从问题到方程教学反思

时间:2019-05-15 16:29:26下载本文作者:会员上传
简介:写写帮文库小编为你整理了多篇相关的《从问题到方程教学反思》,但愿对你工作学习有帮助,当然你在写写帮文库还可以找到更多《从问题到方程教学反思》。

第一篇:从问题到方程教学反思

从问题到方程教学反思

(一)用方程解决生活中的问题,关键在于让学生能正确寻找问题中的数量关系式。掌握了数量关系式,问题便可迎刃而解。问题是学生在以前的学习中缺乏这样的训练,对如何分析数量关系没有一定的基础和经验,这给教学此内容带来了诸多不便,为此,我们教师在学生的数量关系的分析上还要多花时间,多帮助学生,“磨刀不误砍柴功”,为了能让学生顺利掌握新知,教者始终把数量关系的训练作为教学的主线贯穿在教学过程中。

我们教师复习了等式的性质后,出示了“看图列方程并解答”的实际问题,学生有了前面的学习基础,很容易根据图中表示的等量关系列出方程,但这并不是教者的最终目的,学生解答师生共同评价,在此老师向学生抛出了问题:“你是根据什么关系来列方程的?”此时让学生初步感受到数量关系对列方程解决问题的重要。“那么,我们怎样写出数量关系式?”师出示第2题复习题“根据条件,写出数量关系式。”学生通过这次的练习后,对解方程的已有了足够的经验储备,这时老师不失时机地出示例题,让学生探究解决问题的途径,学生便自然地想到了数量关系,那列方程便也是水到渠成的事了。

另外,在解决问题的过程中,我们教师还鼓励学生从多角度对问题展开思考和研究,并要求学生把方程解法和算术方法进行比较,寻找之间的联系和区别,组交流中明白为什么不能这样列。像学生在解答中出现144÷X=1.5这样的方程,教者应给予肯定,但也要向学生讲清这类方程用我们现在所学的等式性质解决有一定困难,只有以后进一步学习新的本领才能很容易解决这类,在这里既有对学生获得知识的肯定,也有善意的提醒和无声的激励,为学生进一步努力学习留下思考的空间和探究的天地。

从问题到方程教学反思

(二)数学教学活动必须建立在学生的认知发展水平和已有的知识经验基础之上;数学学习内容应当是现实的、有意义的、富有挑战的,这些内容要有利于学生主动地进行观察、实验、猜测、验证、推理与交流等数学活动;要求关注学生学习数学的水平,更要关注他们在数学活动中所表现出来的情感与态度”。本节课的教学就是围绕新课标倡导的“自主、合作、交流、探究”来设计,通过不同的活动方式来有效地呈现教学内容。

1.问题情境的创设要有鲜明的指向性

问题情境要结合课堂,有目的的选择和设计,既要关注学习内容、学习对象的引出与揭示,更需要从学生的需要出发,关注学生的认识和认同,为学生有效的自主建构提供时间和空间。选择合理的问题情境,有助于学生自主学习和自主建构,这也是新课程的价值追求。

本节课创设用“天平称量食盐的质量”这一情境引入课题比较合适,因为从天平的平衡学生可以直接获得相等关系,直观、形象、易懂。在有效地激发学生兴趣的同时,()又揭示了方程是表达数量之间相等关系的天平。方程是解决实际问题的有效工具。从而引入课题:从问题到方程。

2.课堂活动的设计要有多样性、层次性

本节课三个活动层次分明,安排的三个活动环环相扣,既相互独立又自然形成一个整体。活动一用数学语言诠释天平平衡的道理,使学生初步体会到方程可以描述天平所表示的数量之间的相等关系;活动二使学生体会到运用方程来表示实际问题中相等关系的一般性和优越性;活动三从不同的角度去分析问题,解决问题,进一步提升从问题到方程的认识,从而完成整个建构活动。

3.教材的使用要有创造性

对课本素材的充分利用,即每一个活动都是在课本所提供的基础上,或挖掘内涵,或利用变式,或改变题型,体现了数学课程标准中创新使用教材的要求。同时这样的设计,也使得每一个“活动”中的问题之间具有了一定的“逻辑联系”,这就使得解决问题的过程成为一个动态的、连续的过程,可以给学生留下长久的回味和对知识的深刻理解,从而有利于学生对知识的整体建构。

