略的特点和价值,进一步发展思维的条理性和严密性。
3、使学生进一步积累解决问题的经验,增强解决问题的策略意识,获得解决问题的成功体验,提高学好数学的信心。
教学重点:
让学生体会策略的价值,并使学生能主动运用策略解决问题。
教学难点:
在学习过程中,感受策略带来的好处,培养学生学习数学的积极情感。
教学准备:
课件、小棒、表格。
教学过程:
一、谈话导入。(2分钟)
谈话:同学们,我们以前学到过解决问题的策略,想一想:我们都学过哪些策略啊?(板书:从条件想起,从问题想起,画图,列表)
引入课题:今天我们就继续来学习解决问题的策略。
二、教学例1。(20分钟)
(一)弄清题意,引发需求
1、出示例1:王大叔用22根1米长的木条围一个长方形花圃,怎样围面积最大?
2、(指名读题):从题中你能获得哪些数学信息?你还能发现题目当中隐藏的信息吗(2人答)?(长方形的周长是22米)(掌声)
师:周长一定是22米,是保持不变的,长和宽也会像周长这样保持不变吗?长和宽在变化,那么面积也就有大(顿)有小。
师:长和宽可能会是几米?指名答 (板书: 长: 9 宽: 2 )
他猜得对吗?再指名答理由(2人)。(板书:长+宽:22÷2=11(米) )
设疑:还有不同的围法吗?(有)大家想一想:在这么多围法当中(板书:),要想知道怎样围面积最大,可以怎么做?(把所有围法都列举出来)大家想不想亲自动手来围一围?
(二)尝试列举,感知策略
1、分层提出要求:
?请你用22根小棒摆出不同的长方形,将结果填写在记录单中。
?也可以直接填写记录单,再通过摆小棒来验证自己的猜想是否正确。
学生操作,师注意收集(A:遗漏B:重复C:全但无序D:有序)的表格进行投影展示。
2、比一比:大家更欣赏哪种记录方法?(D)为什么?(板书:按顺序)按顺序列举有什么好处?(板书: 不重复 不遗漏)
师:这位同学真了不起,掌声送给他。(掌声)
师:请刚才没有按顺序填写的同学改成按顺序填写,老师也来改一改。( 补齐板书:长(m):10 9 8 7 6
宽(m): 1 2 3 4 5 )
7、同学们数数看,一共有多少种不同的围法?(5种)现在你知道怎样围面积最大吗?(长6米,宽5米)你是怎么知道的?
(补齐板书:面积(㎡):101824 2830)看来我们还要对列举出来的结果进行分析、比较,这样才能选出我们想要的。
8、小结揭示课题:像刚才这样把事情发生的所有结果按照一定的顺序一一列举出来,也是一种解决问题的策略,我们通常就称它为“一一列举”的策略。(板书:——一一列举)齐读课题。
(三)反思回顾,加深理解
1、提出要求:回顾刚才解决问题的过程,你有什么体会?(列举能帮助我们解决问题,列举时要有序思考,对列举的结果要进行比较)
2、进一步要求:其实列举的策略同学们并不陌生。大家思考一下:在以前的学习中,我们曾经运用列举的策略解决过哪些问题?小组交流。(如:一年级:10的分与合)
追问:用列举的策略解决问题有什么好处?在列举时需要注意些什么?
过渡:王大叔有个女儿叫小芳,他送给小芳一个礼物,是什么呢?对,小闹钟
三、拓展应用,丰富体验。(16分钟)
1、出示“练一练”第1题。(突出“有序”)
(1)指名读题,指名板演。
(2)学生尝试解答,组织交流反馈:重点让板演的学生说说是怎样列举的。
过渡:你们喜欢学校的饭菜吗?小芳也很喜欢,让我们来看一看小芳所在学校食堂的饭菜情况。
出示练一练第二题。
进行荤菜搭配时,可以按表中的样子从荤菜想起,也可以从素菜开始一一列举,一共有12种不同的搭配。
过渡:小芳有一个爱好是上网,在课余时间经常通过浏览一些网站来增长自己的见识。大家是否知道网站为了及时发布最新的消息,都需要定期更新。我们一起来了解一下。
2、出示“练习十七”第2题。(突出“对结果要比较、观察”)
(1)指名读题,师引导学生观察A网站怎样更新后再提出要求:先在下表里画一画,再回答。
(2)组织交流反馈:重点突出对列举的结果要观察、比较。
联系生活:上网确实很好玩,但同时郑老师也对大家提一个小小的要求:希望大家要做到“文明上网、适度上网”,千万不能沉迷于网络。
过渡:小芳除了喜欢上网之外还有一个爱好是收集邮票,先课件出示4张邮票(师介绍“邮票”,认识邮票面值),再课件出示问题(师介绍“邮资”:就是指邮票的面值之和。)
3、出示“练习十七”第3题。(引出分类列举的思想)
提问:你打算怎样解决这一题?指名回答,生口头说出按怎样的思路来列举即可。
四、总结全课
同学们,这节课我们学了什么策略?你有哪些收获?还有什么要提醒大家的?(列举时需要注意什么)
同学们,在我们的生活中,采用“一一列举”的策略常常可以使复杂的问题变得简单,使混乱的思维变得清晰,这正是我们学习数学的魅力之所在。
第四篇:解决问题的策略教学反思
解决问题的策略教学反思
解决问题的策略教学反思1
《解决问题的策略》这节课看似平平淡淡,但老师一个一个脚印地带领着学生领悟按步骤解决问题的策略,探索出解决问题的一般步骤和思考方法,一切是如此的顺理成章,又是那样的扎实平稳。
1.从学生已有的知识经验出发,为新知学生做好准备。
学生走进课堂时并不是一张白纸,他们在三年级就已经学过“从条件想起”“从问题想起”这两种解决问题的策略,而这两种策略是解决实际问题最基本的策略,也是本课按步骤解决问题的一个重点,本节课从学生已有的知识基础出发,结合具体实例,让学生用已有的策略来分析实际问题,唤起学生已有的认知,为今天策略的学习做好复习准备工作,在接下来例题的整理条件、理解题意和分析数量关系、确定解题思路时,学生的.思维就显得更为顺畅。
2.站在学生的角度,顺应学生的思维进行合理设计。
