高一数学必修2教案

时间:2019-05-15 13:23:03下载本文作者:会员上传
简介:写写帮文库小编为你整理了多篇相关的《高一数学必修2教案》,但愿对你工作学习有帮助,当然你在写写帮文库还可以找到更多《高一数学必修2教案》。

第一篇:高一数学必修2教案

高一数学必修2教案:柱、锥、台、球的结构特征

一、教学目标

1.知识与技能:(1)通过实物操作,增强学生的直观感知。

(2)能根据几何结构特征对空间物体进行分类。

(3)会用语言概述棱柱、棱锥、圆柱、圆锥、棱台、圆台、球的结构特征。

(4)会表示有关于几何体以及柱、锥、台的分类。

2.过程与方法:

(1)让学生通过直观感受空间物体,从实物中概括出柱、锥、台、球的几何结构特征。

(2)让学生观察、讨论、归纳、概括所学的知识。

3.情感态度与价值观:

(1)使学生感受空间几何体存在于现实生活周围,增强学生学习的积极性,同时提高学生的观察能力。

(2)培养学生的空间想象能力和抽象括能力。

二、教学重点:让学生感受大量空间实物及模型、概括出柱、锥、台、球的结构特征。

难点:柱、锥、台、球的结构特征的概括。

三、教学用具

(1)学法:观察、思考、交流、讨论、概括。

(2)实物模型、投影仪。

四、教学过程

(一)创设情景,揭示课题

1、由六根火柴最多可搭成几个三角形?(空间:4个)

2在我们周围中有不少有特色的建筑物,你能举出一些例子吗?这些建筑的几何结构特征如何?

3、展示具有柱、锥、台、球结构特征的空间物体。

问题:请根据某种标准对以上空间物体进行分类。

(二)、研探新知

空间几何体:多面体(面、棱、顶点):棱柱、棱锥、棱台;

旋转体(轴):圆柱、圆锥、圆台、球。

1、棱柱的结构特征:

(1)观察棱柱的几何物体以及投影出棱柱的图片,思考:它们各自的特点是什么?共同特点是什么?

(学生讨论)

(2)棱柱的主要结构特征(棱柱的概念):

①有两个面互相平行;②其余各面都是平行四边形;③每相邻两上四边形的公共边互相平行。

(3)棱柱的表示法及分类:

(4)相关概念:底面(底)、侧面、侧棱、顶点。

2、棱锥、棱台的结构特征:

(1)实物模型演示,投影图片;

(2)以类似的方法,根据出棱锥、棱台的结构特征,并得出相关的概念、分类以及表示。

棱锥:有一个面是多边形,其余各面都是有一个公共顶点的三角形。

棱台:且一个平行于棱锥底面的平面去截棱锥,底面与截面之间的部分。

3、圆柱的结构特征:

(1)实物模型演示,投影图片——如何得到圆柱?

(2)根据圆柱的概念、相关概念及圆柱的表示。

4、圆锥、圆台、球的结构特征:

(1)实物模型演示,投影图片

——如何得到圆锥、圆台、球?

(2)以类似的方法,根据圆锥、圆台、球的结构特征,以及相关概念和表示。

5、柱体、锥体、台体的概念及关系:

探究:棱柱、棱锥、棱台都是多面体,它们在结构上有哪些相同点和不同点?三者的关系如何?当底面发生变化时,它们能否互相转化?

圆柱、圆锥、圆台呢?

6、简单组合体的结构特征:

(1)简单组合体的构成:由简单几何体拼接或截去或挖去一部分而成。

(2)实物模型演示,投影图片——说出组成这些物体的几何结构特征。

(3)列举身边物体,说出它们是由哪些基本几何体组成的。

(三)排难解惑,发展思维

1、有两个面互相平行,其余后面都是平行四边形的几何体是不是棱柱?(反例说明)

2、棱柱的何两个平面都可以作为棱柱的底面吗?

3、圆柱可以由矩形旋转得到,圆锥可以由直角三角形旋转得到,圆台可以由什么图形旋转得到?如何旋转?

(四)巩固深化

练习:课本P7 练习1、2; 课本P8习题1.1 第1、2、3、4、5题

(五)归纳整理:由学生整理学习了哪些内容

高一数学必修2教案:空间几何体的三视图

一、教学目标

1.知识与技能:掌握画三视图的基本技能,丰富学生的空间想象力。

2.过程与方法:通过学生自己的亲身实践,动手作图,体会三视图的作用。

3.情感态度与价值观:提高学生空间想象力,体会三视图的作用。

二、教学重点:画出简单几何体、简单组合体的三视图;

难点:识别三视图所表示的空间几何体。

三、学法指导:观察、动手实践、讨论、类比。

四、教学过程

(一)创设情景,揭开课题

展示庐山的风景图——“横看成岭侧看成峰,远近高低各不同”,这说明从不同的角度看同一物体视觉的效果可能不同,要比较真实反映出物体,我们可从多角度观看物体。

(二)讲授新课

1、中心投影与平行投影:

中心投影:光由一点向外散射形成的投影;

平行投影:在一束平行光线照射下形成的投影。

正投影:在平行投影中,投影线正对着投影面。

2、三视图:

正视图:光线从几何体的前面向后面正投影,得到的投影图;

侧视图:光线从几何体的左面向右面正投影,得到的投影图;

俯视图:光线从几何体的上面向下面正投影,得到的投影图。

三视图:几何体的正视图、侧视图和俯视图统称为几何体的三视图。

三视图的画法规则:长对正,高平齐,宽相等。

长对正:正视图与俯视图的长相等,且相互对正;

