第一篇:数与形教学反思
纵观本节课的教学,我感觉亮点之处有:
(1)适当引导与学生的自主学习有机结合。
本节课所复习探究的知识都是在以前的学习中适当渗透的,要让学生真正理解什么是数形结合,教师就必须引导学生结合生活中的实例去认识、去体会、去感悟,所以在自主探究环节,我首先出示三幅不同的统计图,让学生通过分析统计图中的数据,初步认识数形结合的优越性,然后放手让学生回顾或自学课本上的内容,进一步理解体会数形结合在数学学习上的应用,真正做到了以教师为主导,以学生为主体。
(2)练习设计层次性比较清晰。
如果罗列一些练习题,总感觉处理方法大同小异。为此,我在设计练习上从三个方面入手,一是利用数形结合计算,二是利用数形结合找规律,三是利用数形结合解决实际问题,虽然练习题的难度稍微大一些,但借助示意图或线段图让学生解决,更能让学生体会数形结合解决问题的优越性。
不足:
本节课的复习回顾与自主探究我都是在课堂上完成的,课堂容量比较大,难度也有些大。学生能力有所欠缺的班级可以让学生课前自学或搜集相关知识,并适当降低练习的难度,学生能力比较高的班级可以尝试使用此教学设计。
第二篇:《数与形》教学反思
《数与形》教学反思
课堂教学是否做到关注每一位学生?是否关注让现实的教育资源成为我们优质的教学素材?是否将问题情境镶嵌在学生主动学习、积极探索当中,而催生对学生终生发展、更有价值的新思维、新思路?是否关注每节课的生命课堂与教学效果?这就是我对这节课深刻体会与反思。
1.先“数”后“形”,培养学生的逻辑能力
小学六年级的学生已具备初步的逻辑思维能力,但仍以形象思维为主,教材在小学中年级的数学教学中,已经逐渐借助推理与知识迁移来完成,并结合教材挖掘、创造条件开始渗透数形结合思想。进入中高年级后,学生逻辑思维能力已有一定发展,为了使学生更直观的理解知识,同时又满足学生逻辑思维能力的发展,因此本节教材在编排上体现了先“数”后“形”的顺序,把形象真正放在“支撑”地位,从而为培养学生的逻辑能力而服务。
2.引导学生数形结合,相互印证。
形的问题中包含数的规律,数的问题也可以用形来帮助解决,教学时,要让学生通过解决问题体会到数与形的这种完美结合。既可以从数的角度出发,让学生看看可以怎样用图形来表示数的规律,也可以让学生寻找图形中所包含的数的规律。通过数与形的对应关系,互相印证结果、感受数学的魅力。例如,在例1中可以先让学生计算1+3+5+„的得数,使学生发现得到的和都是“平方数”,再通过图形的规律理解“三角形数”和“正方形数”的含义。
3.通过举一反三,培养数学能力。
在巩固练习时,充分利用教材习题,引导学生在解决问题时能举一反三地运用所学,使学生的解题能力得到培养。
4.重视利用图形来分析题意,理清思路,提高解决问题的能力。在本课的配套的练习中,题目中蕴含的信息量较大,直接让学生来读懂题意有一定的难度。因此在教学中,我试图引导学生通过结合图形来分析题目意思,理清数量之间的关系,提高解决问题的能力。
总之,在今后的教育教学中应充分重视学生原有认知水平,利用数形结合的数学思想,选择一些适合学生认知水平的学习材料,设置生动有趣的教学情景,抛出有探究性的问题,放手让学生自己发现、自己归纳、自己体验,那肯定比教师讲解更有价值,更能调动学生的兴趣。
第三篇:数与形教学反思
数与形教学反思
数与形教学反思1
教学之前,学生已经掌握了四舍五入求一个数的近似数。从上学期学生的各个项目反馈来看,掌握得还是比较乐观。而小数的知识刚刚习得,为此本堂课对于大部分学生新知识的理解,我个人觉得难度不是很大。所以本堂课,我把教学重心放在学生对于理解求小数近似数的三种表述,如何根据要求表述求一个小数的近似数,以及在表示近似数时小数末尾的0不能随便改动。
课堂上,将1。666……怎样表示更恰当。学生呈现了2元,1。7元,因为在之前的练习中我们已经接触了给物体正确标价。当学生提出这样的观点的时候,立刻引起其他学生意见,这样的表示不够合理,当以元为单位时,应该是两位小数。故,马上有学生想到改为1。70元。我顺势板书1。70元。看者这个数字底下学生议论纷纷,心急的学生脱口而出:“这个1。70怎么来的.?”我们继续倾听学生自己的理解。在表达的过程,学生自己也意识到了错误所在,同学们也明白了错误根源。此时我提出,“以元为单位,小数部分保留了几位?”“省略的是哪一位后面的尾数,”“是舍还是进,看哪一位?”这连续的三个问题,帮助学生整理思考的过程。同时也连接了“保留两位小数”“省略百分位后面的尾数”二者之间的联系,以及回顾四舍五入方法。
掌握了保留方法之后,再引导学生区分在求近似数时1。0和1之间的不同之处。学生自己畅所欲言,表达自己的观点,在生生交流中明确近似数中的0不能随意去掉。
最后讨论取值范围。
整堂课前奏非常顺利,学生看似一下子就能掌握基本方法,顺利完成任务。但是总感觉学生的上课热情不高,时常观察到学生懒散地坐着,思绪也肆意放飞,心不在焉。课堂节奏绵软无力。可见课堂的趣味性有待提高。
数与形教学反思2
一节好课的标准具体指的是什么并不重要,重要的是在听的时候不由得拍案叫绝,会在听后回味许久。
《和的奇偶性》是一节由专家上的录像课,本节课主要是学生在自己的动手实践中发现“和的奇偶性”存在着一定的规律。听这节课的时候我在本班刚刚完成这部分的教学,我在教学的时候也是在学生计算中得到规律,但是我的引导和解说是那样的呆板和没有什么说服力,这节课的展示让我感慨到专家绝对是名不虚传,下面我来谈谈完美的一节课可以怎样去呈现。
课一开始的导入,以学生转动转盘来获得相应的奖励开始,学生的兴趣被完全吸引,为了获得奖品不仅参与率高,而且思考存在一定的深度,在按照规则发现最后得到的都是“谢谢参与”时,引发了“偶数加偶数得到的一定是偶数,奇数加奇数得到的一定是偶数”这一思考,这一规律的探索不是教师布置给学生思考的练习题,而是学生根据自己的`需要从内心深处的需求。