如在例题的教学中,教师先让学生读题,再让学生交流读题的感受,学生在读题和交流的过程中感受到条件多而凌乱,自然引发学生整理条件的需要。又如条件的整理和摘录环节,由于在此之前,学生没有这样的经验,如果直接整理和摘录条件,学生往往无从下手,因此教师先让学生说说可以怎样整理和摘录,给学生一个方向。虽然有了一个方向,但还是有部分学生不知道怎样整理,再通过几份作业的对比,哪个整理的有序、简洁一目了然。再如检验环节,虽然在本学期学生已经接触过将 “得数代入原题”这种检验方法,但由于练习的比较少,这里又是三步计算的检验,老师用在条件上问号的方法给学生作了适当的指导。只从学生的角度出发,才能有这些合理而巧妙的教学设计,学生的思维才得以顺利展开。
3.教学语言精练、清晰,小结到位。
从这节课的教学内容多,也很繁琐,不论是理解题意,还是分析数量关系,或是检验,都需要学生有准确、完整的表述,这对于四年学生来说,还是有一定难度的,相应的,老师要强调的也就多了,但今天这节课,老师的语言精练、干脆,每个问题的指向性都很明确,每个环节的小结也很到位,也正是这些精练的小结,学生在最后的回顾反思阶段,才能将解决问题的一般步骤顺利的总结出来。
解决问题的策略教学反思2
今天,学习了《解决问题的策略》一课,对于一一列举的方法,有许多学生都在无意中用过,但是却没有把它系统化,甚至根本就没有正视它。换句话说,学生基本都认识列举的方法,这节课的学习过程主要是学生思考方法的整理过程。根据这一特点,教学中我在以下方面下了工夫。
一、遵循学生的认知规律
心理学指出,小学生思维发展的特点是由以具体形象思维为主要形式,逐步过渡到以抽象思维为主要形式。五年级学生虽然已具备了一定的抽象思维能力,但碰到问题的第一反应终究是形象化的。就比如本课例一,学生首先想到的是把围的样子摆出来或画出来,空间能力比较强的学生是直接想出来。于是,我组织学生从摆小棒入手,在摆的过程中逐步发现规律、研究规律。在小棒已显得可有可无的基础上再引导学生屏弃小棒,共同进行方法的优化。整个过程充分体现教为学服务,每一步的推进既是课堂的需要也是学生的需要,学生主宰了课堂,课堂也发展了学生。
二、关注学生的思维发展
思维是贯穿数学学习始末的一项活动,故数学被喻为思维的体操。关注学生的思维发展也即了解了学生的学习情况。因此,课上我尽量做到让学生多说,说说自己的思考过程,说说对于问题的`看法,根据学生的发言中的反馈信息合理安排接下来的环节。
但是,最后的巩固环节处理得很不到位。首先试一试时三份作业一起呈现,学生比较起来无从下手,未能找到各个的特点。而接下来几题由于时间关系交流得比较仓促,没有发挥应有的作用。
解决问题的策略教学反思3
解决问题的策略这一课,可以说是整册教材中最难的。它是第例题的基础上来学习的,在学习例题一的基础上进行第二课时教学。这个例题是用三步计算解决的简单实际问题。教学时让学生认真读题,找出题中的条件。由于题中的条件比较多,要引导学生找出这些条件的对应关系。然后根据题中的问题,找出相关的信息整理成表格,引导学生认识到:要求出桃树和梨树一共有多少棵,就要分别知道桃树和梨树各种了多少棵。学生已经初步接触了一些解决问题的方法。这里可以大让学生自己尝试着算出来,遇上问题后再来解决,这样做既能让学生通过旧知道去探索新的知识。也能锻炼了学生的自学能力。要是遇上学生不懂可以启发学生根据整理好的表格表达自己解决问题的思考过程,从而体会到“列表整理”的策略价值。在这里里教师要尽量把问题抛给学生,例如:当学生出现不同的'算法时。教师要是能这样就好“小白菜很谢谢你们能为她想出这么多的解决方法来,但是小白菜不知道怎样取舍,你能来帮她吗?哪种理解的方法和
算法你比较喜欢?”在试一试中,也是用三步来解决。所不同的是,例题是求两积之和,这里是求两积之差。但思考的策略不相同,教师在学生解答例题的基础上,独立列表整理条件,再在小组里交流自己的思考过程,然后再独立解答出来。在这个过程中,有些孩子仍然说不出思考过程来的,这时老师带领导已经过关的学生来帮组强思维能力较弱的学生,这样达到以好带差的效果。
在想想做做的时候,先指导学生认真看图,收集各种有用的信息,然后根据根据问题将各种条件整理成表格,并分析问题与条件之间的数量关系,再让学生独立解答。这样的做法,让学生学会跟着老师思路想问题,又能养成独立的解题方法。
第二题时,先让学生独立完成,然后根据学生出现的问题进行一一指导解答。最后启发学生根据图中情况再提出些问题并解。第三题虽然与例题和试一试的不同,但学生也能通过列表整理的方法,独立地,认真地用自己的能力理解题意和解决问题。
在第环节中:教师以“一台织布机3小时织布84米,如果织8小时可以织布多少米?”为下面的学习做好铺垫。
在新课环节:教师在出示例题后让学生谈谈感受,这里留给学生自学的空间。在这环节中,老师的一句:“你准备从哪想起。让学生对题目的理解做到了认真细致。在这题里,学生可以有两种想法,一是:要求桃树和梨树一共有多少棵,要分别算出桃树和梨树各有多少棵;二是根据桃树有3行,每行有多少棵,可以求出桃树的棵数;根据梨树有4行,每行5棵,可以求出梨树的棵数,然后求出桃树、梨树一共的棵数。 这里老师能让学生独立的回答每步的思考过程。在第二课时里,学生的小组交流不够多,在教案中我们设计了让小组活动交流的时间,但在实际的课程中,这样的活动只有一次,而且质量不高。
解决问题的策略教学反思4
上周周三下午第二节课时,我在六(2)班上了一节数学课《用转化的策略解决问题》。同年级组的高教导在前几天也上过这一课,我们六年级的三位数学老师将这一课作为同题研讨,轮流上这一课,进行集体研讨。
记得去年六月份时曾经听我校陈敏娟老师上过这一课,当时的感觉就是这一课时内容不好上,因为它与其他教学内容不同,并不像其他课那样,通过一节课的学习能让学生学到一个具体的知识。这一课没有教给学生什么新的知识,它所要表达的是一种数学思想,即转化,教材借助一些具体的数学问题来向学生传达这一数学思想。听课时的我当时只是站在教师的角度在想不好上,现在轮到自己也要执教这一课了,就还需要思考很多问题。在初步构思这一课的教学预案的那几天里,经常萦绕脑海的一个问题便是什么是转化?。我想如果教师自己都不是十分清楚的话,如何给学生上这一课呢?