高平齐:正视图与侧视图的高度相等,且相互对齐;

宽相等:俯视图与侧视图的宽度相等。

3、画长方体的三视图:

正视图、侧视图和俯视图分别是从几何体的正前方、正左方和正上方观察到有几何体的正投影图,它们都是平面图形。

长方体的三视图都是长方形,正视图和侧视图、侧视图和俯视图、俯视图和正视图都各有一条边长相等。

4、画圆柱、圆锥的三视图:

5、探究:画出底面是正方形,侧面是全等的三角形的棱锥的三视图。

(三)巩固练习

课本P15 练习1、2; P20习题1.2 [A组] 2。

(四)归纳整理

请学生回顾发表如何作好空间几何体的三视图

(五)布置作业

课本P20习题1.2 [A组] 1。

第二篇:高一数学必修2知识点总结

高中数学必修2知识点

三、立体几何初步

1、柱、锥、台、球的结构特征

(1)棱柱:定义:有两个面互相平行,其余各面都是四边形,且每相邻两个四边形的公共

边都互相平行,由这些面所围成的几何体。

分类:以底面多边形的边数作为分类的标准分为三棱柱、四棱柱、五棱柱等。

表示:用各顶点字母,如五棱柱ABCDEABCDE或用对角线的端点字母,如五棱柱'''''

AD'

几何特征:两底面是对应边平行的全等多边形;侧面、对角面都是平行四边形;侧棱平行且

相等;平行于底面的截面是与底面全等的多边形。

(2)棱锥

定义:有一个面是多边形,其余各面都是有一个公共顶点的三角形,由这些面所围成的几何体

分类:以底面多边形的边数作为分类的标准分为三棱锥、四棱锥、五棱锥等

表示:用各顶点字母,如五棱锥PABCDE

几何特征:侧面、对角面都是三角形;平行于底面的截面与底面相似,其相似比等于顶点到

截面距离与高的比的平方。

(3)棱台:定义:用一个平行于棱锥底面的平面去截棱锥,截面和底面之间的部分 分类:以底面多边形的边数作为分类的标准分为三棱态、四棱台、五棱台等

表示:用各顶点字母,如五棱台PABCDE

几何特征:①上下底面是相似的平行多边形②侧面是梯形③侧棱交于原棱锥的顶点

(4)圆柱:定义:以矩形的一边所在的直线为轴旋转,其余三边旋转所成的曲面所围成的几何体

几何特征:①底面是全等的圆;②母线与轴平行;③轴与底面圆的半径垂直;④侧面展开图

是一个矩形。

(5)圆锥:定义:以直角三角形的一条直角边为旋转轴,旋转一周所成的曲面所围成的几何

几何特征:①底面是一个圆;②母线交于圆锥的顶点;③侧面展开图是一个扇形。

(6)圆台:定义:用一个平行于圆锥底面的平面去截圆锥,截面和底面之间的部分

几何特征:①上下底面是两个圆;②侧面母线交于原圆锥的顶点;③侧面展开图是一个弓形。

(7)球体:定义:以半圆的直径所在直线为旋转轴,半圆面旋转一周形成的几何体 几何特征:①球的截面是圆;②球面上任意一点到球心的距离等于半径。

2、空间几何体的三视图 ''''''''''

第1页

定义三视图:正视图(光线从几何体的前面向后面正投影);侧视图(从左向右)、俯视图(从上向下)

注:正视图反映了物体上下、左右的位置关系,即反映了物体的高度和长度;

俯视图反映了物体左右、前后的位置关系,即反映了物体的长度和宽度;

侧视图反映了物体上下、前后的位置关系,即反映了物体的高度和宽度。

3、空间几何体的直观图——斜二测画法

斜二测画法特点:①原来与x轴平行的线段仍然与x平行且长度不变;

②原来与y轴平行的线段仍然与y平行,长度为原来的一半。

4、柱体、锥体、台体的表面积与体积

(1)几何体的表面积为几何体各个面的面积的和。

(2)特殊几何体表面积公式(c为底面周长,h为高,h为斜高,l为母线)'

S直棱柱侧面积chS圆柱侧2rh S正棱锥侧面积1ch'S圆锥侧面积rl

2S正棱台侧面积1(c1c2)h'S圆台侧面积(rR)l 2

2rrlS圆锥表rrlS圆台表r2rlRlR2S圆柱表

(3)柱体、锥体、台体的体积公式

1V柱ShV圆柱Sh2r hV锥ShV圆锥

1r2h 3

31'1122V台(S'S)h

V圆台(SS)h(rrRR)h

333

(4)球体的表面积和体积公式:V球=4R3 3; S球面=4R24、空间点、直线、平面的位置关系

(1)平面

①平面的概念:A.描述性说明;B.平面是无限伸展的;

②平面的表示:通常用希腊字母α、β、γ表示,如平面α(通常写在一个锐角内);

也可以用两个相对顶点的字母来表示,如平面BC。

③ 点与平面的关系:点A在平面内,记作A;点A不在平面内,记作A

点与直线的关系:点A的直线l上,记作:A∈l;点A在直线l外,记作Al;

第2页

直线与平面的关系:直线l在平面α内,记作lα;直线l不在平面α内,记作lα。

(2)公理1:如果一条直线的两点在一个平面内,那么这条直线是所有的点都在这个平面内。

(即直线在平面内,或者平面经过直线)