在学生认识到规则的不合理性的时候,教师让学生自己尝试改变游戏规则,进而充实了“偶数加偶数得到的一定是偶数,奇数加奇数得到的一定是偶数,奇数加偶数得到的一定是奇数”的结论,教师一句想要产生一定的规律,必须列举实例来验证,学生的思维又在所学的知识中去遨游,用事实去说明了规律。这里老师的一个小细节我非常的感动,老师讲转盘上面的奖品都准备齐全,等到学生按照正常规则转动转盘获得奖品时,教师就将相应的奖品奖励给学生,这一举动我发现很多上课老师都会忽略。
本节课的最大亮点应该是教师在引导学生验证这一规律是用的数形结合的形式,一句改变华罗庚的名句:“数缺形时少直观,形缺数时难入微,数形结合百般好,数形分离万事休”,让学生跟着数学家的名言主动用最为直观的图形展示来验证,虽然前面的具体验证已经确定了结论,但是数形集合的“画龙点睛”实为妙哉。
专家在课上的完美演绎,对于感触很深的我,在今后的教学中一定要在备课、上课的时候做到研究一定要存在一定的深度。
数与形教学反思3
第一、情境引入,架设铺垫桥梁。从这节课伊始,学生通过解决生活中的拍照问题,不失时机地提出“寻找规律”问题,紧紧地吸引学生的注意力,先让学生的思维受挫,思维碰撞。及时让学生经历去动手动脑作图当中寻找计算规律。一方面凸现数学学习当中的“数形结合”思想方法;另一方面彰显数学源于生活,用于生活,感受数学就在身边的生活价值。
第二、以“数”构“形”,以“形”建“数”,让学生在构建中自己发现规律、自己总结规律。在教学中,引导学生“借助图形—探索奥秘—发现规律—展示成果”。如例1,通过观察和计算1、1+3、1+3+5、1+3+5+7···既能发现加数的规律,又能发现和的规律;例2同样均在突出学生主体地位、学生自主学习当中进行。从而较为顺利的突出重点、突破难点,达到教学目标的实现。
第三、分层推进,巩固拓展,追求课堂教学的最大效益。本节课,在检测“计算规律应用”效果时,精心设计几个层次的练习题,“应用规律写一写”“根据以上结论算一算”做到分层递进,由易到难,巩固提高。从课堂上学生回答的过程来看,不同层次的学生回答不同的问题,收获不同层次的.效益,取得了良好的教学效果。
第四、多元评价,激发学生学习热情。教师利用评价表评价和学生表决式评价相结合,调动了学生的学习积极性,整节课学生的学习积极性高涨,参与率较高。
总之,在今后的教育教学中应充分重视学生原有认知水平,利用数形结合的数学思想,选择一些适合学生认知水平的学习材料,设置生动有趣的教学情景,抛出有探究性的问题,放手让学生自己发现、自己归纳、自己体验,比教师讲解更有价值,更能调动学生的兴趣。
数与形教学反思4
上周二开始上成正比例和反比例的量,有很多练习是判断两个量是否成比例,成什么比例。
例如:
(1)被除数一定,商和除数
(2)圆柱的体积一定,圆柱的底面积和高
(3)总价一定,单价和数量
(4)三角形面积一定,底边和高
(5)小麦每公顷产量一定,种小麦的公顷数和总产量
(6)比的前项一定,后项和比值。
根据正、反比例关系的判定方法,我们首先判断两个量是不是相关联的量。具体的说,就是两个量是否具有相乘、相除的.关系,它们的结果能否通过条件知道是定值,从而判断它们成不成比例或成什么比例。
从学生的作业来看,(2)和(3)小题基本不会出错,对于圆柱的体积刚刚讲完,底面积x高=圆柱的体积(一定),可以很好的判断出来是成反比例的。
(1)和(6)很多孩子是写的成正比例,其实也是成反比例,被除数/除数=商,比的前项/比的后项=比值,可能没有注意这里谁是定值,或者说对于这三个量之间的变式掌握的不好。
(4)他们说不成比例,原因是多了个2,三角形的面积=底x高/2,这个的变式主要是学生没有利用三角形的面积的推导,底x高=2x三角形的面积(一定),所以成反比例。
判断两个量是否成比例,成什么比例。对学生说有点难,主要难在变形,代数式的变形在中学还要学习,现在是个初步的接触。
数与形教学反思5
这节课是人教版六年级数学上册第八单元《数学广角》中的内容, 数形结合的思想是一种重要的数学思想,本节课就是以这一思想为主题的数学课。在设计课程时,我力求做到以下几点。
一、领会编者意图,准确定位教学目标 从孩子数学学习开始。
数与形的思想一直伴随在数学教与学的过程中, 如果说过去数形 结合思想是深藏不漏地渗透在知识技能的教学中,那么在本节课,数形结合思想则由幕后走到了台前,成为了教学的对象与核心。我认为编者在编排这一内容的时候,他的目的不在于掌握 某个具体的知识和技能,而在于促进学生对数形结合思想的.体验进一步总结与自觉应用。
二、环节清晰,螺旋递进。
数和形是客观事物不可分离的两个数学表象, 两者既是对立的又是统一的,数与形的对立统一主要表现在数与形的互相转化和互相结合上,围绕着数与形的互相转化与结合,我们将数 形结合思想的教学分解为:以形助数、以数解形、数形结合
三、各环节逐渐展开。
第一环节:以形助数,教学例 1 从 1 开始连续奇数相加的和除了用加法的交换律和结合律来计算, 还可以有怎样的简便方法,为了探索新的算法,将数转化为图形,根据加数的拿出相应个数的图形排列成正方形,通 过观察数与形之间的关系找到了其中的规律,那就是算式的和等于排列成正方形图形的个数, 图形的个数等于正方形每边的个数相乘,每边的个数等于加数的个数,这样借助图形,通过等式的传递性,最终得到了算式的和等于加数个数的平方的简便新算法。
第二个环节:以数解形,教学 P108 做一做第 2 题。 怎样可以算出蓝色正方形和红色正方形的个数, 观察和寻找图形排列中数的规律, 发现运用这一规律计算和解决问题。
三、给予学生探究的时间和空间,让学生充分经历和体验。
在例题 1 的教学中,我让学生亲自动手,根据算式摆图形,学生在动手摆的过程中经历了 将数转化为形的过程,体验了数与形的联系,探索发现了简便算法,感受到了成功的乐趣。
本堂课的教学启示:在数形结合的基础上,要引导学生猜想有限项的规律并加以验证、归纳、总结出通用模式,并加以应用,从而体会和掌握归纳推理的思考和方法。
数与形教学反思6
成功之处:
1.引导学生多角度思考问题。在例1的教学中,教材先引导学生观察正方形中的小正方形数的规律,并把正方形图与下面的算式对照,学生发现等式左边的加数正好等于正方形图中包含的小正方形数,也就是每边小正方形数的平方,然后再让学生通过让学生计算1=( ) 1+3=( ) 1+3+5=( ),从而得出1 、2、3,进而发现1+3+5+7=4 1+3+5+7+9+11+13=7,最后得出从1连续的奇数的和等于这串数字个数的平方,即从1开始,几个连续奇数相加,和即是几的'平方,教学反思《数与形教学反思》。实际上,此题是等差数列问题,而等差数列的公式是S=n(a1+an)/2
2.注重数学思想的渗透。在例2的教学中,如何让学生理解1/2+1/4+1/8+1/16+1/32+1/64+……=,通过利用一个圆,在图中表示出每个加数,当这个过程无止境地持续下去时,所有的扇形就会把整个圆占满,从而形象得出结果是1。在此题的教学过程中,完美地呈现了数与形结合的数学思想,并能利用此图形还很好地诠释了“极限”的数学思想,学生能亲身感受到什么叫“无穷接近”。
不足之处:
对于练习题中的各种类型的练习题,学生需要通过层层推理,认真观察,才能找到本质规律。但是学生往往总是习惯于得出教材中的结果,而不能深入思考,所以对于本质规律的探索还需进一步的练习。
改进措施:
可以适当渗透有关等差数列、等比数列、排列组合等方面问题的讲解。
数与形教学反思7
纵观本节课的教学,我感觉亮点之处有:
(1)适当引导与学生的自主学习有机结合。
本节课所复习探究的知识都是在以前的学习中适当渗透的,要让学生真正理解什么是数形结合,教师就必须引导学生结合生活中的实例去认识、去体会、去感悟,所以在自主探究环节,我首先出示三幅不同的统计图,让学生通过分析统计图中的数据,初步认识数形结合的优越性,然后放手让学生回顾或自学课本上的内容,进一步理解体会数形结合在数学学习上的应用,真正做到了以教师为主导,以学生为主体。
(2)练习设计层次性比较清晰。
如果罗列一些练习题,总感觉处理方法大同小异。为此,我在设计练习上从三个方面入手,一是利用数形结合计算,二是利用数形结合找规律,三是利用数形结合解决实际问题,虽然练习题的难度稍微大一些,但借助示意图或线段图让学生解决,更能让学生体会数形结合解决问题的优越性。
不足:
本节课的`复习回顾与自主探究我都是在课堂上完成的,课堂容量比较大,难度也有些大。学生能力有所欠缺的班级可以让学生课前自学或搜集相关知识,并适当降低练习的难度,学生能力比较高的班级可以尝试使用此教学设计。
第四篇:数与形教学反思
数与形教学反思
数与形教学反思1
今天上了《圆柱的体积》一课,觉得比以前上得轻松,回到办公室细细品味上课的过程,颇有几分感受:
在本课中,当学生面对新的问题情境—“圆柱的体积该怎么求?”时,能从圆的面积公式的推导,根据已有的知识作出“转化”的判断。当然,由于知识经验的不足,表达得不是很清晰。但学生的这些都是有价值的。这些“猜想”闪烁着学生智慧的火花,折射出学生的创造精神。在此基础上,让学生以小组合作方式,利用已切开的圆柱体教具进行验证,在讨论声中,学生获得了真知。可见,教师要保护学生的创造热情并给以科学探究方法的引导,以发展学生的创造性。在这点上,我对学生的探究精神给予了充分的肯定。这节课再次让我知道了,相信学生的创造力是我们设计教法的前提。
在引导学生解决“粉笔的体积”等这个问题时,课堂上有学生把它当作圆柱体积来求,提出:“误差这么小,是可行的。”而且那位学生要求的仅是一个大约的数值,所以用这种方法可以。但这种计算粉笔体积的'方法可行吗?如果我不提出疑义,也不加以说明,就会给学生造成“圆台的体积可以用这两种方法来计算”的错误认识,对学生的后续学习会造成一些不利的影响。我就这个问题引导学生进一步探索,使学生发现平面图形中的一些规律照搬到立体图形中有时会行不通,懂得知识并非一成不变的,有其发展性,初步理解三维空间物体与二维平面图形的联系与区别,为进一步学习积累经验。学生在探索过程中,虽不能很快获得结论性的知识,但却尝试了科学探究的方法,形成良好的思维品质,增进了情感体验。这样,既保护了学生的创造性,又保证了教学内容的科学性,就学生的发展而言,谁能说让学生经历这样探究的过程,不也比获得现成的结论更富有积极的意义?
数与形教学反思2
通过本课文言文教学,给我感触最深的第一点是必须加强备课,文言文离学生的语言环境有一定的距离。不仅要备学生、备教材,更有甚者应备文史,名家名篇多了解有关文史资料、作者的为人品格,加大文章的学习深度和学习广度。
所谓文以载道,议古论今,文言文是中华文化中的一根弦,精湛的指法拨动起来就会激起一片浓浓的情愫。而如今,文言文教学被禁锢在实词、虚词、文言现象上,当下的语文教师,尤其是年轻教师,必须要在实践的过程中深入思考,如何在体现文言文本工具性的.同时落实其人文性的体悟。另一方面,要树立大的语文观,充分利用课堂培养学生语文能力,提升语文素养,更重要的是激起他们对中华文化的兴趣与热爱。从这个角度上来讲,作为年轻教师,我们前路漫漫,任重道远。其次应把《爱莲说》融入到整个专题之中,让学生真正的实现自主探究合作,通过搜集、查阅资料,深入了解莲、理解莲,会比在课堂上的听与记更有收获。
另外,从《爱莲说》本身来讲,除去传统的文言字词知识点以外,更可以从哲学角度进行解读,文章作者周敦颐,为理学的开山鼻祖,理学融儒道释为一体,尤其佛家思想占据其主流,而莲花在佛家中为一重要意象,这也是周敦颐喜爱莲花的一个重要原因。通过深入剖析作者的生平与思想流派,可以帮助学生更好的体悟其高洁的品质,有利于更深入的理解文章主旨,这也就是专家所说的“不为彼岸只为海”。
本课中我也有很多不足之处,如;时间的安排上有些不妥,致使在练习环节做的不够充分。在课堂上应更好的调动学生的积极性等。每一堂课都有开始,都有结束,每一堂课都有值得欣慰之处,也有遗憾,我会深刻的反思,不断的提高,让自己在衷爱的教育教学这一百花园中能吐露一片芬芳!