转化是解决问题时经常采用的方法,能把较复杂的问题变成较简单的问题,把新颖的问题变成已经解决的问题。转化的手段和具体方法是多样而灵活的,既与实际问题的内容和特点有关,也与学生的认知结构有关,掌握转化策略不仅有利于问题的解决,更有益于思维的.发展。
我想这一课的教学目标不是以学生能够解决教材里的各个问题为目的,而在于学生对转化策略的体验与主动应用。一旦学生们具有初步的转化意识和能力后,对以后的学习与解决问题就会产生十分积极的作用。
分析本节课,纵观全程,既把平移,旋转运用到图形等积变化的问题中,又蕴涵探索图形面积公式的转化,还有计算小数乘法的和分数除法时的转化,还有数量关系之间的转化等。通过回忆和交流,意识到转化是经常使用的策略,从而主动应用转化的策略解决问题。基于此,于是采用以下步骤解决。一、创设情境,感知策略。二、合作交流,探究策略。三、拓展运用,提升策略。
应该说整节课的设计都是围绕让学生去感知、探索、体验转化的策略,但上完这一课后,我自我感觉没有达到预期的教学目标。主要问题是学生对转化策略的体验不够,课堂上我没有很好地设计一些问题让学生思考:为什么在解决一些数学问题时需要用到转化的策略?在运用转化策略的过程中又有哪些具体的方法?------很多时候都是作为教师的我在唱独角戏,一个人在那儿说着转化的优点,我的每一次的小结只有化为每个学生的真切体验才是有效的教学。
教学中需要注意的几点:
一、让学生在探索中经历转化的过程。
转化的策略对于学生而言并不陌生,在过去解决问题中学生有过运用转化的策略的经历,只是虽然应用并未提升到策略这一高度,学生对转化策略的应用应该说是处于无意识状态。因而,学习这一策略先必须对这一策略的应用过程重新又一个清晰的感知。借助例题1的学习,我们可以让学生在探索并运用策略解决问题的过程中,经历运用转化策略的关键步骤。第一步,放手让学生在解决问题过程中产生困惑。如例题1中的两个平面图形是不规则图形,无法直接计算出它们的面积。第二步,如何运用已学过的知识来解决这一困惑,即引导学生去探索解决问题的关键是如何将不规则图形转化为规则图形。第三步,思考为什么可以运用转化的策略来解决这一问题,即让学生体验当问题较复杂时可以运用转化的策略使问题变得简单。在随后的练习过程中,教师仍应该不时地组织学生来体验转化的过程,思考每次通过转化将什么问题转化成了什么问题,为什么需要运用转化的策略,对转化的策略你又什么新的认识------
二、在复杂变式的应用中领会转化的方法
在明白并领悟转化的实质是化繁为简,化未知为已知之后,对于具体如何运用转化策略而言,关键是针对每一个具体的问题究竟如何寻找到转化的突破口,如何去实现转化。教材安排的练习中有些问题涉及到较为特殊的转化方法,如例题1后的试一试及练习十四中的第2题的第3小题等。教学中需要教师给予学生较大的探索空间,让学生充分思考,去主动探究如何转化,还需要教师及时组织学生反思运用转化的策略后解决问题时有什么优势,使学生充分感受转化策略的价值。
总而言之,转化的策略不同于假设、枚举等这些运用于特定问题情境的策略,也不同于画图、列表这些一般策略,作为一种广泛运用的策略,它蕴含了一种重要的数学思想。因而,教学这一策略时,教师不能着眼于学生会运用这一策略解决问题,应努力使学生在学习和运用转化策略解决问题的过程中充分体会数学思想的魅力。
解决问题的策略教学反思5
上完这一节课本节课,我趁热打铁,立刻进行反思。本节课我努力体现解决问题这类课型的我们老师应该坚持做哪些工作,我个人思考不管是新课程理念还是老课程,也不管是什么版本,数学应该有其本质的东西,那就是给学生思考的时间和空间,引导学生会思考,促进学生去悟懂里面的道理。正是基于这样的理念和思考,所以在课中我三个招注重:
1、注重给学生充分思考的时间,我等着学生慢慢领悟其中的道理,课堂上照顾全体同学,决不是看到有同学举手,就像看见了一个救星一样,马上请这位同学回答,他回答对了,就代表都会了,这样做就以个体代替了整体,会造成课堂上个别学生的表演。
2、注重审题,我感觉对于一个问题,能够正确全面的审题对于能否解决问这个问题至关重要,所以新授部分,我注意让学生多次读题,并且把重要的信息让学生重读,并且说说自己的理解,之所这样就是想培养孩子仔细审题、全面审题的能力。通过课堂效果来看,起到了预期的效果,在学生正确全面的审题以后,解决问题就水到渠成了。