应用:检验桌面是否平; 判断直线是否在平面内

用符号语言表示公理1:Al,Bl,A,Bl

(3)公理2:经过不在同一条直线上的三点,有且只有一个平面。

推论:一直线和直线外一点确定一平面;两相交直线确定一平面;两平行直线确定一

平面。

公理2及其推论作用:①它是空间内确定平面的依据②它是证明平面重合的依据

(4)公理3:如果两个不重合的平面有一个公共点,那么它们有且只有一条过该点的公共直线

符号:平面α和β相交,交线是a,记作α∩β=a。

符号语言:PABABl,Pl

公理3的作用:

①它是判定两个平面相交的方法。

②它说明两个平面的交线与两个平面公共点之间的关系:交线必过公共点。

③它可以判断点在直线上,即证若干个点共线的重要依据。

(5)公理4:平行于同一条直线的两条直线互相平行

(6)空间直线与直线之间的位置关系

① 异面直线定义:不同在任何一个平面内的两条直线

② 异面直线性质:既不平行,又不相交。

③ 异面直线判定:过平面外一点与平面内一点的直线与平面内不过该店的直线是异面直线 ④ 异面直线所成角:直线a、b是异面直线,经过空间任意一点O,分别引直线a’∥a,b’∥b,则把直线a’和b’所成的锐角(或直角)叫做异面直线a和b所成的角。两条异面直线所成角的范围是(0°,90°],若两条异面直线所成的角是直角,我们就说这两条异面直线互相垂直。

说明:(1)判定空间直线是异面直线方法:①根据异面直线的定义;②异面直线的判定定理

(2)在异面直线所成角定义中,空间一点O是任取的,而和点O的位置无关。

②求异面直线所成角步骤:

A、利用定义构造角,可固定一条,平移另一条,或两条同时平移到某个特殊的位置,顶点

选在特殊的位置上。B、证明作出的角即为所求角C、利用三角形来求角

(7)等角定理:如果一个角的两边和另一个角的两边分别平行,那么这两角相等或互补。

(8)空间直线与平面之间的位置关系

直线在平面内——有无数个公共点.

三种位置关系的符号表示:aαa∩α=Aa∥α

(9)平面与平面之间的位置关系:平行——没有公共点;α∥β

相交——有一条公共直线。α∩β=b5、空间中的平行问题

(1)直线与平面平行的判定及其性质

线面平行的判定定理:平面外一条直线与此平面内一条直线平行,则该直线与此平面平行。

第3页

线线平行线面平行

线面平行的性质定理:如果一条直线和一个平面平行,经过这条直线的平面和这个平面相交,那么这条直线和交线平行。线面平行线线平行

(2)平面与平面平行的判定及其性质

两个平面平行的判定定理

(1)如果一个平面内的两条相交直线都平行于另一个平面,那么这两个平面平行

(线面平行→面面平行),(2)如果在两个平面内,各有两组相交直线对应平行,那么这两个平面平行。

(线线平行→面面平行),(3)垂直于同一条直线的两个平面平行,两个平面平行的性质定理

(1)如果两个平面平行,那么某一个平面内的直线与另一个平面平行。(面面平行→线面平行)

(2)如果两个平行平面都和第三个平面相交,那么它们的交线平行。(面面平行→线线平行)

7、空间中的垂直问题

(1)线线、面面、线面垂直的定义

①两条异面直线的垂直:如果两条异面直线所成的角是直角,就说这两条异面直线互相垂直。②线面垂直:如果一条直线和一个平面内的任何一条直线垂直,就说这条直线和这个平面垂直。

③平面和平面垂直:如果两个平面相交,所成的二面角(从一条直线出发的两个半平面所组成的图形)是直二面角(平面角是直角),就说这两个平面垂直。

(2)垂直关系的判定和性质定理

①线面垂直判定定理和性质定理

判定定理:如果一条直线和一个平面内的两条相交直线都垂直,那么这条直线垂直这个平面。性质定理:如果两条直线同垂直于一个平面,那么这两条直线平行。

②面面垂直的判定定理和性质定理

判定定理:如果一个平面经过另一个平面的一条垂线,那么这两个平面互相垂直。

性质定理:如果两个平面互相垂直,那么在一个平面内垂直于他们的交线的直线垂直于另一个平面。

9、空间角问题

(1)直线与直线所成的角

①两平行直线所成的角:规定为0。

②两条相交直线所成的角:两条直线相交其中不大于直角的角,叫这两条直线所成的角。③两条异面直线所成的角:过空间任意一点O,分别作与两条异面直线a,b平行的直线a,b,形成两条相交直线,这两条相交直线所成的不大于直角的角叫做两条异面直线所成的角。

(2)直线和平面所成的角

①平面的平行线与平面所成的角:规定为0。②平面的垂线与平面所成的角:规定为90。

③平面的斜线与平面所成的角:平面的一条斜线和它在平面内的射影所成的锐角,叫做这条直线和这个平面所成的角。

在解题时,注意挖掘题设中两个主要信息:(1)斜线上一点到面的垂线;(2)过斜线上的一点或过斜线的平面与已知面垂直,由面面垂直性质易得垂线。

(3)二面角和二面角的平面角

①二面角的定义:从一条直线出发的两个半平面所组成的图形叫做二面角,这条直线叫做二

第4页

面角的棱,这两个半平面叫做二面角的面。

②二面角的平面角:以二面角的棱上任意一点为顶点,在两个面内分别作垂直于棱的两条射.....线,这两条射线所成的角叫二面角的平面角。③直二面角:平面角是直角的二面角叫直二面角。