数与形教学反思3
一节好课的标准具体指的是什么并不重要,重要的是在听的时候不由得拍案叫绝,会在听后回味许久。
《和的奇偶性》是一节由专家上的录像课,本节课主要是学生在自己的动手实践中发现“和的奇偶性”存在着一定的规律。听这节课的时候我在本班刚刚完成这部分的教学,我在教学的时候也是在学生计算中得到规律,但是我的引导和解说是那样的呆板和没有什么说服力,这节课的展示让我感慨到专家绝对是名不虚传,下面我来谈谈完美的一节课可以怎样去呈现。
课一开始的导入,以学生转动转盘来获得相应的奖励开始,学生的兴趣被完全吸引,为了获得奖品不仅参与率高,而且思考存在一定的深度,在按照规则发现最后得到的都是“谢谢参与”时,引发了“偶数加偶数得到的一定是偶数,奇数加奇数得到的一定是偶数”这一思考,这一规律的探索不是教师布置给学生思考的练习题,而是学生根据自己的需要从内心深处的需求。
在学生认识到规则的不合理性的时候,教师让学生自己尝试改变游戏规则,进而充实了“偶数加偶数得到的一定是偶数,奇数加奇数得到的一定是偶数,奇数加偶数得到的一定是奇数”的结论,教师一句想要产生一定的规律,必须列举实例来验证,学生的思维又在所学的知识中去遨游,用事实去说明了规律。这里老师的一个小细节我非常的感动,老师讲转盘上面的奖品都准备齐全,等到学生按照正常规则转动转盘获得奖品时,教师就将相应的奖品奖励给学生,这一举动我发现很多上课老师都会忽略。
本节课的'最大亮点应该是教师在引导学生验证这一规律是用的数形结合的形式,一句改变华罗庚的名句:“数缺形时少直观,形缺数时难入微,数形结合百般好,数形分离万事休”,让学生跟着数学家的名言主动用最为直观的图形展示来验证,虽然前面的具体验证已经确定了结论,但是数形集合的“画龙点睛”实为妙哉。
专家在课上的完美演绎,对于感触很深的我,在今后的教学中一定要在备课、上课的时候做到研究一定要存在一定的深度。
数与形教学反思4
在教学圆柱的体积时,我采用新的教学理念,让学生自己动手实践、自主探索与合作交流,在实践中体验,从而获得知识。通过这节
课的教学,我觉得有以下几个方面值得探讨:
一、联系旧知,导入新知。
圆柱的体积的导入,在回忆了长方体、正方体体积计算方法,并强调长方体、正方体的体积都可以用底面积乘高,接着复习一下圆面积计算公式的推导过程,这样有助于学生猜想:“圆柱体是否可以转化成我们学过的图形呢?”激发学生好奇心,独立思考问题,探索问题的愿望。这样联系旧知,导入新知,思维过度自然,易接受新知。
二、动手操作,探索新知。
学生在探究新知时,教师要给予充分的思考空间,创设实践操作的条件,营造出思考的环境氛围。教学“圆柱的体积”时,学生亲身参与操作,先用小刀把一块月饼切成一个圆柱体把圆柱的底面分成若干份(例如,分成12等份),然后把圆柱切开,再拼起来,圆柱体就转化成一个近似的长方体。找一找:这个长方体的长相当于圆柱的什么,宽是圆柱的什么,高是圆柱的什么。圆柱的体积就是长方体的体积,从而推导出圆柱体积的计算公式。
三、课件展示,加深理解。
为了直观、形象,让学生观看课件:圆转化成近似长方形的.过程,使学生很容易猜想出圆柱体也可以转化成近似的长方体来得出体积公式。在推导圆柱体积公式的过程中,要求学生想象:“如果把圆柱的底面平均分成32份、64份……切开后拼成的物体会有什么变化?”学生虽然能说出“拼成的物体越来越接近长方体。”但是,到底拼成的图形怎样更接近长方体?演示动画后,学生不仅对这个切拼过程一目了然,同时又加深理解了圆柱体转化成近似长方体的转化方法。
四、分层练习,发散思维。
为了培养学生解题的灵活性,进行分层练习,拓展知识,发散思维。如:已知圆柱底面积和高,怎样求圆柱体积;已知圆柱底面半径和高,怎样求圆柱体积;已知圆柱底面直径和高,怎样求圆柱体积;已知圆柱底面周长和高,怎样求圆柱体积;已知圆柱侧面积和高,怎样求圆柱体积;已知圆柱底面积和体积,怎样求高;已知圆柱体积和高,怎样求底面积等。
但是不成功的地方也有,如学生在操作时有些学生拼的不是长方体,而是其他的形状,这里由于是上公开课的原因就没有有针对性的讲解,只做到了多数学生的指导而没有做到面向全体学生,这点我觉得在课堂上很难做到。
总之,通过这次的国培学习,使我的思想认识和课堂技能都有了新的认识,感谢国培!
教材作为教学的凭借与依据,只不过是编者对学科知识、国家要求与学生进行整和思考的结晶。但由于受时间与地域的影响,我们在执行教材时不能把它作为一种“枷锁”,而应作为“跳板”——编者意图与学生实际的“跳板”。因此,教学时,我们要精心研究教材,揣摩编者意图、考虑学生实际,创造性地利用教材。
数与形教学反思5
纵观本节课的教学,我感觉亮点之处有:
(1)适当引导与学生的自主学习有机结合。
本节课所复习探究的知识都是在以前的学习中适当渗透的,要让学生真正理解什么是数形结合,教师就必须引导学生结合生活中的实例去认识、去体会、去感悟,所以在自主探究环节,我首先出示三幅不同的统计图,让学生通过分析统计图中的'数据,初步认识数形结合的优越性,然后放手让学生回顾或自学课本上的内容,进一步理解体会数形结合在数学学习上的应用,真正做到了以教师为主导,以学生为主体。
(2)练习设计层次性比较清晰。
如果罗列一些练习题,总感觉处理方法大同小异。为此,我在设计练习上从三个方面入手,一是利用数形结合计算,二是利用数形结合找规律,三是利用数形结合解决实际问题,虽然练习题的难度稍微大一些,但借助示意图或线段图让学生解决,更能让学生体会数形结合解决问题的优越性。
不足:
本节课的复习回顾与自主探究我都是在课堂上完成的,课堂容量比较大,难度也有些大。学生能力有所欠缺的班级可以让学生课前自学或搜集相关知识,并适当降低练习的难度,学生能力比较高的班级可以尝试使用此教学设计。
数与形教学反思6
教学之前,学生已经掌握了四舍五入求一个数的近似数。从上学期学生的各个项目反馈来看,掌握得还是比较乐观。而小数的知识刚刚习得,为此本堂课对于大部分学生新知识的理解,我个人觉得难度不是很大。所以本堂课,我把教学重心放在学生对于理解求小数近似数的三种表述,如何根据要求表述求一个小数的近似数,以及在表示近似数时小数末尾的0不能随便改动。