3、注重学生在独立思考后的讨论交流,课堂上我是先让学生独立思考,思考后再进行交流,而不是抛出一个问题后就直接让学生讨论交流,我感觉那样的讨论交流一般是比较流于形式的,是浅层次的交流,是没有深度的。因为每个同学还有经过自己的思考张口就说,看上去很热闹,往往是:自说自话,简单的想法。通过课堂效果来看,这样的处理有着实实在在的效果,对于发展学生的思维能力是非常有帮助的。
再来反思自己上课的不足之处,我感觉也有很多不足之处:
1、没有很好的调动起学生的积极性,提前一天和学生交流的.时候,学生很活跃,所以今天在会场上我想也应该是这样的,其实不然,学生是紧张的,而我还是以昨天的表现来应对今天的局面,显然是不妥的,课前也没有进行充分的交流。
2、课堂的练习设计层次性不强、趣味性不高,所以感觉课堂上后面的练习学生积极性不够高,显得沉闷和呆板。
3、课堂语言不够生动和活泼,也不够精炼。
以上三点都是我在今后的教学中需要下大力气进一步改进的地方。
解决问题的策略教学反思6
《解决问题的策略》这一课的教学目标是,让学生学会用列表的方法整理信息,解决两步计算的问题。
在经过反复的推敲后,我决定使用《司马光砸缸》的故事进行导入,从而引出“解决具体问题”的两种思维方式“从条件想起”、“从问题入手”,为新课教学做铺垫,进而揭题。
由于采取的是“教与学方式改进”的教学模式,所以学生们都进行了课前的预习。从收上来的预习纸中,我寻找到了自己所需要的教育资源,也就是整理信息的三种办法:
1、画图表示;
2、画线段表示;
3、列表整理。
所以,在课前我就做了记录,并留心在课堂上逐一安排这些小组上台展示,并最终讨论有关列表整理的方式。在介绍列表整理方式中,我注重让学生掌握如何填写信息、找出数量关系,并体会它的好处。最后,在大家的讨论和我的引导下,学生掌握了列表整理的办法,并完成了例题的列式解答。
在这一课的教学准备和执行中,我有以下感悟:
1、预习纸或预习题的下发,可以落实学生的预习情况,让学生不会存在侥幸遗漏的情况;
2、由于已经预习过,课堂中一些练习可提前完成,可充分利用教学时间去进行其他的讲解。
3、由于提早预习,不少孩子的自我学习和吸收能力加强,这点可从她们的课堂表现可以看出。这部分孩子特别爱说、能说、会说。不仅专业知识得到提升,而且个人的素养也相对提高,变得自信、有条理了!
4、在小组合作过程中,学生学会了如何与他人相处,并理解和体会了团队精神!
但是,在教学过程中,我也有几点遗憾:
1、出于对孩子的不信任,在课上还是不敢放手让学生去完成她们的自学,过多的参与到她们的`学习中;
2、由于这种教学模式下,需要给与学生大量思考和讨论的时间,所以教学进度难以把握,有时无法按时完成教学内容;
3、在这种教学模式下,产生了“贫富差距越来越大”的情况。就是好的学生越来越棒,而后进生则学得云里雾里,成绩越来越差。当然我们有小组长辅导的机智,但这还是远远不够的,这一点值得我们老师去探讨;
4、这种模式下,对教师和学生的要求是很高的,需要全身心的投入,但是每个人的精力都有限,如何能更好的进行这种教学模式,也是我们所应该探讨的。
解决问题的策略教学反思7
预习,正越来越被更多的小学数学老师所青睐,它作为一种学习方法,预习习惯的养成,预习方法的掌握,对于培养学生终生学习的能力,促进学生终生发展有着不可估量的作用,这不容置疑。
可有些老师提出:教材中一些需要推导算理、计算公式以及需要探究后才得出结论的内容不必安排预习。理由是抹杀了学生探究的欲望,就不具备探究学习的条件了。而我恰恰认为,这类课,预习过后,合理组织教学,也可以培养学生的思维能力,或者说反而具有更高的思维含量。
例六年级上册《解决问题策略――替换》一课,我是这样组织预习的:
(1)布置阅读书上P89-90页的内容;
(2)720毫升全部倒入小杯需要几个小杯,全部倒入大杯需要几个大杯?你是怎样想的?
(3)在解决例题时,你是怎样替换的?
(4)在探究过程中,你还遇到什么问题?
第二天,我这样检查预习并组织新课,分为这几个层次:
1.开门见山,检查预习情况,指名学生解答预习要求;
2.720毫升全部倒入小杯需要9个小杯,9个小杯是怎么来的?
3.同样720毫升,全部倒入大杯需要3个大杯,3个大杯是怎么来的?
4.小结两种替换方法(大杯换小杯,或小杯换大杯);
5.组织验证;
6.质疑:预习中你还遇到了什么问题?
7.改变条件拓展提升:把小杯容量是大杯的1/3,改成大杯容量比小杯容量多160毫升,让学生思考如何替换,组内交流。
8.对比总结:这两题有什么不同?