两相交平面如果所组成的二面角是直二面角,那么这两个平面垂直;反过来,如果两个平面垂直,那么所成的二面角为直二面角

④求二面角的方法

定义法:在棱上选择有关点,过这个点分别在两个面内作垂直于棱的射线得到平面角

垂面法:已知二面角内一点到两个面的垂线时,过两垂线作平面与两个面的交线所成的角为二面角的平面角

7、空间直角坐标系

(1)定义:如图,OBCDD,A,B,C,是单位正方体.以A为原点,分别以OD,OA,OB的方向为正方向,建立三条数轴x轴.y轴.z轴。

这时建立了一个空间直角坐标系Oxyz.1)O叫做坐标原点2)x 轴,y轴,z轴叫做坐标轴.3)过每两个坐标轴的平面叫做坐标面。

(2)右手表示法: 令右手大拇指、食指和中指相互垂直时,可能形成的位置。大拇指指向为x轴正方向,食指指向为y轴正向,中指指向则为z轴正向,这样也可以决定三轴间的相位置。

(3)任意点坐标表示:空间一点M的坐标可以用有序实数组(x,y,z)来表示,有序实数组(x,y,z)叫做点M在此空间直角坐标系中的坐标,记作M(x,y,z)(x叫做点M的横坐标,y叫做点M的纵坐标,z叫做点M的竖坐标)

(4)空间两点距离坐标公式:d(x2x1)2(y2y1)2(z2z1)2

第5页

第三篇:高一数学必修2知识点(人教版-新课标)

高中数学必修2知识点

一、直线与方程

(1)直线的倾斜角

定义:x轴正向与直线向上方向之间所成的角叫直线的倾斜角。特别地,当直线与x轴平行或重合时,我们规定它的倾斜角为0度。因此,倾斜角的取值范围是0°≤α<180°

(2)直线的斜率

①定义:倾斜角不是90°的直线,它的倾斜角的正切叫做这条直线的斜率。直线的斜率常用k表示。即。斜率反映直线与轴的倾斜程度。

当时,;当时,;当时,不存在。

②过两点的直线的斜率公式:

注意下面四点:(1)当时,公式右边无意义,直线的斜率不存在,倾斜角为90°;

(2)k与P1、P2的顺序无关;(3)以后求斜率可不通过倾斜角而由直线上两点的坐标直接求得;

(4)求直线的倾斜角可由直线上两点的坐标先求斜率得到。

(3)直线方程

①点斜式:直线斜率k,且过点

注意:当直线的斜率为0°时,k=0,直线的方程是y=y1。

当直线的斜率为90°时,直线的斜率不存在,它的方程不能用点斜式表示.但因l上每一点的横坐标都等于x1,所以它的方程是x=x1。

②斜截式:,直线斜率为k,直线在y轴上的截距为b

③两点式:()直线两点,④截矩式:

其中直线与轴交于点,与轴交于点,即与轴、轴的截距分别为。

⑤一般式:(A,B不全为0)

注意:各式的适用范围特殊的方程如:

平行于x轴的直线:(b为常数);平行于y轴的直线:(a为常数);

(5)直线系方程:即具有某一共同性质的直线

(一)平行直线系

平行于已知直线(是不全为0的常数)的直线系:(C为常数)

(二)垂直直线系

垂直于已知直线(是不全为0的常数)的直线系:(C为常数)

(三)过定点的直线系

(ⅰ)斜率为k的直线系:,直线过定点;

(ⅱ)过两条直线,的交点的直线系方程为

(为参数),其中直线不在直线系中。

(6)两直线平行与垂直

当,时,;

注意:利用斜率判断直线的平行与垂直时,要注意斜率的存在与否。

(7)两条直线的交点

相交

交点坐标即方程组的一组解。

方程组无解 ;方程组有无数解与重合(8)两点间距离公式:设是平面直角坐标系中的两个点,则

(9)点到直线距离公式:一点到直线的距离

(10)两平行直线距离公式

在任一直线上任取一点,再转化为点到直线的距离进行求解。

二、圆的方程

1、圆的定义:平面内到一定点的距离等于定长的点的集合叫圆,定点为圆心,定长为圆的半径。

2、圆的方程

(1)标准方程,圆心,半径为r;

(2)一般方程

当时,方程表示圆,此时圆心为,半径为

当时,表示一个点;当时,方程不表示任何图形。

(3)求圆方程的方法:

一般都采用待定系数法:先设后求。确定一个圆需要三个独立条件,若利用圆的标准方程,需求出a,b,r;若利用一般方程,需要求出D,E,F;

另外要注意多利用圆的几何性质:如弦的中垂线必经过原点,以此来确定圆心的位置。

3、直线与圆的位置关系:

直线与圆的位置关系有相离,相切,相交三种情况:

(1)设直线,圆,圆心到l的距离为,则有;;

(2)过圆外一点的切线:①k不存在,验证是否成立②k存在,设点斜式方程,用圆心到该直线距离=半径,求解k,得到方程【一定两解】

(3)过圆上一点的切线方程:圆(x-a)2+(y-b)2=r2,圆上一点为(x0,y0),则过此点的切线方程为(x0-a)(x-a)+(y0-b)(y-b)= r24、圆与圆的位置关系:通过两圆半径的和(差),与圆心距(d)之间的大小比较来确定。

设圆,两圆的位置关系常通过两圆半径的和(差),与圆心距(d)之间的大小比较来确定。

当时两圆外离,此时有公切线四条;

当时两圆外切,连心线过切点,有外公切线两条,内公切线一条;

当时两圆相交,连心线垂直平分公共弦,有两条外公切线;

当时,两圆内切,连心线经过切点,只有一条公切线;