课堂上,将1。666……怎样表示更恰当。学生呈现了2元,1。7元,因为在之前的练习中我们已经接触了给物体正确标价。当学生提出这样的观点的时候,立刻引起其他学生意见,这样的表示不够合理,当以元为单位时,应该是两位小数。故,马上有学生想到改为1。70元。我顺势板书1。70元。看者这个数字底下学生议论纷纷,心急的学生脱口而出:“这个1。70怎么来的`?”我们继续倾听学生自己的理解。在表达的过程,学生自己也意识到了错误所在,同学们也明白了错误根源。此时我提出,“以元为单位,小数部分保留了几位?”“省略的是哪一位后面的尾数,”“是舍还是进,看哪一位?”这连续的三个问题,帮助学生整理思考的过程。同时也连接了“保留两位小数”“省略百分位后面的尾数”二者之间的联系,以及回顾四舍五入方法。
掌握了保留方法之后,再引导学生区分在求近似数时1。0和1之间的不同之处。学生自己畅所欲言,表达自己的观点,在生生交流中明确近似数中的0不能随意去掉。
最后讨论取值范围。
整堂课前奏非常顺利,学生看似一下子就能掌握基本方法,顺利完成任务。但是总感觉学生的上课热情不高,时常观察到学生懒散地坐着,思绪也肆意放飞,心不在焉。课堂节奏绵软无力。可见课堂的趣味性有待提高。
数与形教学反思7
成功之处:
1.引导学生多角度思考问题。在例1的教学中,教材先引导学生观察正方形中的小正方形数的规律,并把正方形图与下面的算式对照,学生发现等式左边的加数正好等于正方形图中包含的'小正方形数,也就是每边小正方形数的平方,然后再让学生通过让学生计算1=( ) 1+3=( ) 1+3+5=( ),从而得出1 、2、3,进而发现1+3+5+7=4 1+3+5+7+9+11+13=7,最后得出从1连续的奇数的和等于这串数字个数的平方,即从1开始,几个连续奇数相加,和即是几的平方,教学反思《数与形教学反思》。实际上,此题是等差数列问题,而等差数列的公式是S=n(a1+an)/2
2.注重数学思想的渗透。在例2的教学中,如何让学生理解1/2+1/4+1/8+1/16+1/32+1/64+……=,通过利用一个圆,在图中表示出每个加数,当这个过程无止境地持续下去时,所有的扇形就会把整个圆占满,从而形象得出结果是1。在此题的教学过程中,完美地呈现了数与形结合的数学思想,并能利用此图形还很好地诠释了“极限”的数学思想,学生能亲身感受到什么叫“无穷接近”。
不足之处:
对于练习题中的各种类型的练习题,学生需要通过层层推理,认真观察,才能找到本质规律。但是学生往往总是习惯于得出教材中的结果,而不能深入思考,所以对于本质规律的探索还需进一步的练习。
改进措施:
可以适当渗透有关等差数列、等比数列、排列组合等方面问题的讲解。
数与形教学反思8
这节课是人教版六年级数学上册第八单元《数学广角》中的内容, 数形结合的思想是一种重要的数学思想,本节课就是以这一思想为主题的数学课。在设计课程时,我力求做到以下几点。
一、领会编者意图,准确定位教学目标 从孩子数学学习开始。
数与形的思想一直伴随在数学教与学的过程中, 如果说过去数形 结合思想是深藏不漏地渗透在知识技能的教学中,那么在本节课,数形结合思想则由幕后走到了台前,成为了教学的对象与核心。我认为编者在编排这一内容的时候,他的`目的不在于掌握 某个具体的知识和技能,而在于促进学生对数形结合思想的体验进一步总结与自觉应用。
二、环节清晰,螺旋递进。
数和形是客观事物不可分离的两个数学表象, 两者既是对立的又是统一的,数与形的对立统一主要表现在数与形的互相转化和互相结合上,围绕着数与形的互相转化与结合,我们将数 形结合思想的教学分解为:以形助数、以数解形、数形结合
三、各环节逐渐展开。
第一环节:以形助数,教学例 1 从 1 开始连续奇数相加的和除了用加法的交换律和结合律来计算, 还可以有怎样的简便方法,为了探索新的算法,将数转化为图形,根据加数的拿出相应个数的图形排列成正方形,通 过观察数与形之间的关系找到了其中的规律,那就是算式的和等于排列成正方形图形的个数, 图形的个数等于正方形每边的个数相乘,每边的个数等于加数的个数,这样借助图形,通过等式的传递性,最终得到了算式的和等于加数个数的平方的简便新算法。
第二个环节:以数解形,教学 P108 做一做第 2 题。 怎样可以算出蓝色正方形和红色正方形的个数, 观察和寻找图形排列中数的规律, 发现运用这一规律计算和解决问题。
三、给予学生探究的时间和空间,让学生充分经历和体验。
在例题 1 的教学中,我让学生亲自动手,根据算式摆图形,学生在动手摆的过程中经历了 将数转化为形的过程,体验了数与形的联系,探索发现了简便算法,感受到了成功的乐趣。
本堂课的教学启示:在数形结合的基础上,要引导学生猜想有限项的规律并加以验证、归纳、总结出通用模式,并加以应用,从而体会和掌握归纳推理的思考和方法。
数与形教学反思9
第一、情境引入,架设铺垫桥梁。从这节课伊始,学生通过解决生活中的拍照问题,不失时机地提出“寻找规律”问题,紧紧地吸引学生的注意力,先让学生的思维受挫,思维碰撞。及时让学生经历去动手动脑作图当中寻找计算规律。一方面凸现数学学习当中的“数形结合”思想方法;另一方面彰显数学源于生活,用于生活,感受数学就在身边的'生活价值。
第二、以“数”构“形”,以“形”建“数”,让学生在构建中自己发现规律、自己总结规律。在教学中,引导学生“借助图形—探索奥秘—发现规律—展示成果”。如例1,通过观察和计算1、1+3、1+3+5、1+3+5+7···既能发现加数的规律,又能发现和的规律;例2同样均在突出学生主体地位、学生自主学习当中进行。从而较为顺利的突出重点、突破难点,达到教学目标的实现。
第三、分层推进,巩固拓展,追求课堂教学的最大效益。本节课,在检测“计算规律应用”效果时,精心设计几个层次的练习题,“应用规律写一写”“根据以上结论算一算”做到分层递进,由易到难,巩固提高。从课堂上学生回答的过程来看,不同层次的学生回答不同的问题,收获不同层次的效益,取得了良好的教学效果。
第四、多元评价,激发学生学习热情。教师利用评价表评价和学生表决式评价相结合,调动了学生的学习积极性,整节课学生的学习积极性高涨,参与率较高。