课堂教学是学生学习的主阵地,是学生认识数学、形成能力的场所,也是学生成长的舞台。教学设计要为学生的发展服务,以生为本,关注学生在学习过程中体验和认识,学会设计建构性活动,提升学生的认知水平和数学化水平,防止用简单的解题训练,替代数学化认识。教学应以学生为主线,关注学生的数学化认识,体现直接经验形成所经历的认知过程,变简单传授为理解而教。

从问题到方程教学反思

(三)这是第四章一元一次方程的第一节课,这节课的主要教学目标有三个方面:知识与技能上要求会分析题目中数量的相等关系、会设合适的未知数并列方程;过程与方法要求学生经历探索实际问题中的数量关系,并用方程描述的过程;情感、态度、价值观目标要求学生通过对多种实际问题中数量关系的分析,使学生初步感受方程是刻画现实世界的有效模型。

学生反馈上来的问题主要有以下两点:

1.认识方程概念时有一个误区:代数式与方程的区别误认为是代数式的值不确定而方程的值确定。分析原因是学生没有认识到代数式与方程的本质区别,方程是等式而代数式不含等号,这主要还是在教学代数式时没有特别强调代数式的形式特征。我的解决办法除了再次巩固概念以外还有举一个例子说明方程的解也可以是不确定的:比如x+y=3的解既可以是x=1,y=2也可以是x=2,y=1,不过一元一次方程的解是确定的。

2.学生的计算能力偏弱,对于简单的合并同类项比如:判断2x+1-2x+2=3是不是方程的时候学生想不到要去合并同类项,有学生想到了却算错了。分析其原因在于合并同类项本身是才学过的新知,体会和感受不深,解决方案是需要在这一章进一步强化训练。

本节课标题是“从问题到方程”,主线应当是:实际问题->无法直接解决->抽象为数学问题(用方程来描述)。在此之前我听了一节同课题的课,上课的老师给出了用方程解决问题的一般步骤:一审、二找、三设、四列、五解、六验、七答,这个想法我在备课中思考过,最终还是没有在第一节课上全部用上。在这节课当中,我强调先找等量关系,利用找到等量关系设未知数列方程,我个人认为这是一个解决问题的更一般也更实际的思路,并且也符合审找设列这四个基本步骤的要求。由于学生尚未接触到解方程,所以解、验、答三步留作4.3节补充说明。

在找相等关系中也出现一个问题,学生不愿意找相等关系而可以直接列出方程,在实际教学中我不鼓励这样的做法,但并未禁止,我认为学生不愿意找相等关系是因为题中的相等关系比较明显,不需要写出来也可以顺利地列出方程。这个我在备课中有所准备,应对的办法是拿出一些数量关系比较复杂的实际问题(书上练一练第3小题),先让学生尝试自己列方程,学生不分析相等关系往往很难列出正确的方程,进而带着他们一起分析,列出方程。这时候学生对于先分析的好处有所了解再出现一道复杂问题练手,很快就可以解决。这样做可以促进其遇到问题用“先分析”的方法去解决问题,尤其是面临一个比较困难的问题时要养成一个良好的先分析问题,再解决问题的好习惯。我想学生会用严谨的、科学的思想方法思考问题应该是老师对学生提出的最高要求。

第二篇:从问题到方程的教学反思

《从问题到方程》的教学反思

数学教学活动必须建立在学生的认知发展水平和已有的知识经验基础之上;数学学习内容应当是现实的、有意义的、富有挑战的,这些内容要有利于学生主动地进行观察、实验、猜测、验证、推理与交流等数学活动;要求关注学生学习数学的水平,更要关注他们在数学活动中所表现出来的情感与态度”本节课的教学就是围绕新课标倡导的“自主、合作、交流、探究”来设计,通过不同的活动方式来有效地呈现教学内容。

1.问题情境的创设要有鲜明的指向性

问题情境要结合课堂,有目的的选择和设计,既要关注学习内容、学习对象的引出与揭示,更需要从学生的需要出发,关注学生的认识和认同,为学生有效的自主建构提供时间和空间。选择合理的问题情境,有助于学生自主学习和自主建构,这也是新课程的价值追求。

