《体积单位之间的进率》教学设计(范文)

时间:2019-05-15 12:33:34下载本文作者:会员上传
简介:写写帮文库小编为你整理了多篇相关的《《体积单位之间的进率》教学设计(范文)》,但愿对你工作学习有帮助,当然你在写写帮文库还可以找到更多《《体积单位之间的进率》教学设计(范文)》。

第一篇:《体积单位之间的进率》教学设计(范文)

教学内容:

体积单位间的进率(人教版五年级下册P46~49)。

教学目标:

(1)知识与技能目标:通过计算、比较、分析、归纳,使学生理解和掌握相邻体积单位间的进率是1000,并能进行正确的运用。

(2)过程与方法目标:在学习过程中,培养学生比较、分析、概括的能力,提高学生对旧知识的迁移和运用能力。

(3)情感与态度目标:使学生体验数学知识之间的紧密联系性,能够运用知识解决实际问题。

教学重点:体积单位的进率。

教学难点:体积单位的进率的化聚。

教学过程:

一、复习准备:

⒈教师提问:

⑴常用的长度单位有哪些?相邻的两个单位间的进率是多少? 1米=10分米1分米=10厘米 进率是:10

⑵常用的面积单位有哪些?相邻的两个单位间的进率是多少?

1平方米=100平方分米1平方分米=100平方厘米进率是:100

(3)口答填空,并说明算法和算理.

4米=()分米=()厘米

500平方分米=()平方厘米=()平方米先思考:

(1)怎样把高一级的体积单位的名数改写成低一级的体积单位的名数?

(2)怎样把低一级的体积单位的名数改写成高一级的体积单位的名数? 算法:进率×高级单位的数低级单位的数÷进率

⑶常用的体积单位有哪些?相邻的两个单位间的进率是多少呢?大家先猜一猜。

(板书课题:体积单位间的进率)

二、新授:

㈠体积单位的进率:

⒈认识立方分米和立方厘米的关系,(课件演示)问:

⑴棱长是1分米的正方体的体积是多少?

⑵1分米=()厘米,那么棱长是10厘米的正方体的体积是多少? ⑶1立方分米与1000立方厘米哪个大?为什么?

⒉教师课件演示(体积单位间的进率)

因为1分米=10厘米,所以棱长是1分米的正方体也可看作棱长是10厘米的正方体.

1分米×1分米×1分米=1(立方分米)

10厘米×10厘米×10厘米=1000(立方厘米)

板书:1立方分米=1000立方厘米

⒊推导立方米与立方分米的关系。

⑴教师提问:请同学们猜想一下立方米与立方分米之间有什么关系? ⑵反馈、汇报

棱长是1米的正方体的体积是1立方米。而1米=10分米,所以棱长是1米的正方体可以划分成1000个棱长是1分米的小正方体,即1000个体积为1立方分米的正方体。

板书:1立方米=1000立方分米

⑶思考:1立方米等于多少立方厘米呢?

⒋小结:相邻的两个体积单位间的进率是1000。

⒌比较:长度单位,面积单位和体积单位及进率,比较它们有什么不同处?(名称、进率两方面。)(表格出示)

㈡体积单位的互化。

(在日常生活、工作和学习中,经常需要把体积单位进行转化,现在来学习这个问题。)

⒈出示例3: 3.8立方米是多少立方分米?

2400立方厘米是多少立方分米?

教师:看一看问题是从高级单位向低级单位转换,还是低级单位向高级单位转换?

想:因为1立方米=1000立方分米,3.8立方米有3.8个1000立方分米

列式:1000×3.8=3800,填3800

(第2题同上理)2400÷1000=2.4,填2.4教师:审题时首先要注意什么?试说出这两道小题的解答过程和算理. 想:因为1立方分米为1000立方厘米……

⒊出示例4:看见你得到哪些信息?

⑴这个包装箱的体积是多少?V=abh=50×30×40

=60000(cm3)

=60(dm3)

=0.06(m3)

⑵大家想一想,问题中没有要求我们最终用什么单位,你选择哪一个?为什么?

如果出现这样答,你必须选择那个答案?