9.巩固训练:如何用替换这一策略解决实际生活中的问题。
反思:这样的'课堂把原来要通过探究,最终得到的“替换”这一解决问题的策略,让学生预习感知,并通过预习反馈,延续下面的探究活动,解决这节课的重难点,可谓单刀直入,不拐弯抹角,学生的思路清晰,思考方向明确。问题是数学的心脏,我让学生创造性的学习,把学习的主动权交给学生。这样,学生有充足的思考时间,有自由的活动空间,有自我表现的机会,促进了创造性思维的发展。谁又能说抹杀了学生探究的欲望,就不具备探究学习的条件了呢?反而,我认为:
1.这样的课堂,高度激发了学生的参与热情,充分地展现了多样化的见解,能让不同层次的学生都有话说,都能或多或少有自己的思考,不至于跟不上教学的节奏,能让他们充分体验到成功的喜悦。
2.这样的课堂,学生不满足于课本知识的获得,敢于向课本挑战,从不同的角度提出不同的见解,长此以往,还能进一步培养学生的问题意识,从而达到对课本知识的深层次理解。
3.课堂中教师可以重点点拨预习中产生的疑惑,围绕重点难点组织合作交流,拓展、创新。而不至于课堂中平均用力,突不出重点难点,造成会的学生不愿听,不会的学生听不懂。这样的课堂,充分节约了教学时间,加快了课堂教学的节奏,能有效提高课堂教学的效率,正是我们所追求的有效课堂。
解决问题的策略教学反思8
小葛老师在尊重教材的情况下,把知识的逻辑起点与现实起点连接起来,将丰富的精彩问题策略进行外显。根据解决问题是多元的,让学生的思维流动,允许不同的学生有不同的发展,给学生有充分的学习自由度,让学生快乐的.学习。
本节课教者没有把解决某一个具体的问题作为教学的主要目标,而是把重点放在了学生体会策略的价值,并主动运用策略来解决问题上。这节课有以下几个点比较好:
一、教学设计“实”。
教学内容的设计符合学生的情感,结合教学实际,大胆更改教材,增加了情景中的信息量,让学生在解决问题的过程中产生一种需要情感——愿意在解决问题之前先整理信息。做到了教材服务于教学,而不是教学服务于教材。
二、教学方式“活”。
在教学中充分的体现老师的指导性和学生的主体性。所有知识的学习,教师扮演着组织者和指导者的角色,而学生则在老师的组织下充分的在课堂这一舞台上展示自己的才华,学生成了学习的主人,他们在评价他人的同时也学会赞美别人;他们掌握了学习的时间和空间,体验着成功的喜悦。
三、教学内容“丰”。
整节课的教学密度大,内容丰富,把数学和生活紧密联系起来。从课的开始一直到结束,每一个问题的产生,每一次知识的收获都离不开实际生活的情景,这是教师用心之处,让学生知道学习数学的最大作用就是让数学知识服务于生活。
让不同的学生学习不同的数学,从多种策略中慢慢感知、理解,在比较摆小棒、列举、图表等策略中使学生领略列举的优势,注重过程的学习。诱发学生学习快速进入探索状态,因学而设、顺学而导,把设计、学习、引导相结合,让学生在学习中,及时回头看一看自己的学习行为过程,关注学生学习的真切体会,及时检测学习效果,同时拓展了问题的深度,培养学习逻辑思维能力。
解决问题的策略教学反思9
这节课,我围绕小猴摘桃设计了5个复习题,旨在通过前四道题目,复习加法、减法、乘法,以及两步计算问题,最后一道题目通过学生补充条件不同,提问求出的都是“小猴第二天摘了多少个”,为什么结果不同?强调在解题过程中条件的重要性,引出今天的课题——《解决问题的策略---从条件想起》。另外补充的条件:第三天摘40个,从而引出条件中数量之间关系的重要性,补充的条件和什么有关?在上的过程中我发现这一部分有些重复,可以提一两个问题,然后从学生的补充条件中找加、减、乘及两步计算问题可能会更好些。
在讲授例题:小猴帮妈妈摘桃,第一天摘了30个,以后每天都比前一天多摘5个。小猴第三天摘了多少个?小猴第五天摘了多少个? 我花费很多时间,我觉得是值得的,首先我让学生解释了以后每天都比前一天多摘5个,大概请了两三个学生说清楚,在讲授例题之前我先提问:小猴第二天摘了多少个?第三天?第四天?第五天?但是这边存在一些小问题:让学生讲第三天为什么是用35+5,而不是是30+5等等这一块没有让一些学生说出是比第二天多5而不是比第一天多五。最后的例题我是想让学生选择自己的方法来解决问题,重点想讲述第三天比第一天多几个5,第五天比第一天多几个5,最后以此类推第10天,第二十天呢?但是可能提问提的不是很好,也或许第五天没有讲透,有些孩子没有完全吸收,导致只有少数孩子能答的上来,如果换一种提问方式:能不能直接求出第五天的?用30加上什么?20怎么的来的等等,会不会更好些?然后可能这些讲的比较拖沓,导致后面的练习没有讲完。后面的练习题:一个皮球从16米的高处落下,如果每次弹起的高度总是它下落高度的一半。第3次弹起多少米?第4次呢? 到第四次时弹起1米,如果追问一下滴次呢?既能为以后学习小数、分数做铺垫,更能深刻的'帮助学生理解每次弹起的高度总是它下落高度的一半。在练习第二题:18个小朋友站成一排,从左往右数,芳芳排在第8 ;从右往左数,兵兵排在第4。芳芳和兵兵之间有多少人?我是让学生通过画图的方式,可不可以喊十八个小朋友上台实际操作一下会不会更好些?