当时,两圆内含;当时,为同心圆。

注意:已知圆上两点,圆心必在中垂线上;已知两圆相切,两圆心与切点共线圆的辅助线一般为连圆心与切线或者连圆心与弦中点

三、立体几何初步

1、柱、锥、台、球的结构特征

(1)棱柱:

几何特征:两底面是对应边平行的全等多边形;侧面、对角面都是平行四边形;侧棱平行且相等;平行于底面的截面是与底面全等的多边形。

(2)棱锥

几何特征:侧面、对角面都是三角形;平行于底面的截面与底面相似,其相似比等于顶点到截面距离与高的比的平方。

(3)棱台:

几何特征:①上下底面是相似的平行多边形②侧面是梯形③侧棱交于原棱锥的顶点

(4)圆柱:定义:以矩形的一边所在的直线为轴旋转,其余三边旋转所成几何特征:①底面是全等的圆;②母线与轴平行;③轴与底面圆的半径垂直;④侧面展开图是一个矩形。

(5)圆锥:定义:以直角三角形的一条直角边为旋转轴,旋转一周所成几何特征:①底面是一个圆;②母线交于圆锥的顶点;③侧面展开图是一个扇形。

(6)圆台:定义:以直角梯形的垂直与底边的腰为旋转轴,旋转一周所成几何特征:①上下底面是两个圆;②侧面母线交于原圆锥的顶点;③侧面展开图是一个弓形。

(7)球体:定义:以半圆的直径所在直线为旋转轴,半圆面旋转一周形成的几何体

几何特征:①球的截面是圆;②球面上任意一点到球心的距离等于半径。

2、空间几何体的三视图

定义三视图:正视图(光线从几何体的前面向后面正投影);侧视图(从左向右)、俯视图(从上向下)

注:正视图反映了物体的高度和长度;俯视图反映了物体的长度和宽度;侧视图反映了物体的高度和宽度。

3、空间几何体的直观图——斜二测画法

斜二测画法特点:①原来与x轴平行的线段仍然与x平行且长度不变;②原来与y轴平行的线段仍然与y平行,长度为原来的一半。

4、柱体、锥体、台体的表面积与体积

(1)几何体的表面积为几何体各个面的面积的和。

(2)特殊几何体表面积公式(c为底面周长,h为高,为斜高,l为母线)

(3)柱体、锥体、台体的体积公式

(4)球体的表面积和体积公式:V= ; S=

4、空间点、直线、平面的位置关系

公理1:如果一条直线的两点在一个平面内,那么这条直线是所有的点都在这个平面内。

应用: 判断直线是否在平面内

用符号语言表示公理1:

公理2:如果两个不重合的平面有一个公共点,那么它们有且只有一条过该点的公共直线

符号:平面α和β相交,交线是a,记作α∩β=a。

符号语言:

公理2的作用:

①它是判定两个平面相交的方法。

②它说明两个平面的交线与两个平面公共点之间的关系:交线必过公共点。③它可以判断点在直线上,即证若干个点共线的重要依据。

公理3:经过不在同一条直线上的三点,有且只有一个平面。

推论:一直线和直线外一点确定一平面;两相交直线确定一平面;两平行直线确定一平面。

公理3及其推论作用:①它是空间内确定平面的依据②它是证明平面重合的依据

公理4:平行于同一条直线的两条直线互相平行

空间直线与直线之间的位置关系

① 异面直线定义:不同在任何一个平面内的两条直线

② 异面直线性质:既不平行,又不相交。

③ 异面直线判定:过平面外一点与平面内一点的直线与平面内不过该店的直线是异面直线

④ 异面直线所成角:作平行,令两线相交,所得锐角或直角,即所成角。两条异面直线所成角的范围是(0°,90°],若两条异面直线所成的角是直角,我们就说这两条异面直线互相垂直。

求异面直线所成角步骤:

A、利用定义构造角,可固定一条,平移另一条,或两条同时平移到某个特殊的位置,顶点选在特殊的位置上。B、证明作出的角即为所求角C、利用三角形来求角

(7)等角定理:如果一个角的两边和另一个角的两边分别平行,那么这两角相等或互补。

(8)空间直线与平面之间的位置关系

直线在平面内——有无数个公共点.

三种位置关系的符号表示:aαa∩α=Aa‖α

(9)平面与平面之间的位置关系:平行——没有公共点;α‖β

相交——有一条公共直线。α∩β=b5、空间中的平行问题

(1)直线与平面平行的判定及其性质

线面平行的判定定理:平面外一条直线与此平面内一条直线平行,则该直线与此平面平行。

线线平行线面平行

线面平行的性质定理:如果一条直线和一个平面平行,经过这条直线的平面和这个平面相交,那么这条直线和交线平行。线面平行线线平行

(2)平面与平面平行的判定及其性质

两个平面平行的判定定理

(1)如果一个平面内的两条相交直线都平行于另一个平面,那么这两个平面平行

(线面平行→面面平行),(2)如果在两个平面内,各有两组相交直线对应平行,那么这两个平面平行。(线线平行→面面平行),(3)垂直于同一条直线的两个平面平行,两个平面平行的性质定理

(1)如果两个平面平行,那么某一个平面内的直线与另一个平面平行。(面面平行→线面平行)

(2)如果两个平行平面都和第三个平面相交,那么它们的交线平行。(面面平行→线线平行)