答:这个牛奶包装箱的体积是0.06 m3。

⑶你还有其他的途径求出体积为0.06m3。先转化单位,再计算

⑷小结:在具体的解决问题中,要根据题目的要求转化体积单位,还要注意已知条件单位之间的统一。

三、巩固练习:

⒈口答填空

1.02 m3=()dm3960dm3=()m

323 dm3=()cm3 36000 cm3=()dm3

⒉判断题:

3、解决问题:

四、课堂小结:

今天你掌握了什么知识?还有什么问题?

五、作业:

教材P48页3、5题。

板书设计:

体积单位之间的进率

1立方分米=1000立方厘米

1立方米=1000立方分米

第二篇:相邻体积单位之间的进率教学设计

?相邻体积单位之间的进率?教学设计 教学目标:

1、了解并掌握体积单位间的进率。

2、理解并掌握体积高级单位与低级单位间的化和聚。

3、培养学生认真审题的习惯,使学生在解决实际问题时,能准确地运用单位间的化聚法进行计算。

教学重点、难点:

体积单位间的进率和单位之间的互化 教学过程:

一、知识准备

1、同学们今天我们要学习相邻体积单位间的进率。(板书课题)

2、看了课题,能回忆回忆我们都学习过哪些相邻单位间的进率呢?

3、学生交流:有长度单位间的进率、面积单位间的进率、质量单位间的进率、液体体积单位间的进率。

4、说说这些已经学过的相邻单位间的进率是多少?(教师板书)

板书:

长度单位

1米=10分米

1分米=10厘米

面积单位

1平方米=100平方分米

1平方分米=100平方厘米

质量单位

1吨=1000千克

1千克=1000克

5、猜想今天我们学习的相邻体积单位间的进率可能是多少?

6、提炼猜想,为研究作好必要的准备。

学生出现的猜想:1立方米=1000立方分米

1立方分米=1000立方厘米

二、实践探究、学习新知

(一)探究立方分米与立方厘米间的进率

1、指导学生分组进行探究,出示自学纲要:

①棱长1分米的正方体的体积是多少?

②棱长10厘米的正方体的体积是多少?

③1立方分米与1000立方厘米,哪个大?为什么?

2、学具提供:

①教师提供1立方分米的正方体2个,一个标上棱长1分米,一个标上棱长10厘米,供学生观察使用。

②挂图,让学生可以观察分析,从而为得出结论提供感官上的支持。

3、交流学习结果,分组汇报:

因为1分米=10厘米,所以棱长是1分米的正方体也可以看作是棱长10厘米的正方体。1分米×1分米×1分米=1立方分米

10厘米×10厘米×10厘米=1000立方厘米

所以:1立方分米=1000立方厘米

4、让学生在回顾一下思维的过程,再说说自己的理解。

(二)独立探究立方米与立方分米之间的进率

1、教师提问:请同学们猜想一下,立方米与立方分米之间的进率

2、用什么方法可以验证自己的想法是正确的呢?

3、学生自己尝试解决问题

4、交流各自的思维过程:

棱长1米的正方体的体积是1立方米,而1米=10分米,所以10分米×10分米×10分米=1000立方分米。所以1立方米=1000立方分米(板书)

5、小结:相邻的两个体积单位之间的进率是1000。

6、比较长度单位、面积单位、体积单位之间的进率,它们有什么不同之处?

7、完成书上31页练习七的第1题

让学生独立完成填表,让学生联系填表的过程再一次说说长度单位、面积单位、体积单位之间的联系与区别。

(三)完成书上30页练一练

1、让学生先想一想:审题时先注意什么?试着说说要解决这些题目的过程和算理。

2、在学生独立完成的基础上,适当总结把相关体积单位进行换算的基本思考方法。要提醒学生运用小数点的位置移动的方法计算一个数乘或除以1000的得数。

3、小结:体积单位间的进率转化与我们学过的长度单位、面积单位、质量单位之间的转化有什么相同处与不同处。

三、解决实际问题,巩固所学方法

四、全课总结

今天的学习中你有什么收获?学到了什么?还有哪些疑惑?