这节课大致上我自己还算满意,还有些细节地方需要改善,今后我会进一步努力提高自己的教学水平。
解决问题的策略教学反思10
《解决问题的策略——从条件想起》这节课是苏教版三年级上册第五单元第一课时。这节课主要帮助学生联系已有的解决实际问题的经验,学会用从条件出发思考的策略分析数量关系,探寻解题思路,并解决一些实际问题。所谓从条件想起的策略,就是从已知条件出发,想出由这些条件所能解决的问题,并最终与所需解决的问题建立起联系,这是一种由因到果的思考方法。在解决实际问题的过程中,几乎都会运用到这一策略,所以理解并掌握这一策略,对于学生形成解决问题的能力具有非常重要的意义。在执教这节课的过程中:
一、从提问导入,初步感受策略
课始,我创设了“小猴乐乐的农场”的情境,提供两个已知条件,让学生根据已知条件提出数学问题,让学生初步体会到根据有联系的已知条件可以提出相应的数学问题。然后再出示教材中安排的小猴摘桃的例题,通过读题,找已知条件和问题,分析“以后每天都比前一天多摘5个”这个已知条件的含义,引导学生体验从条件出发思考的策略,初步感受策略运用的过程和特点。
二、比较反思,注重解题过程的回顾
教材中的例题在解决的过程中出现了两种方法,一种是列表法,另一种是算式法。在学生尝试解答之后,我让学生比较一下这两种比较的方法有什么共同之处,体会到虽然解题方法不同,但是都是从条件出发思考,结果也是相同的。回顾解决这道题的过程:读题,找已知条件和问题,分析有含义的已知条件,解决问题。教材中安排的“想想做做”第2题,我将它安排在解决了例题之后,我觉得这两题其实是十分类似的题型,所以在完成例题之后再完成这道题,然后将两道题的分析思考过程放在一起,比较一下这两道题在分析思考的过程中有什么相同之处,从而得出从条件一步一步地到问题的解决的.过程,体会从条件想起策略的一般步骤,帮助他们由具体到抽象,不断加深策略体验,逐步增强解决问题的策略意识。
三、低估了学生的分析解题能力
在解决例题和想想做做第2题时,都是由我带着学生一起分析有含义的条件:“以后每天都比前一天都摘5个”和“每次弹起的高度总是它下落高度的一半”。在教学过程中,我发现大部分学生是理解这两个已知条件的含义的,所以我应该在理清了已知条件和问题之后就放手让学生来独立完成,然后再交流想法:为什么这么做?学生应该会说到从哪个条件得到什么等等,这样更能体现从条件想起的策略。
四、忽视了列表、画图辅助方法优势的渗透
解决实际问题时,学生一般都想到用列算式的方法来解决。本节课还渗透了列表,画图等多种方法辅助思考,引导学生根据实际问题的特点,合理选择解决问题的方法,使策略运用过程更具针对性。在学生解决完例题后,指名让学生上台交流,在交流的过程中,发现学生没有很好的认识列表这一方法,学生只是在运用了列算式的方法得出了结果之后把每天摘桃个数一一填到了表格中,没有体现出列表这种方法的优势,所以这里我应该引导学生认识一下表格,了解一下表格的里的内容等等,让学生明白列表也是解决问题的一种方式。在解决“想想做做”第3题时,由于教材中已经提供了18个圆圈,学生很快根据条件找到了答案,然后我让学生通过算式的方法再解决一遍时发现较多学生有困难。其实这里是一个让学生发现画图方法优势的好机会,在算式方法交流完后,我应该适时地总结:有的实际问题,运用画图的方法能更快地找到答案,我们要针对具体问题合理选择解题方法。
总之,这节课的设计不尽人意的环节较多,没有很好地体现学生学习的主动性,也没有突出从条件想起这一策略的优势,需要进一步改善。
解决问题的策略教学反思11
由于刚刚听过青年教师评优课,课前认真阅读了其他老师对这一课的教学设想学习,仔细修改了课件,所以教学时做到了心中有数,因而今天这节数学课的教学效果是不错的,超出了我的预期目标。学生们对于用替换这种策略来解决生活中一些常见的实际问题都很感兴趣,课堂上学生们思维活跃,发言积极,包括很多平时学习数学困难较大的学生也初步掌握了这一策略。
一、培养学生运用所学知识解决实际问题的能力。首先,解决实际问题的教学能培养学生根据需要探索和提取有用信息的能力。其次,它促使学生将过去已掌握的静态的知识和方法转化成可操作的动态程序。这个过程本身就是一个将知识转化成能力的过程。再次,它能使学生将已有的数学知识迁移到他们不熟悉的情景中去,这既是一种迁移能力的培养,同时又是一种主动运用原有的'知识解决问题能力的培养。
二、培养学生的数学意识。首先,它能使学生认识到所学数学知识的重要作用。其次,它能培养学生用数学的眼光去观察身边的事物,用数学的思维方法去分析日常生活中的现象。再次,它能使学生感受到用数学知识解决问题后的成功体验,增强学好数学的自信心。
三、培养学生的探索精神和创新能力。首先,解决问题需要学生根据具体问题情境去主动探索,这本身就有利于培养学生的探索精神;其次,任何数学问题的解决,只有通过对已掌握的知识和方法的重新组合并生成新的策略和方法才能实现问题的解决。所以这个过程又是一个创新的过程,它不仅使学生获得初步的创新能力,同时还可以让学生从小养成创新的意识和创新的思维习惯,为今后实现更高层次的创新奠定良好的基础。
解决问题的策略教学反思12
以前的策略叫替换,现如今改成了假设,虽然叫法不同,但课的本质是一样的,要求学生能够学会假设这一策略将两种未知量转化为一种未知量,使原本比较复杂的问题变得简单那一些。本节课的教学重点难点是让学生掌握用假设的策略解决一些简单问题的方法;弄清在有倍数关系的问题中假设后总量不变,份数变了。反思本节课教学中自己较为满意是:
1、创设情境感知策略在课前我通过《曹冲称象》的故事,让学生说说曹冲是用什么办法称出大象?然后指出:曹冲用相同重量的石头代替大象的重量,这就是解决问题的一种策略——替换,今天我们就利用这种办法来解决一些实际问题,从而引出新课。生动有趣的动画场景加上耳熟能详的故事,在很大程度上激发学生学习的兴趣及进一步探索新知的欲望。且通过故事让学生初步感知替换策略及其它在实际生活中的应用,再次感受数学与生活的密切联系。
2、对比教学发展思维。本节课我在例题的教学中根据“小杯的容量是大杯的1/3”引导学生采用了两种假设的策略,一种是把大杯替换成小杯,另一种是把小杯替换成大杯。我让学生思考:他们的共同点是什么?都是把两种量替换成一种量,从而揭示了假设的目的`在于把复杂问题简单化。