7、空间中的垂直问题

(1)线线、面面、线面垂直的定义

①两条异面直线的垂直:如果两条异面直线所成的角是直角,就说这两条异面直线互相垂直。

②线面垂直:如果一条直线和一个平面内的任何一条直线垂直,就说这条直线和这个平面垂直。

③平面和平面垂直:如果两个平面相交,所成的二面角(从一条直线出发的两个半平面所组成的图形)是直二面角(平面角是直角),就说这两个平面垂直。

(2)垂直关系的判定和性质定理

①线面垂直判定定理和性质定理

判定定理:如果一条直线和一个平面内的两条相交直线都垂直,那么这条直线垂直这个平面。

性质定理:如果两条直线同垂直于一个平面,那么这两条直线平行。②面面垂直的判定定理和性质定理

判定定理:如果一个平面经过另一个平面的一条垂线,那么这两个平面互相垂直。性质定理:如果两个平面互相垂直,那么在一个平面内垂直于他们的交线的直线垂直于另一个平面。

9、空间角问题

(1)直线与直线所成的角

①两平行直线所成的角:规定为。

②两条相交直线所成的角:两条直线相交其中不大于直角的角,叫这两条直线所成的角。

③两条异面直线所成的角:过空间任意一点O,分别作与两条异面直线a,b平行的直线,形成两条相交直线,这两条相交直线所成的不大于直角的角叫做两条异面直线所成的角。

(2)直线和平面所成的角

①平面的平行线与平面所成的角:规定为。②平面的垂线与平面所成的角:规定为。

③平面的斜线与平面所成的角:平面的一条斜线和它在平面内的射影所成的锐角,叫做这条直线和这个平面所成的角。

求斜线与平面所成角的思路类似于求异面直线所成角:“一作,二证,三计算”。在“作角”时依定义关键作射影,由射影定义知关键在于斜线上一点到面的垂线,在解题时,注意挖掘题设中两个主要信息:(1)斜线上一点到面的垂线;(2)过斜线上的一点或过斜线的平面与已知面垂直,由面面垂直性质易得垂线。

(3)二面角和二面角的平面角

①二面角的定义:从一条直线出发的两个半平面所组成的图形叫做二面角,这条直线叫做二面角的棱,这两个半平面叫做二面角的面。

②二面角的平面角:以二面角的棱上任意一点为顶点,在两个面内分别作垂直于棱的两条射线,这两条射线所成的角叫二面角的平面角。

③直二面角:平面角是直角的二面角叫直二面角。

两相交平面如果所组成的二面角是直二面角,那么这两个平面垂直;反过来,如果两个平面垂直,那么所成的二面角为直二面角

④求二面角的方法

定义法:在棱上选择有关点,过这个点分别在两个面内作垂直于棱的射线得到平面角

垂面法:已知二面角内一点到两个面的垂线时,过两垂线作平面与两个面的交线所成的角为二面角的平面角

第四篇:2018年高一必修2数学暑假作业答案

2018年高一必修2数学暑假作业答案

查字典数学网小编给同学们奉上2018年高一下册数学暑假作业答案,希望有助于同学们的学习。仅供参考。

一、选择题:

1.如果()

A.B.{1,3} C.{2.已知()

,5} D.{4}

A.B.C.D.不确定

3.如果函数f(x)的定义域为[-1,1],那么函数f(x2-1)的定义域是()

A.[0,2] B.[-1,1] C.[-2,2] D.[-,]

4.已知集合,则()

A.B.C.D.5.设,,从 到 的对应法则 不是映射的是()A.B.C.D.6.函数 的图象是()A.B.C.D.7.函数 有零点的区间是()A.(-1,0)B.(0,1)C.(1,2)D.(2,3)

8.若函数 在区间 上的最大值是最小值的 倍,则 的值为()

A.B.C.D.9.设函数,若 >1,则a的取值范围是()

A.(-1,1)B.C.D.10.函数f(x)=(x2-3x+2)的单调增区间为()

A.(-∞,1)B.(2,+∞)C.(-∞,)D.(,+∞)

11.已知 在区间 上是减函数,则 的范围是()

A.B.C.或 D.12.若,且,则 满足的关系式是()

A.B.C.D.二、填空题:(本大题共4小题,每小题4分,共16分。).13.若函数 是函数 的反函数,且 的图象过点(2,1),则 _____;

14.已知f(x)是奇函数,且当x?(0,1)时,那么当x?(?1,0)时,f(x)=;

15.已知集合 ,B={x| },若 ,则 =;

16.若,且,则 _.三、解答题:(本大题共4小题,共48分,解答应写出文字说明,证明过程或演算步骤.)

17.(本题满分10分)求函数 在 上的最小值.18.(本题满分12分)已知函数,其中 ,设.(1)判断 的奇偶性,并说明理由;

(2)若,求使 成立的x的集合.19.(本题满分12分)已知定义域为 的函数 是奇函数.(1)求 的值;

(2)判断函数 的单调性;

(3)若对任意的,不等式 恒成立,求 的取值范围.20.(本题满分14分)某租赁公司拥有汽车100辆.当每辆车的月租金为3000元时,可全部租出.当每辆车的月租金每增加50元时,未租出的车将会增加一辆.租出的车每辆每月需要维护费150元,未租出的车每辆每月需要维护费50元.(1)当每辆车的月租金定为3600元时,能租出多少辆车?

(2)当每辆车的月租金定为多少元时,租赁公司的月收益最大?最大月收益是多少?

数学试题参考答案

一、选择题:(本大题共12小题,每小题3分,共36分。)

题号 1 2 3 4 5 6 7 8 9 10 11 12

答案 C B D D B A D A D A B C

二、填空题:(本大题共4小题,每小题4分,共16分。)

13.;14.ln(1?x);15.0,1,2;16..4016

三、解答题:(本大题共4小题,共48分,解答应写出文字说明,证明过程或演算步骤.)