教者:柳 小 东

2013年3月28

第三篇:五年级数学教案:体积单位之间的进率

五年级数学教案:体积单位之间的进率

目标

使学生在理解的基础上掌握常用的体积单位之间的进率和名数的改写。

教学及训练

重点

体积单位之间的进率。

仪器

教具

投影仪和棱长是1分米的正方体模型,如教材第26页的图。

教 学内容和过程

教学札记

一、创设情境

填空:

①长方体体积=;

②常用的体积单位有、、;

③正方体体积=。

师:你知道每相邻的两个体积单位之间的进率是多少吗?今天我们就学习体积单位间的进率。(板书课题)

二、探索研究

1.小组学习--体积单位间的进率。

(1)出示:1个棱长是1分米的正方体模型教具。

提问:

①当正方体的棱长是1分米时,它的体积是多少?

②②当正方体的棱长是10厘米时,它的体积是多少?

③③而1分米是多少厘米?1立方分米等于多少立方厘米?

小组合作填表:

正方体

棱长

1分米

=

10厘米

体积

1立方分米

=

1000立方厘米

小组汇报结论:1立方分米=1000立方厘米

同理得出:1立方米=1000立方分米

用填空的形式小结:

从上面可以看出,相邻两个体积单位之间的进率都是。

(2).将长度单位、面积单位、体积单位加以比较(投影显示第26页的表)

先让学生填后并比较这三类单位相邻两个单位间的进率有什么不同?为什么?

(3)学习体积单位名数的改写。

先思考:

(1)怎样把高一级的体积单位的名数改写成低一级的体积单位的名数?

(2)怎样把低一级的体积单位的名数改写成高一级的体积单位的名数?

出示例3,并写成如下形式:

8立方米=()立方分米0.54立方米=()立方分米

出示例4,并写成如下形式:

3400立方厘米=()立方分米96立方厘米=()立方分米

学生独立思考,再小组讨论自己是怎样想和做的。

出示例3。(投影显示)

放手让学生独立审题并解答,再针对出现的问题重点讲解。

解法一:

1.8×1.5×0.01=0.027(立方米)

0.027立方米=27立方分米

解法二:

1.8米=18分米1.5米=15分米0.01米=0.1分米

18×15×0.1=27(立方分米)

三、巩固练习

将练习五的第1、2题填在书上,老师进行个别辅导后订正。

四、课堂小结。学生小结今天学习的内容。

五、课后作业

练习五的3、4题。

体积单位之间的进率

常用的体积单位及进率:

立方米、立方分米、立方厘米

1立方米=1000立方分米

1立方分米=1000立方厘米

注意点:

高级单位的数转化成低级单位的数要乘以进率,低级单位的数转化成高级单位的数要除以进率。

在实际计算中要注意单位的统一。

第四篇:体积单位间的进率教学设计

体积单位间的进率教学设计

一、导入

1:前面我们学习了有关体积的一些知识,下面我想考查一下同学们掌握的怎么样,请看题。课件出示复习题。

2:我这儿一个问题同学们想知道怎么回事吗?星期天,李静买了一个魔方,她想到刚学习了怎样求正方体的体积,就动手量了一下这个魔方的棱长,并计算出了它的体积是216立方厘米。邻居的大哥哥也有一个魔方,大哥哥告诉李静,他家的魔方大概只有0.2立方分米。李静就纳闷了,怎么有那么小的魔方呢?大哥哥却跟她开玩笑说:“如果你现在就坐在五一班樊老师的教室里,听了她讲的这节课,你就明白是怎么回事了。”要解决李静同学的困扰,就用到了我们今天要学习的知识----体积单位间的进率。(板书课题)

3:回忆一下,我们学过哪些常用的长度单位?相邻两个单位间的的进率是多少?还学过哪些常用的面积单位?相邻两个单位间的的进率又是多少?我们刚学过的体积单位有哪些?大胆猜想一下,相邻两个体积单位间的进率是多少?请同学们拿出准备好的1立方厘米和1立方分米的正方体,凭感觉猜想一下,1立方分米的正方体的体积等于多少1立方厘米的小正方体的体积?