总之,在今后的教育教学中应充分重视学生原有认知水平,利用数形结合的数学思想,选择一些适合学生认知水平的学习材料,设置生动有趣的教学情景,抛出有探究性的问题,放手让学生自己发现、自己归纳、自己体验,比教师讲解更有价值,更能调动学生的兴趣。
数与形教学反思10
小乌龟在班级的自然角随处可见,刚好本次的教学活动与小乌龟有关,课前我让幼儿观察自然角的小乌龟是怎么样爬的,幼儿很感兴趣,课间他们便三三两两地议论纷纷,也为我的教学活动有了一个很好的开端。
这是一节音乐活动。首先复习律动《拍手点头》,教师引导幼儿听音乐合拍的做拍手点头的动作。接着出示小乌龟的图片引出今天的活动主题,结合歌词内容创编一个小乌龟的故事,幼儿对故事十分感兴趣。故事讲到小乌龟去爬山坡的时候请幼儿自己创编,教师帮助引导。
幼儿对乌龟的习性已经十分熟悉,当我问道“乌龟走起路来是很快的还是很慢的”时候有小朋友已经能准确的回答“很慢、很慢”。并且能自己说出原因。于是我让幼儿学习像乌龟那样背着一个重重的乌龟壳一样走路,每个小朋友都做的有模有样!还会学着很累的样子喘息。这个时候我便抓住机会,告诉他们小乌龟爬山累了以后会发出一个像口号一样的声音,于是让幼儿跟我一起学习,幼儿十分带劲。
出示背景大图——山坡,幼儿有了经验,一看就会了,我逐步出示小乌龟、面包、糖果的图片,使幼儿能一目了然。一遍唱完,我发现了一个问题。很多幼儿由于第一句和第三句的节奏一样,所以在最后一句“嗨嗨嗨嗨哟”的时候总是唱成“嗨嗨哟,嗨嗨哟,”当然也有对的小朋友,于是两种声音混在一起十分嘈杂,很难听。于是我请几个会的小朋友帮大家唱最后一句,其他小朋友只要唱到第三句就行了。反复唱了两遍,效果很好。我就对他们说,“这两遍我们合作的很好,接下来我们要自己唱了,请你们分清楚第一遍的口号和第二遍的口号有什么不一样的地方。”再一遍下来结果真令我吃惊,竟然有大部分的小朋友都会了。我在进行分批表演的形式加深幼儿对歌曲的`印象,更好的掌握歌曲的节奏。
在是创编活动环节中,将小乌龟替换成别的小动物进行创编并演唱,有了前面的基础,幼儿替换歌词创编并演唱,还是比较成功的,他们将小乌龟换成小蛇,小鸭,小鸡等,不仅能较熟练地演唱,有的幼儿还能加上自己的动作表演。
第五篇:数与形教学反思
数与形教学反思
数与形教学反思1
《画汽车》是属于“造型·表现”学习领域。此节课是为了使学生通过对汽车的回忆、观察,大胆的把自己所见所闻、所想所思的事物表现出来,从而培养学生造型表现能力和创造能力,使其体验成功的喜悦。整体教学设计力图体现,学生由兴趣出发到回忆生活中的事物,再到概括事物的特征,最后运用这些特征表现自己的创造性想法。我在教学的开头导入部分设计课一段动画电影《汽车总动员》,马上吸引了同学们的注意力,再乘势让学生回想生活中见到的汽车外形方面有哪几个大部分组成,再通过课件强调一遍,当然在绘制作业的过程前我也强调了一遍,让他们能够在画前牢记于心,画时自我检查。
我考虑到一年级儿童注意力集中时间短的特点,创设了以卡通形象汽车小子为主线的教学情境,和汽车小子一起旅行大大激发了孩子的兴趣,调动了孩子的积极性,整节课课堂气氛活跃,真正体现了教师主导,学生主体,让学生成为真正的学习主人。课堂一开始,就充分调动了孩子的听觉和视觉能力,引发学生的兴趣,创造学生探究学习的气氛。同学们积极踊跃的猜着汽车的名字,看到自己猜对,欢呼声此起彼伏,这样学生很容易对教学内容产生兴趣。在概括汽车特征这一重要环节中,学生在合作探究气氛中讨论不同汽车的共同之处。教师主持学生交流时,多鼓励学生以提升他们的自信心;及时引导学生对汽车特征的概括。教师的.适时演示使学生对汽车特征的总结变的更直观,学生头脑中形成的汽车特征也变的更明确。为了激起学生创新的意识,我让学生欣赏设计师设计的未来汽车、同龄小朋友的作品,特别是教师创作的海陆空多功能汽车,更让学生大开眼界,兴奋不已,激发了学生创作的欲望。
但由于教学经验不足,驾驭课堂的能力欠缺,如课堂随机的一些评价,应该更有实效性,对于学生回答的问题点拨的还不够到位。从学生创作的作品来看,学生独特创意的作品比较多,但表述能力比较弱,老师应给予更多的耐心,以便于他们的审美创作力的培养。
数与形教学反思2
纵观本节课的教学,我感觉亮点之处有:
(1)适当引导与学生的自主学习有机结合。
本节课所复习探究的知识都是在以前的学习中适当渗透的,要让学生真正理解什么是数形结合,教师就必须引导学生结合生活中的实例去认识、去体会、去感悟,所以在自主探究环节,我首先出示三幅不同的统计图,让学生通过分析统计图中的数据,初步认识数形结合的`优越性,然后放手让学生回顾或自学课本上的内容,进一步理解体会数形结合在数学学习上的应用,真正做到了以教师为主导,以学生为主体。
(2)练习设计层次性比较清晰。
如果罗列一些练习题,总感觉处理方法大同小异。为此,我在设计练习上从三个方面入手,一是利用数形结合计算,二是利用数形结合找规律,三是利用数形结合解决实际问题,虽然练习题的难度稍微大一些,但借助示意图或线段图让学生解决,更能让学生体会数形结合解决问题的优越性。
不足:
本节课的复习回顾与自主探究我都是在课堂上完成的,课堂容量比较大,难度也有些大。学生能力有所欠缺的班级可以让学生课前自学或搜集相关知识,并适当降低练习的难度,学生能力比较高的班级可以尝试使用此教学设计。
数与形教学反思3
一节好课的标准具体指的是什么并不重要,重要的是在听的时候不由得拍案叫绝,会在听后回味许久。
《和的奇偶性》是一节由专家上的录像课,本节课主要是学生在自己的动手实践中发现“和的奇偶性”存在着一定的规律。听这节课的时候我在本班刚刚完成这部分的教学,我在教学的时候也是在学生计算中得到规律,但是我的引导和解说是那样的呆板和没有什么说服力,这节课的展示让我感慨到专家绝对是名不虚传,下面我来谈谈完美的一节课可以怎样去呈现。
课一开始的导入,以学生转动转盘来获得相应的奖励开始,学生的兴趣被完全吸引,为了获得奖品不仅参与率高,而且思考存在一定的深度,在按照规则发现最后得到的.都是“谢谢参与”时,引发了“偶数加偶数得到的一定是偶数,奇数加奇数得到的一定是偶数”这一思考,这一规律的探索不是教师布置给学生思考的练习题,而是学生根据自己的需要从内心深处的需求。