17.(本题满分10分)

解:函数 图象的对称轴方程为,(1)当 时,=;………………………………………..……3分

(2)当 时,;………………………….…………….…6分

(3)当

时,…………………………………………………..9分

综上所述,……………………..………………….…10分

18.(本题满分12分)

解:(1)依题意得1+x>0,1-x>0,∴函数h(x)的定义域为(-1,1).………………………………………..…………………………3分

∵对任意的x∈(-1,1),-x∈(-1,1),h(-x)=f(-x)-g(-x)

=loga(1-x)-loga(1+x)

=g(x)-f(x)=-h(x),∴h(x)是奇函数...........................................................................................................6分

(2)由f(3)=2,得a=2.此时h(x)=log2(1+x)-log2(1-x),由h(x)>0即log2(1+x)-log2(1-x)>0,∴log2(1+x)>log2(1-x).由1+x>1-x>0,解得0

故使h(x)>0成立的x的集合是{x|0

19.(本题满分12分)

解:(1)因为 在定义域为 上是奇函数,所以 =0,即 …….....3分

(2)由(Ⅰ)知,设 则

因为函数y=2 在R上是增函数且 ∴ >0

又 >0 ∴ >0即

∴ 在 上为减函数.………………………………....………...…..7分

(3)因 是奇函数,从而不等式:

等价于,……………….……………………...….8分

因 为减函数,由上式推得:.即对一切

有:,………..………………………….………....10分

从而判别式 ………..…..……………………………..……...12分

20.(本题满分14分)

解:(1)当每辆车的月租金定为3600元时,未租出的车辆数为: =12,所以这时租出了88辆车………………………………………………………………………..…4分

(2)设每辆车的月租金定为x元,则租赁公司的月收益为:

f(x)=(100-)(x-150)-×50,…………….…….……....10分

整理得f(x)=-+162x-21000=-(x-4050)2+307050……………………...12分

所以,当x=4050时,f(x)最大,其最大值为f(4050)=307050.即当每辆车月租金定为4050元时,租赁公司月收益最大,最大收益为307050元.………..14分

第五篇:高一数学必修1函数教案

第二章 函数

§2.1 函数

教学目的:(1)学习用集合与对应的语言来刻画函数,体会对应关系在刻画函数概念中的作用;(2)了解构成函数的要素;

(3)会求一些简单函数的定义域和值域;

(4)能够正确使用“区间”的符号表示某些函数的定义域; 教学重点:理解函数的模型化思想,用合与对应的语言来刻画函数; 教学难点:符号“y=f(x)”的含义,函数定义域和值域的区间表示; 一 函数的有关概念 1.函数的概念:

设 A、B 是非空的数集,如果按照某个确定的对应关系f,使对于集合A 中的任意一个数x,在集合B 中都有唯一确定的数f(x)和它对应,那么就称f:A→B 为从集合A 到集合B 的一个函数(function). 记作: y=f(x),x∈A.

其中,x 叫做自变量,x 的取值范围A 叫做函数的定义域(domain);与x 的值相对应的y 值叫做函数值,函数值的集合{f(x)| x∈A }叫做函数的值域(range). 注意:

○1 “y=f(x)”是函数符号,可以用任意的字母表示,如“y=g(x)”; ○2 函数符号“y=f(x)”中的f(x)表示与x 对应的函数值,一个数,而不是f 乘x. 2. 构成函数的二要素: 定义域、对应法则

值域被定义域和对应法则完全确定 3.区间的概念

(1)区间的分类:开区间、闭区间、半开半闭区间;(2)无穷区间;(3)区间的数轴表示. 二 典型例题 求解函数定义域值域及对应法则 课本P32 例1,2,3 求下列函数的定义域

14x2 F(x)= F(x)=

x/x/x1 F(x)=111x F(x)=x24x5

巩固练习P33 练习A中4,5 说明:○1 如果只给出解析式y=f(x),而没有指明它的定义域,则函数的定义域即是指能使这个式子有意义的实数的集合; ○2 函数的定义域、值域要写成集合或区间的形式. 2.判断两个函数是否为同一函数

○1 构成函数三个要素是定义域、对应关系和值域.由于值域是由定义域和对应关系决定的,所以,如果两个函数的定义域和对应关系完全一致,即称这两个函数相等(或为同一函数)○2 两个函数相等当且仅当它们的定义域和对应关系完全一致,而与表示自变量和函数值的字母无关。巩固练习:

○1 判断下列函数f(x)与g(x)是否表示同一个函数

(1)f(x)=(x1)0 ;g(x)= 1

(2)f(x)= x; g(x)=x2

(3)f(x)= x;f(x)=(x1)(4)f(x)= | x | ;g(x)= 2x2

三 映射与函数

教学目的:(1)了解映射的概念及表示方法,了解象、原象的概念;(2)结合简单的对应图示,了解一一映射的概念. 教学重点难点:映射的概念及一一映射的概念. 复习初中已经遇到过的对应:

1. 对于任何一个实数a,数轴上都有唯一的点P 和它对应; 2. 对于坐标平面内任何一个点A,都有唯一的有序实数对(x,y)和它对应;

3. 对于任意一个三角形,都有唯一确定的面积和它对应; 4. 某影院的某场电影的每一张电影票有唯一确定的座位与它对应; 5. 函数的概念.