4:数学上很多伟大的发现确实是先由猜想,再经验证得到的。下面咱们就分小组研究,验证你们猜想结果的是否准确。给你们的猜想找出一个合理的解释,也给在坐的各位老师一个令人信服的理由。5:各组派代表发言。6:刚才各位代表都进行了精彩的发言,说得很有道理,为了帮助大家更好的理解为什么1立方分米=1000立方厘米.,我请来了几位五年级的学生,咱们听听他们的想法。好吗?(课件演示)

7:他们的想法可能和咱们班一些同学的想法不谋而合。咱们知道了1立方分米=1000立方厘米,那么1立方米等于多少立方分米?你能推算出来吗?道理和1立方分米=1000立方厘米类同,1立方米=1000立方分米。

8:请大家把书翻到第34页,这就是本节学习的内容,请大家看一看,并把书上没有完成的内容填一填。

9:既然大家找到了相邻两个体积单位间的进率,那么就可以利用这些知识解决一些问题。(课件出示例3)10:现在咱们能帮李静解决困惑了吗?

11:这个问题迎刃而解,再来一个问题挑战一下?(课件出示例4)请同学们将答案填到书上。

12:现在老师想考查一下各位同学到底掌握得怎么样,请同学们自己独立完成做一做的1-2题。

13:读“你知道吗”。看来我国的文化是历史悠久,博大精深。源远流长。而我们的古人又是勤劳和智慧的,希望同学们好好学习,将这种精神继承下去,并发扬光大。14:总结。15:作业。

第五篇:《体积单位间的进率》教学设计

苏教版六年级上册数学

《体积单位间的进率》教学设计

尧渡镇梅城小学 程光华

教学内容:

苏教版义务教育教科书第19页例

12、“练一练”、练习四第9~14题。教学目标:

1.使学生经历1立方分米=1000立方厘米、1立方米=1000立方分米的推导过程,明白相邻的两个体积单位之间的进率是1000的道理。

2.会应用对比的方法,记忆并区分长度单位、面积单位和体积单位,掌握它们相邻两个单位间的进率。

3.会正确应用体积单位间的进率进行名数的变换,并解决一些简单的实际问题。教学重点与难点:

根据进率进行相邻体积单位的换算。教具:

课件棱长是1分米的正方体纸盒 教学过程:

一、复习导入

提问:“1平方分米等于多少平方厘米?想想是怎么推导出来的?请画在边长是1分米的正方形纸上.” 学生6人一组,回忆并再次经历1平方分米=100平方厘米的推导过程.

(2)展示学生的推导过程,可请1~2名学生代表他们的小组上台述说,并将1平方分米=100平方厘米的示意图──将边长1分米的正方体纸盒画上100个边长是1厘米的小正方形展示出来.(出示课件)

二、探究新知

1、推导1立方分米=1000立方厘米

(1)猜猜看,1立方分米等于多少立方厘米呢? 你们能应用类似的方法推导出来吗? 要求每个小组将推出来的结果用1立方分米的正方体纸盒表示出来. 学生6人一组,进行探索、推导.教师巡视各组情况并进行指导:让每个学生在1平方分米的纸上画出100个小格,然后贴在棱长1分米的正方体盒块的6个面上.这样,就得到一个1立方分米=1000立方厘米的数学模型。

(2)展示推导过程 请1~2名学生上台述说他们的推导过程:正方体棱长1分米,也就是10厘米,体积就是(10×10×10)立方厘米.并将他们做好的模型进行展示。(出示课件)

(3)全班归纳总结:教师用(出示课件)展示将一个棱长1分米的正方体分割成1000个棱长1立方厘米的过程,并在示意图下醒目地写上:1立方分米=1000立方厘米。(或写在黑板上)

3.推导1立方米=1000立方分米

(1)提问:“不用操作,你能想出1立方米等于多少立方分米吗?”

(2)学生独立思考.可提示:在脑子里想一个棱长是1米的正方体。再将这个正方体分割成棱长是1分米的小正方体,想想可分割多少个?

(3)学生先在小组交流自己的想法,然后在全班交流,师生共同归纳出:1立方米=1000立方分米 教师(出示课件)(或写在黑板上)。

4.总结相邻两个体积单位间的进率。

(1)提问:你学过哪些体积单位?请按从高到低的顺序把它排列出来,然后说出每个体积单位的相邻单位。(出示课件)

(2)引导学生观察:1立方分米=1000立方厘米 1立方米=1000立方分米 并想一想:相邻两个体积单位之间的进率是多少?想好后在书上填空。

5.构建长度、面积和体积单位的计量系统.