本节课创设用“天平称量食盐的质量”这一情境引入课题比较合适,因为从天平的平衡学生可以直接获得相等关系,直观、形象、易懂。在有效地激发学生兴趣的同时,又揭示了方程是表达数量之间相等关系的天平。方程是解决实际问题的有效工具。从而引入课题:从问题到方程。

2.课堂活动的设计要有多样性、层次性

本节课三个活动层次分明,安排的三个活动环环相扣,既相互独立又自然形成一个整体。活动一用数学语言诠释天平平衡的道理,使学生初步体会到方程可以描述天平所表示的数量之间的相等关系;活动二使学生体会到运用方程来表示实际问题中相等关系的一般性和优越性;活动三从不同的角度去分析问题,解决问题,进一步提升从问题到方程的认识,从而完成整个建构活动。

3.教材的使用要有创造性

对课本素材的充分利用,即每一个活动都是在课本所提供的基础上,或挖掘内涵,或利用变式,或改变题型,体现了数学课程标准中创新使用教材的要求。同时这样的设计,也使得每一个“活动”中的问题之间具有了一定的“逻辑联系”,这就使得解决问题的过程成为一个动态的、连续的过程,可以给学生留下长久的回味和对知识的深刻理解,从而有利于学生对知识的整体建构。

课堂教学是学生学习的主阵地,是学生认识数学、形成能力的场所,也是学生成长的舞台。教学设计要为学生的发展服务,以生为本,关注学生在学习过程中体验和认识,学会设计建构性活动,提升学生的认知水平和数学化水平,防止用简单的解题训练,替代数学化认识。教学应以学生为主线,关注学生的数学化认识,体现直接经验形成所经历的认知过程,变简单传授为理解而教。

第三篇:从算式到方程教学体会与反思

《从算式到方程》课后体会和反思

金树芊

本节课我的设计意图是:

以引导学生研究、探索、发现为主线,以激发学生参与教学活动、积极思维、创造性地解决问题为目标,通过引导学生用列算式方法计算老师年龄的问题和几年后老师的年龄是学生年龄的二分之一这样两个不同难易程度的问题(问题1用列算式方法较容易,问题2用列算式方法比较难),从而引起学生认知上的矛盾冲突,使学生认识到进一步学习的必要性,激发学生的探究欲望,展示了知识的形成与应用过程.在这个过程中学生经历了观察、体验、交流等活动,体会到从算式到方程是解决实际问题时数学方法上的进步,同时让学生在经历用方程方法解决几个实际问题的过程中,加深了对方程的认识,渗透了建立方程模型的数学思想方法.在课堂上尽量为学生提供“做中学”的平台,学生在“做”的过程中,借助已有的知识和方法层层铺垫为学生主动探索并获得新知识搭建阶梯,为改进数学学习方式,突出自主、合作、探究式学习提供了必要的保证.通过本节课的教学,自己觉得成功的地方有:

1、新课标要求我们在制定每节课(或活动)的教学目标时,要特别注意培养学生的科学素养即“三个维度”----知识、能力、情感态度与价值观。现代教学要求摆脱唯知主义的框框,进入认知与情意和谐统一的轨道。因为对学生的可持续发展来讲,能力、情感态度与价值观,其适用性更广,持久性更长。许多知识都随着时间的推移容易遗忘,但是只要具备获取知识的能力,就可以通过许多渠道获取知识。本节课我觉得自己在课堂上潜移默化的渗透了三维目标。即知识上①、通过对具体实际生活问题的分析,让学生初步感受方程是刻画现实世界的有效模型。②、感受从算式方法到方程方法解决实际问题的优越性。能力上①能够找到实际问题中的相等关系,将实际问题数学化,体会方程模型在解题中的作用。②在经历把实际问题抽象成数学问题的过程中培养学生观察分析问题和解决问题的能力。情感态度价值观上①、通过对多种实际问题的分析,感受方程作为刻画现实世界有效模型的意义。②、体验在生活中学数学、用数学的价值,感受学习数学的乐趣。