映射 定义:一般地,设A、B 是两个非空的集合,如果按某一个确定的对应法则f,使对于集合A 中的任意一个元素x,在集合B 中都有唯一确定的元素y 与之对应,那么就称对应f:A→B 为从集合A 到集合B 的一个映射(mapping).记作“f:A→B”。象与原象的定义与区分

一一对应关系: 如果映射f是集合A到集合B的映射,并且对于集合B中的任意一个元素,在集合A中都有且只有一个原象,就称这两个集合的元素之间存在一一对应关系,并把这个映射叫做从集合A到集合B的一一映射。(结合P35的例7解释说明)

说明:(1)这两个集合有先后顺序,A 到B 的射与B 到A 的映射是截然不同的.其中f 表示具体的对应法则,可以用汉字叙述.(2)“都有唯一”什么意思?

包含两层意思:一是必有一个;二是只有一个,也就是说有且只有一个的意思。

例题分析:下列哪些对应是从集合A 到集合B 的映射?

(1)A={P | P 是数轴上的点},B=R,对应关系f:数轴上的点与它所代表的实数对应;

(2)A={ P | P 是平面直角体系中的点},B={(x,y)| x∈R,y∈R},对应关系f:平面直角体系中的点与它的坐标对应;(3)A={三角形},B={x | x 是圆},对应关系f:每一个三角形都对应它的内切圆;

(4)A={x | x 是新华中学的班级},B={x | x 是新华中学的学生},对应关系f:每一个班级都对应班里的学生.

思考:将(3)中的对应关系f 改为:每一个圆都对应它的内接三角形;(4)中的对应关系f 改为:每一个学生都对应他的班级,那么对应f: B→A 是从集合B 到集合A 的映射吗? 四 函数的表示法

教学目的:(1)明确函数的三种表示方法;

(2)通过具体实例,了解简单的分段函数,并能简单应用; 教学重点难点:函数的三种表示方法,分段函数的概念及分段函 数的表示及其图象.

复习:函数的概念;

常用的函数表示法及各自的优点:(1)解析法;(2)图象法;(3)列表法.

(一)典型例题

例 1.某种笔记本的单价是5 元,买x(x∈{1,2,3,4,5})个笔记本需要y 元.试用三种表示法表示函数y=f(x).

分析:注意本例的设问,此处“y=f(x)”有三种含义,它可以是解析表达式,可以是图象,也可以是对应值表. 解:(略)注意:

○1 函数图象既可以是连续的曲线,也可以是直线、折线、离散的点等等,注意判断一个图形是否是函数图象的依据; ○2 解析法:必须注明函数的定义域; ○3 图象法:是否连线;

○4 列表法:选取的自变量要有代表性,应能反映定义域的特征. 例 3.画出函数y = | x | . 解:(略)

巩固练习: P41练习A 3,6 拓展练习:任意画一个函数y=f(x)的图象,然后作出y=|f(x)| 和 y=f(|x|)的图象,并尝试简要说明三者(图象)之间的关系.

五 分段函数 定义: 例5讲解

练习P43练习A 1(2),2(2)

注意:分段函数的解析式不能写成几个不同的方程,而写成函数值几种不同的表达式并用一个左大括号括起来,并分别注明各部分的自变量的取值情况.

下载高一数学必修2教案word格式文档
下载高一数学必修2教案.doc
将本文档下载到自己电脑,方便修改和收藏,请勿使用迅雷等下载。
点此处下载文档

文档为doc格式


声明:本文内容由互联网用户自发贡献自行上传,本网站不拥有所有权,未作人工编辑处理,也不承担相关法律责任。如果您发现有涉嫌版权的内容,欢迎发送邮件至:645879355@qq.com 进行举报,并提供相关证据,工作人员会在5个工作日内联系你,一经查实,本站将立刻删除涉嫌侵权内容。

相关范文推荐

    高一英语必修2 教案教学设计

    高一英语必修2 教案教学设计(人教版英语高一) Unit 1 Cultural relics 单元整体设计思路 第一课时:阅读课 Warming up; Pre-reading; Reading; Comprehending (pp. 1-2) 第......

    高一生物必修2教案 (5000字)五篇

    高中生物必修2教案 《遗传与进化》 1易区分且稳定 2p(亲本) 互交 在哪里?第一章 遗传因子的发现 一、孟德尔简介 二、杂交实验(一) 1956----1864------1872 .选材:豌豆 自花传粉......

    高一英语必修2第三单元教案

    篇一:高一英语必修2unit3教案教学目标教学重点 使学生了解计算机的发展历程,及其在当今社会的广泛运用; 鼓励学生用英语表达自己的观点,进行简单的推理和做出决定。......

    高一英语必修2第四单元教案

    班级 课时课型时间 出席 课题序号 缺席 第一课时Warming Up, Pre-reading 教学目标 1. To let students master the pronunciation of the new words and phrases 2. To......

    高一必修2生物教学计划

    2009-2010高中生物教学计划潜山二中:张祖武 一、指导思想 本学期,我校教学以深化课堂教学改革为工作核心,以规范常规教学为基点,以信息技术与学科教学的有机整合的研究、实践为......

    高一历史必修2教学计划

    高一历史必修2教学计划 一、教材分析 高一下学期学习历史必修2“经济史”,着重反映人类社会经济领域发展进程中的重要内容。经济活动是人类社会生活重要组成部分。它与社会政......

    《拿来主义》(人教版高一必修)2

    《拿来主义》(人教版高一必修)《拿来主义》课时计划第1课时 (总第15课时) 教学目标: 1、学习本文运用比喻论证等方法把深奥抽象的道理讲得深入浅出生动形象的论证艺术;体会鲁......

    高一必修2试卷分析

    2011—2012学年度第二学期 高一数学期末试卷分析 徐晓明 一、试卷基本情况分析 选择题部分错误主要集中在第4、7、10题;第4题是一个三视图的题,学生主要是三视图的特点不清;第......