3、注意差异重点教学。替换的策略——尤其是相差问题的替换,学生尽管知道替换的方法,但对于替换后总量发生了怎样的变化不少学生模糊不清,学生之间的差异较大。如何协调这种差异,一是借助现代信息技术手段通过动态的演示让学生明白替换前后的变化,一是给学生时间和鼓励。在教学中我发现练一练中的把2个大盒换成2个小盒总量减少2个8个,有的学生不甚理解,图片的出示能帮助学生理解,但对一小部分孩子还是存在困难,让学生分别从图中指出原来的个数和减少的个数,能促进更多学生的理解。我们只有本着承认差异,尊重学生的态度才能促进每个学生的发展,才是真正的以生为本。
4、多种策略综合运用2新课程标准指出:努力使学生“形成解决问题的一些基本策略,体验解决问题策略的多样性,发展实践能力与创新精神”。教学中,我让学生通过画图把替换的过程表示出来。并且在检验后我提出“回顾一下,刚才这个问题有什么特点,我们是怎样来解决这个问题的呢你觉得哪些步骤是解题关键?”引导学生既感受到用假设的策略可以解决什么样的问题,又让学生感受到面对一个问题有时会有多种策略的综合运用。
通过解决问题的策略的教学,使我更加明白了“数学方法是数学的灵魂。”数学的学习,对学生来说,能使其终身受用的,绝不仅仅是知识,数学思想方法的获得是更重要的。
解决问题的策略教学反思13
今天教学了《解决问题的策略》练习课,昨晚让学生把P93第四题至第八题做在家作本上,从学生的作业情况来看,对这个单元的内容掌握的还可以,除了有几个学生对追击问题没有搞懂之外,所以在上课之前改变了按部就班的程序,开始重点讲了讲追击问题,然后出了两道变式题想考一考孩子们的反应能力。
1、阳阳和冬冬从同一地点反向出发,沿着环形跑道赛跑。阳阳每分钟跑340米,冬冬每分钟跑260米,经过2分钟两人第三次相遇,跑道一周长多少米?
2、一辆汽车长8米,一座大桥长1992米,这辆汽车以每分钟250米的速度过桥,这辆汽车从上桥到下桥一共用了几分钟?
结果第一题大概有十几个学生通过画图解决了,但第二题只有两三个人做出来。看来平时还要注重学生的思维训练。
今天教学了《解决问题的策略(行程问题)》,从预习情况来看,学生对列表格的方法比较钟爱,可能是觉得画图比较麻烦吧,所以新授就重点讲了如何画图,如何画好图。特别是如何把图画的比较标准一些,这对学生解决问题还是有很大帮助的。
这类问题类型比较多,新授的内容又太简单,所以花在练习上讲解的时间比较多。特别是追击问题,学生比较难理解,所以在课堂总结的'时候,我让学生分别上台演示了相遇问题、相背问题、追击问题,我想,这样学生就有了更直观的认识,对他们画图也应该是有很大帮助的吧。
今天教学了《解决问题的策略(行程问题)》,从预习情况来看,学生对列表格的方法比较钟爱。我想有两个原因,一是列表格的方法以前专门有学过,二是画图的方法比较麻烦。所以在新授的时候我重点讲了怎样画线段图,如何把线段图画的比较准确、美观。
虽然今天的教学内容并不难,只是相遇问题和相背问题,但在练习中却又生成出许多新的问题,如:环形跑道、追击问题等。而如果仅靠课堂上学的知识,学生是很难独立解决这些问题的,所以当出现新问题的时候,有很多学生不知从何下手,我只好请学生上台直观演示,效果还行。
明天的练习课应该把行程类问题整理一下,然后再加强练习吧。
解决问题的策略教学反思14
一、预习单的作用。
昨天印发了预习单发下去,今天收上来看了一下,学生对于一些基本的知识点还是掌握得可以的,就是在画图的细节上不太注意。譬如画出增加或减少的面积,最好是要打上阴影,这样可以在观察图形的时候可以观察得更加清楚一些。而在预习单中打上阴影的,全班就只有2个人。还有就是条件,也有很多同学不标上的,长和宽倒是很少有人会忘记,就是预习单中增加的面积和减少的面积是不标上数字的。所以,今天上课,在交流预习单时,我拿了一份比较好的和另一份普遍性的作业,让学生进行观察比较,得出了画图时的一些注意点:标上条件,打上阴影。
另外,我选择的预习单的题量太大,交流预计是五分钟,结果花了七八分钟左右。其实不用这么大的题量,完全可以在预习单的第二第三题中选择一题。
二、这一课时的题量虽然比较少,但想想做做的两道题难度还是比较大的。例题的解决是十分顺利的。
先出示题目,我问:读完题目之后,你明白题目意思了吗?结果学生很得意地说:可以?我心中咯噔一下,因为我的本意是估计学生看不明白题目中的数量关系,从而启发他们想办法解决,那么办法就是画图的策略,因为例题光靠读题是很难找出其中隐含的.关系,更何况回答可以的还不是一个两个,而是一大片。那么我只好再问一下:其中的关系是什么?还是有很多学生举手:请了一个,他十分自信地回答:我虽然暂时看不出来,不过我知道可以画一幅图。 原来,不用我再继续引导了,他们自己全明白。
因为有了预习单的对比和引导,所以这一幅图学生画得还是比较好的。阴影部分,条件交代得都是蛮完备的。交流自己的思路也交流得还可以,就是画图完成算式再交流,学生速度太慢。
三、让学生反思吧
在完成试一试后,我让学生回顾一下自己的解题过程,说一说自己成功的地方在哪儿,自己有何改进之处。虽然今天学生结结巴巴地说得也不是太好,但是我想,解题总归是要总结的,让他们反思,总比不思要好得多。而且这个能力也是一个人最基本的能力。
四、题目的难度。
想想做做的两道题目实在是太难了,说是培优题也一点不为过。虽然在课上我充分地让他们去做,两题我给了整整八分钟,交流的时间也十分充分。但是我总觉得学生掌握得不是太好。后来课后一检查学生的书本,发现大部分学生基本上已经明白,有七八个学生还是需要老师再讲解一遍。这种情况平时很少发生。哎,真不知道教材编这么难的题目干什么?在今天交流这两题的时候,我是请了会做的学生到前面来讲述自己的思路,我在下面也听着,觉得他们讲得还是蛮清楚的。所以自己也没有再重新复述,难道问题是出在这儿。可是,要是学生交流了自己的思路之后,老师再不厌其烦地复述再复述,那么,学生的交流不也就失去了自己的意义了吗?而且,确实也不利于培养学生认真倾听的习惯。真是两难呀!