在学生认识到规则的不合理性的时候,教师让学生自己尝试改变游戏规则,进而充实了“偶数加偶数得到的一定是偶数,奇数加奇数得到的一定是偶数,奇数加偶数得到的一定是奇数”的结论,教师一句想要产生一定的规律,必须列举实例来验证,学生的思维又在所学的知识中去遨游,用事实去说明了规律。这里老师的一个小细节我非常的感动,老师讲转盘上面的奖品都准备齐全,等到学生按照正常规则转动转盘获得奖品时,教师就将相应的奖品奖励给学生,这一举动我发现很多上课老师都会忽略。
本节课的最大亮点应该是教师在引导学生验证这一规律是用的数形结合的形式,一句改变华罗庚的名句:“数缺形时少直观,形缺数时难入微,数形结合百般好,数形分离万事休”,让学生跟着数学家的名言主动用最为直观的图形展示来验证,虽然前面的具体验证已经确定了结论,但是数形集合的“画龙点睛”实为妙哉。
专家在课上的完美演绎,对于感触很深的我,在今后的教学中一定要在备课、上课的时候做到研究一定要存在一定的深度。
数与形教学反思4
教学之前,学生已经掌握了四舍五入求一个数的近似数。从上学期学生的各个项目反馈来看,掌握得还是比较乐观。而小数的知识刚刚习得,为此本堂课对于大部分学生新知识的理解,我个人觉得难度不是很大。所以本堂课,我把教学重心放在学生对于理解求小数近似数的三种表述,如何根据要求表述求一个小数的近似数,以及在表示近似数时小数末尾的0不能随便改动。
课堂上,将1。666……怎样表示更恰当。学生呈现了2元,1。7元,因为在之前的练习中我们已经接触了给物体正确标价。当学生提出这样的观点的时候,立刻引起其他学生意见,这样的表示不够合理,当以元为单位时,应该是两位小数。故,马上有学生想到改为1。70元。我顺势板书1。70元。看者这个数字底下学生议论纷纷,心急的学生脱口而出:“这个1。70怎么来的?”我们继续倾听学生自己的理解。在表达的过程,学生自己也意识到了错误所在,同学们也明白了错误根源。此时我提出,“以元为单位,小数部分保留了几位?”“省略的.是哪一位后面的尾数,”“是舍还是进,看哪一位?”这连续的三个问题,帮助学生整理思考的过程。同时也连接了“保留两位小数”“省略百分位后面的尾数”二者之间的联系,以及回顾四舍五入方法。
掌握了保留方法之后,再引导学生区分在求近似数时1。0和1之间的不同之处。学生自己畅所欲言,表达自己的观点,在生生交流中明确近似数中的0不能随意去掉。
最后讨论取值范围。
整堂课前奏非常顺利,学生看似一下子就能掌握基本方法,顺利完成任务。但是总感觉学生的上课热情不高,时常观察到学生懒散地坐着,思绪也肆意放飞,心不在焉。课堂节奏绵软无力。可见课堂的趣味性有待提高。
数与形教学反思5
成功之处:
1.引导学生多角度思考问题。在例1的教学中,教材先引导学生观察正方形中的小正方形数的规律,并把正方形图与下面的算式对照,学生发现等式左边的加数正好等于正方形图中包含的小正方形数,也就是每边小正方形数的平方,然后再让学生通过让学生计算1=( ) 1+3=( ) 1+3+5=( ),从而得出1 、2、3,进而发现1+3+5+7=4 1+3+5+7+9+11+13=7,最后得出从1连续的奇数的`和等于这串数字个数的平方,即从1开始,几个连续奇数相加,和即是几的平方,教学反思《数与形教学反思》。实际上,此题是等差数列问题,而等差数列的公式是S=n(a1+an)/2
2.注重数学思想的渗透。在例2的教学中,如何让学生理解1/2+1/4+1/8+1/16+1/32+1/64+……=,通过利用一个圆,在图中表示出每个加数,当这个过程无止境地持续下去时,所有的扇形就会把整个圆占满,从而形象得出结果是1。在此题的教学过程中,完美地呈现了数与形结合的数学思想,并能利用此图形还很好地诠释了“极限”的数学思想,学生能亲身感受到什么叫“无穷接近”。
不足之处:
对于练习题中的各种类型的练习题,学生需要通过层层推理,认真观察,才能找到本质规律。但是学生往往总是习惯于得出教材中的结果,而不能深入思考,所以对于本质规律的探索还需进一步的练习。
改进措施:
可以适当渗透有关等差数列、等比数列、排列组合等方面问题的讲解。
数与形教学反思6
第一、情境引入,架设铺垫桥梁。从这节课伊始,学生通过解决生活中的拍照问题,不失时机地提出“寻找规律”问题,紧紧地吸引学生的注意力,先让学生的思维受挫,思维碰撞。及时让学生经历去动手动脑作图当中寻找计算规律。一方面凸现数学学习当中的“数形结合”思想方法;另一方面彰显数学源于生活,用于生活,感受数学就在身边的生活价值。
第二、以“数”构“形”,以“形”建“数”,让学生在构建中自己发现规律、自己总结规律。在教学中,引导学生“借助图形—探索奥秘—发现规律—展示成果”。如例1,通过观察和计算1、1+3、1+3+5、1+3+5+7···既能发现加数的规律,又能发现和的规律;例2同样均在突出学生主体地位、学生自主学习当中进行。从而较为顺利的突出重点、突破难点,达到教学目标的实现。
第三、分层推进,巩固拓展,追求课堂教学的最大效益。本节课,在检测“计算规律应用”效果时,精心设计几个层次的'练习题,“应用规律写一写”“根据以上结论算一算”做到分层递进,由易到难,巩固提高。从课堂上学生回答的过程来看,不同层次的学生回答不同的问题,收获不同层次的效益,取得了良好的教学效果。
第四、多元评价,激发学生学习热情。教师利用评价表评价和学生表决式评价相结合,调动了学生的学习积极性,整节课学生的学习积极性高涨,参与率较高。
总之,在今后的教育教学中应充分重视学生原有认知水平,利用数形结合的数学思想,选择一些适合学生认知水平的学习材料,设置生动有趣的教学情景,抛出有探究性的问题,放手让学生自己发现、自己归纳、自己体验,比教师讲解更有价值,更能调动学生的兴趣。
数与形教学反思7
在教学《凡卡》一文的结尾时,一学生提出:“凡卡没把地址写清楚,爷爷是不能收到他的信的,可文章的结尾为什么这样写呢?”文章似喜实悲的结尾确实是学生理解上的难点。于是,我抓住契机,激发疑点,引导学生进行思考探讨。我说:“是呀,凡卡怀着强烈的愿望把那封宝贵的信塞入邮筒,可万万没想到爷爷是永远不可能收到他的信的。那凡卡的命运又将怎样呢?”回答中带有明显的.同情、悲痛的情感。这时,我又把提问回到刚才那位学生的疑点上,我说:“既然凡卡无法摆脱这悲惨的命运,那文章这样结尾的用意是什么呢?”