2、坚持“以学为主”不动摇。“互教互学,外化共享” 课堂学习应该是有思维价值的“问题引领”之下,个体学习——同伴互助——小组合作,相互交流和研讨,质疑释疑的学习,应该体现以学为主的教学思想,能够促进“学思结合”的特点。本节课在教学活动中自己着眼于“引”,尽力激发学生求知的欲望,引导他们解决问题,学生着眼于“探”,通过不断的探索尝试发现方程的优越性,发展探索能力.3、引导学生尝试用算式方法解决问题,然后再逐步引导学生列出含未知数的式子,寻找相等关系列出方程,让学生体验思维的层次性,让学生经历不同层次的思维活动,经历合作探究新知的过程。

4.教材,历来被作为课程之本。而在新的课程理念下,教材的首要功能只是作为教与学的一种重要资源,但不是唯一的资源,它不再是完成教学活动的纲领性权威文本,而是以一种参考提示的性质出现,给学生展示多样的学习和丰富多彩的学习参考资料;同时,教师不仅是教材的使用者,而且还是教材的建设者。恰当性地使用教材.本节课我在教学中对教材进行了重组,将教材中的引入例改编为与学生生活紧密联系的问题,把教材中的例题作为习题,同时引用计算师生年龄的实际生活问题导入新知.精选密切联系生活实际的问题作为课堂拓展练习和作业,让学生体会数学在生活中的魅力,体现出 “用教材”,而不是简单地“教教材”,如此变化在教学中使学生面对熟悉的实际问题时感觉比较亲切,容易接受,更喜欢学习,从而学生交流更加热烈,更能提高学习的效率,提高教学效果.5、留给学生一定的“思维空间”。

思维力是智慧的核心,只有活动没有思维量的课堂不是好课堂。静思、自省下的顿悟可以提升思维,活动中思考和活动后的反思也可以提升思维,学生的智慧发展,不仅需要理性智慧,更需要实践智慧。学生的任何活动,必须是以“积极思维”为前提的,不论是听老师讲解,还是合作展示,学生是否“积极思维”是衡量课堂教学活动质量的重要标准。本节课在引入例、例题、练习、作业上都进行了分层,让学生不知不觉中感受思维的层次性,同时通过试一试,议一议、归纳总结、学习感悟的设置,让课堂处处有学生思考的空间。有利于学生今后的学习和生活。通过本节课的教学,自己觉得不足的地方有:

1.知识的生成过程体现的还不是十分完善。在活动中,虽然引导学生明白了方程方法优于算式方法,但是有部分学生还是被动接受用列方程解决实际问题的方法,他们并不知道为什么要这样做.2.基础知识训练相对较少.如果能够增加一些列含有未知数的代数式的问题对分散找相等关系这个难点是有帮助的,增加一些方程的判断问题,可以加深概念的理解,有利于更好的提高教学效果.3.合作学习的有效性还不够。同学相互交流的时间稍短.如果再增加适量的交流时间,能够更好的发挥学生的主体作用,这样课堂会更加生动.

第四篇:从算式到方程教学设计及反思

第二章、一元一次方程: 2.1 从算式到方程

教学目标:

1.了解什么是方程,什么是一元一次方程;

2.通过“列算式”和“列方程”解决问题的方法,感受方程是应用广泛的数学工具;

3.初步学会分析实际问题中的数量关系,利用其中的相等关系列出方程,渗透建立方程模型的思想;

4.经历从生活中发现数学和应用数学解决实际问题的过程,树立多种方法解决问题的创新意识,品尝成功的喜悦,增强用数学的意识,激发学习数学的热情。教学重点:

1.了解什么是方程、一元一次方程;

2.分析实际问题中的数量关系,利用其中的相等关系列出方程。教学难点:

分析实际问题中的数量关系,利用其中的相等关系列出方程。教学过程:

一、游戏激趣 同学们,大家小时候一定都说过儿歌吧?那么这一首儿歌你一定说过(屏幕出示):1只青蛙1张嘴,2只眼睛4条腿,扑通一声跳下水;„„。现在,我们就来“比一比,说儿歌”(屏幕出示)。要求是:以这样的速度说(师说一段),不能说错或停顿,如果停顿或者说错了就立即停止。规则是:每一大组各派一名代表,看谁说得又快又好;第一大组,谁来?其他同学可听仔细了。(进行比赛)

我们知道,这是一首永远也说不完的儿歌,你能不能想个方法用一句话把这首儿歌说完呢(屏幕出示)?(根据学生回答,说出“x只青蛙x张嘴,2x只眼睛4x条腿,x声扑通跳下水”)(屏幕出示)

这样,我们用字母x代替了具体的数,就用一句话代表了所有情况,使问题变得方便、简捷。

二、创设情境,引入课题

1、同学们都挺喜欢吃巧克力吧!假如你妈妈从县城买了42颗你最喜欢吃的巧克力,你准备怎么处理呢?