(1)让学生说一说,到目前为止,所学的长度、面积和体积单位各有哪些,它们分别是计量物体的什么的?(长度单位是用来计量物体长度的;面积单位是用来计量物体表面大小的;体积单位是用来计量物体所占空间大小的.)

(2)提问:“长度、面积和体积单位,它们相邻两个单位间的进率相同吗?”学生回答后将书上第31页上的表格填完整,集体订正。(出示课件)

三、练习应用(出示课件)

1、完成练一练 引导学生认真审题,独立解答。集体交流,指名说说换算思路。

2、完成练习四第9题。学生独立完成表格。长度单位、面积单位、体积单位有什么联系和区别?这三类单位的进率各有什么特点?

3、完成练习四第10题 学生独立完成,集体订正 引导学生说说面积单位换算与体积单位换算的区别。交流 引导学生归纳将高级单位的名数改写成相邻的低级单位的名数的一般方法(师板书): 高级单位的名数×1000=相邻的低级单位的名数

4、完成练习四第11、12题。

四、全课总结

引导学生回忆本节课所学主要内容。回忆时可按本节课所学知识的顺序来叙述。本节课学习了体积单位之间的进率,知道1立方米=1000立方分米,1立方分米=1000立方厘米;会应用体积之间的进率进行体积单位名数的改写。

五、作业

练习四第13、14题

下载《体积单位之间的进率》教学设计(范文)word格式文档
下载《体积单位之间的进率》教学设计(范文).doc
将本文档下载到自己电脑,方便修改和收藏,请勿使用迅雷等下载。
点此处下载文档

文档为doc格式


声明:本文内容由互联网用户自发贡献自行上传,本网站不拥有所有权,未作人工编辑处理,也不承担相关法律责任。如果您发现有涉嫌版权的内容,欢迎发送邮件至:645879355@qq.com 进行举报,并提供相关证据,工作人员会在5个工作日内联系你,一经查实,本站将立刻删除涉嫌侵权内容。

相关范文推荐

    《体积单位间的进率》教学设计

    《体积单位间的进率》教学设计 教学目标:在认识体积单位,知道体积单位与长度单位的联系和区别基础上,学习掌握体积单位间的进率与化、聚方法。学习计算重量的解答方法。 教学......

    《体积单位间的进率》教学设计

    《体积单位间的进率》教学设计 《体积单位间的进率》教学设计1 教学目标:1、结合具体事例,经历认识体积单位之间进率的过程。2、知道1立方分米=1000立方厘米、1立方米=1000立方......

    人教版“体积单位间的进率”教学设计

    “体积单位间的进率” ——教学设计 教学目标: (1)知识与技能目标:通过计算、比较、分析、归纳,使学生理解和掌握相邻体积单位间的进率是1000,并能进行正确的运用。 (2)过程与方法目......

    :《体积单位间的进率》教学设计(五篇)

    小学数学五年级下册 《体积单位间的进率》教学设计 一、教材分析 体积单位间的进率是在学生已经学习了长度单位、面积单位和体积单位间的进率以及掌握了长方体和正方体体积......

    体积单位间的进率 教学设计 教案

    教学准备 1. 教学目标 1、知识与技能 在认识体积单位,知道体积单位与长度单位的联系和区别的基础上,学习掌握体积单位间的进率。 2、过程与方法 使学生理解和掌握体积单位间......

    体积单位间的进率 教学设计 教案

    教学准备 1. 教学目标 1.通过体积单位之间的进率的指导,使学生掌握体积单位之间的进率,并会进行名数的改写。 2.使学生学会用名数的改写解决一些简单的实际问题。 3.培养学......

    体积单位间的进率教学反思

    体积单位间的进率教学反思 体积单位间的进率是人教版第九册数学课本的内容,这部分内容是在学生已经学习了长方体和正方体的体积计算方法,并且已经熟练掌握长方体和正方体的体......

    体积单位间的进率教学设计5则范文

    体积单位之间的进率 王昉 教学目标:在理解的基础上掌握常用的体积单位之间的进率和名数的改写。 教学重点:体积单位之间的进率。 教学用具 : 投影仪和棱长是1分米的正方体模......