这时,学生思维异常活跃,有的说:“文章以梦结尾,暗示凡卡追求幸福美好的生活只是个不能实现的梦。”有的说:“这个结尾看似美好,其实隐藏着不幸,更激起我们对凡卡的同情。”学生对凡卡的“命运”展开的求异思维,激起了他们情感的涟漪──对凡卡的同情。
数与形教学反思8
这节课是人教版六年级数学上册第八单元《数学广角》中的内容, 数形结合的思想是一种重要的数学思想,本节课就是以这一思想为主题的数学课。在设计课程时,我力求做到以下几点。
一、领会编者意图,准确定位教学目标 从孩子数学学习开始。
数与形的思想一直伴随在数学教与学的过程中, 如果说过去数形 结合思想是深藏不漏地渗透在知识技能的教学中,那么在本节课,数形结合思想则由幕后走到了台前,成为了教学的对象与核心。我认为编者在编排这一内容的时候,他的目的不在于掌握 某个具体的知识和技能,而在于促进学生对数形结合思想的体验进一步总结与自觉应用。
二、环节清晰,螺旋递进。
数和形是客观事物不可分离的两个数学表象, 两者既是对立的`又是统一的,数与形的对立统一主要表现在数与形的互相转化和互相结合上,围绕着数与形的互相转化与结合,我们将数 形结合思想的教学分解为:以形助数、以数解形、数形结合
三、各环节逐渐展开。
第一环节:以形助数,教学例 1 从 1 开始连续奇数相加的和除了用加法的交换律和结合律来计算, 还可以有怎样的简便方法,为了探索新的算法,将数转化为图形,根据加数的拿出相应个数的图形排列成正方形,通 过观察数与形之间的关系找到了其中的规律,那就是算式的和等于排列成正方形图形的个数, 图形的个数等于正方形每边的个数相乘,每边的个数等于加数的个数,这样借助图形,通过等式的传递性,最终得到了算式的和等于加数个数的平方的简便新算法。
第二个环节:以数解形,教学 P108 做一做第 2 题。 怎样可以算出蓝色正方形和红色正方形的个数, 观察和寻找图形排列中数的规律, 发现运用这一规律计算和解决问题。
三、给予学生探究的时间和空间,让学生充分经历和体验。
在例题 1 的教学中,我让学生亲自动手,根据算式摆图形,学生在动手摆的过程中经历了 将数转化为形的过程,体验了数与形的联系,探索发现了简便算法,感受到了成功的乐趣。
本堂课的教学启示:在数形结合的基础上,要引导学生猜想有限项的规律并加以验证、归纳、总结出通用模式,并加以应用,从而体会和掌握归纳推理的思考和方法。
数与形教学反思9
《颐和园》是单元五的精读课文,这个单元式围绕“世界遗产”来写的,作为一篇游记,《颐和园》这篇课文不仅仅文字优美,而且结构很清楚,作者的游览顺序显而易见,所以我想透过让学生发现这条游览路线来掌握游记的写作顺序,本课的写作方法很值得学生学习,因此,在教学中我始终都以这个目标展开教学引导学生学习文中写作方法。
这篇课文的教学,我设置了“课文是按什么顺序写的?写了哪几处景点?”这一问题。让生边读边想,初步感知文的`写作顺序。然后再引导学生细读课文。在第一课时,我原本设计重点学习“长廊”部分,透过让学生反复读来体会语言的美以及感受长廊的美,但在实际引导时往往有所欠缺,而且读的时候,目标不明确,有几次纯粹是为了读而读,没有给学生明确的朗读要求。所以,在单纯的读中,学生并没有真正的体会到颐和园的美丽,这是我以后在教学中需要注意的地方。
课堂效率不高是我教学上的诟病,往往能用最简洁的语言来引导和总结的问题,我却反复强调,这是浪费课堂时光的原因之一。第二,我在引导学生学习文本时,没有做到突出特点,该略讲的部分没有略讲,往往一个课时能完成的课,却要用两个课时去完成。这次在《颐和园》的教学中,再次凸显这些缺点。我设计把佛香阁、昆明湖和十七孔桥的学习交给学生自学,但又怀疑学生的自学潜力,以致未能放手让学生成长。
?颐和园》这节课让我愈加觉得自我教学上有诸多不足,教学尚未成功,我仍需努力。
数与形教学反思10
本节课的教学过程中通过充分的媒体资料支持、教师的演示实验和引导、学生动手实验以及生生探讨,基本完成了既定的教学任务。即学生掌握了电功率的概念,物理含义,公式及相应的适用范围,知道了实际电压和额定电压的区别,以及实际功率和额定功率的不同,并能通过动手实验体会灯泡的亮暗取决于其实际功率,直接的表征就是灯泡两端的电压和通过灯泡的电流发生改变所致。围绕生活中的“更换合适规格的灯泡”、“如何节约用电”等实际问题进行了师生互动,学生学有所得,较好地实现将物理课堂与现实生活紧密结合起来的课程目标。对课程内容过多的考虑有时并不一定取得最佳的教学效果,因为学生是课程实施过程中的主体,对学生的关注不够主要体现在以下一些方面,我认为还需要改进:
1、信息技术与课堂教学有机整合过程中,板书内容和媒体内容的交互上还需要进一步做取舍,避免因出现了比较多的重复而耗费过多的时间,致使课堂容量无形之中受压缩。
2、教师作为教学实施过程中的主导者,主要是“引导”,而不是“代替”,让学生“想到的说出来,说出的写下来,写出的做出来”将更好地培养学生自主学习的意识和能力。
3、物理学科的特色——实验,可以穿插于课程之中,用于检验理论知识的正确性;也可以作为整堂课的开始,作为学生探究新知识的线索贯穿始终,各有优势,教学中可以大胆重组,尝试变换,寻找最适合学生的'教学方式,真正体现“因材施教”和“以人为本”。
和正处于求学阶段的学生一样,在教学技艺方面我也是学无止境的,用那句实在话来说就是“没有最好,只有更好”。学生群体是不断变化发展的,教学手段也要因人而异,以后在教学设计和实施的过程中,我将不断摸索更为合理的教学方法,争取使自己的教学水平有更大的进步,令自己的学生在学习中有更大的收获