解决问题的策略教学反思15
学生在例题1中初步体验了替换的策略,例2要求学生提出假设,然后来验证自己的假设是否正确,由于学生已经掌握画图、一一列举等解决问题的策略,提出的假设可能是多样的,鼓励学生采用自己喜欢的方式,采取灵活多样的策略。课后,我对本课时有以下几点感触:
第一,学生解决问题方法日益多样化。一部分学生假设10只都是大船或都是小船,采用图画枚举的方式对上述设想进行调整之后。一部分学生选择了按课本第91页的列表法进行调整。另外有两种情况出乎我的意料之中:一是一部分学生采用了大船从0条到10条一一检验的繁琐方法;还有学生设大船为x条,则小船为(10- x)条,列出较复杂的方程: 5x+(10- x)×3=42。虽然这个学生没解出这道方程,但学生解决问题的多样性,思维的活跃却令我倍感欣慰
第二,学生已有在众多策略中选择最优化策略的意识萌芽,但还需老师引导学生关注策略的实效性。学生根据自身个性特性的因素可能在众多策略中选择适合自己的策略,但也有一部分学生用一种策略解决问题之后,就不愿再尝试新的方法,有一部分学习较认真的学生能进行多种方法的尝试。部分学生能在解决实际问题的过程中体会到各种策略有不同的特点,各有其优点或局限性。当时我根据这一部分学生的热情,帮助引导学生了解各种策略的特点以及在不同情况下应用的情形。如在学生用图画枚举之后,我相机提出如果船数不是10条,而是20、30、40条甚至更多,还采用图画枚举的方式有什么不方便的地方呢?你们还会选择图画枚举的方法吗?当学生认识到图画枚举方法的局限性时,在讨论之后一致得出结论:当数据较大时,采用图画枚举法效率较低,最好还是选择列表法。让学生的思维从形象到概括过渡,发展学生思维的开放性与灵活性。再如在用列表法解决问题时,我提出:按常规船的配臵方法有11种,从0条大船(或小船)到10条大船(或小船),你们认为是从0条大船(或小船)开始,按顺序列举还是教材假设大小船各5条,哪种方法更快捷?为什么?学生懂得在选择解决问题的策略时,可以选择最有实效的策略,最优化的策略,可以提高解决问题的速度和效率,确保正确率。教材上往往主张解题方法的多样性,主张学生用自己喜欢的方法,我个人认为在尊重上述主张的同时,可适当引导学生注重策略的最优化和实效性,与上述主张并不相悖。
第三,学生的有序思考的习惯已经初步形成,但适当提醒还是有必要的。在学生掌握一一列举法,图画枚举等解决问题的策略以及在平时的学习过程中,学生已经认知有序思考,有了初步的了解和应用。但采用假设法解决问题的策略时,由于绝大多数假设都不是问题的答案,学生在假设之后,要进行一定的调整,进行相应的替换,在学生进行调整和替换的.过程中,由于教材所选用的数据都偏小,部分学生用口算或凭直觉认为是某某数,就直接用某某数试算,而不是按一定的顺序来进行,出现重复或反向调整。有些同学侥幸一步就假设成功,所列表格中就只有一行数字,既是初始假想,又是最终答案,可能会忽视有序思考的重要性。我认为有必要提醒一下学生:有序思考不仅是检验假设的方法,也是一种重要的数学思考方法和数学素养。
本课时教材选材生活化,有利于学生运用多种策略解决实际问题,学生思考的空间大了,解题的方法灵活多样,例题和习题都有多种方法。但我认为六年级是小学向中学的重要过渡阶段,到六年级阶段,小学生的抽象思维能力获得了一定程度的发展。本节课之后,我总觉得教材上画图假设、列表假设比较直观,利于学生的思考,但学生的思维培养不能总停留在形象层面上。我有这样的感觉:本单元选材可能形象性有余,概括性不足。可否在“练一练”或习题中选用一道习题数字较大,让学生感知认识到用计算的方法能更快更准确地检验假设,使之体会到抽象思维的优越性,为进入初中的学习打下坚实的基础。
第五篇:解决问题的策略教学反思
振宇外国语学校四年级上册《解决问题的策略》教学反思
用画图的方法表示图形面积增加或减少的情况,帮助理解题意,找到解决问题的方法。这节“解决问题的策略”主要引导学生用画图的策略整理题目的条件和问题,进而分析数量关系,解决问题,让学生在解决实际问题的过程中合理选择解决问题的策略,体会解决问题策略本身的价值。
我发现学生不喜欢画图的一个原因就是不会画图。因此,主动而有效地运用画图的方法,内化成解决问题的策略,必须有相应的画图技能。如果学生不会画图,那么绝不可能在解决问题时自觉运用这一方法,也就不可能成为自己解决问题的策略。对于那些画图水平底的学生,有必要进行专门的指导。让他们先学会画图的基本技能,再运用技能解决问题。还有部分学生不喜欢画图解决问题的主要原因是不能正确的理解题意,导致不能有效地将信息进行形象化处理,画图的失败以及对解决问题的无效,使他们失去了画图的兴趣和需要,甚至产生了惰性。基于上述的认识,我在进行练习教学的时候,精心选择问题情境,用问题情境说话,促使学生自觉地选择画图方式整理信息。
四(2)班
钱莉