好东西要与好朋友分享,对吧?如果你和你的好朋友一人一半,你分得多少呢?我们也不能忘了孝敬长辈,假如分给奶奶的是分给你的2倍,那么你分了多少颗?

如果还要分给爷爷,且分给奶奶的不变,还是你的2倍,分给爷爷的比分给你的1.5倍少3个。此时你又分得多少颗?(让学生自己回答出两种解法——代数方法和算术方法)

2、刚才解决这个问题时,两位同学一人用了列算式的方法,一人用了列方程的方法(屏幕出示)。今天这一节课我们就共同来研究“2.1节从算式到方程”。

3、什么是方程?同学们还记得吗?请大家回忆一下。、4、刚才的问题是用列方程的方法解答的请举手。确实,方程也是解决问题的一种好方法。

(设计意图:通过巧克力问题,1、让学生认识到列方程也是解决数学问题的一个好方法,甚至有时比算术方法要简单,2、引出方程的概念)

三、呈现问题,自主探索

1、请你用算术方法或列方程解决下列问题:

每一道题你都可以选择用算术方法还是列方程解决,只要想到方法的就到黑板上来写,不需要举手,如果列算术请写在左边,如果列方程请写在右边。

注意:我们这一节课只研究根据实际问题列方程,怎样从方程中求出未知数,我们以后会深入讨论。所以,今天的问题都只要求同学们列出算式或方程,不需要求出结果。现在开始。

2、学生自由到黑板上写

3、现在请各位同学解释一下自己的方法。(学生在座位上回答,教师适当提醒学生说出等式两边的含义和列方程所依据的相等关系。针对解题格式上的问题加以提醒。)

统计每道题用算术方法和用代数方法的人数。

4、通过解决刚才的这几个问题,对于做一道题时,是选择列算式还是列方程,你有什么感想?(生答)

其实呀,方程确实是一种应用很广泛的数学工具,在现实生活中有好多好多的问题可以用方程解决。下面我们不妨来试试看。好吗?

(设计意图:通过几道例题,1、让学生初步学会分析实际问题中的数量关系,利用其中的相等关系列出方程,2、渗透建立方程模型的思想)

四、巩固练习,提高发展

1、现在我们就用列方程的方法解决问题,请拿出学案纸,完成第一大题。要求是:(屏幕出示)根据下列问题,设未知数并列出方程,同样不需要求出结果。

2、学生独立完成。

3、哪位同学来讲讲你做的第一题,说说你的解题思路和过程。

4、通过刚才的研究,我们发现利用方程解决问题要经过哪些步骤呢? 先设未知数,然后根据相等关系列出方程,这样,就将实际问题转化成了数学问题。

(设计意图:通过练习让学生继续学会分析实际问题中的数量关系,利用其中的相等关系列出方程。)

五、合作学习,开拓创新

1、我们知道,数学来源于生活,又应用于生活。今天,老师在来滨江初中的过程中,遇到了这样一个问题:

汽车匀速行驶,7:00从实验初中出发,7:30途经常青初中到达滨江初中是7:50,吴庄在常青初中、滨江初中两地之间,距常青初中6千米,与滨江初中的距离是总路程的,问实验初中到吴庄的路程有多远?

现在,就请大家运用你所掌握的知识、方法,结合线段图解决它。

请拿出学案纸,看第二大题,只需要列式,并说出理由,不需要求出结果。请大家先独立思考,然后学习小组内互相交流,互相讨论,看看谁想到的方法多。现在开始。

2、学生完成

3、学生展示不同的方法。(设计意图:改变书上的引例,把它换成现实生活中的实例,鼓励学生探索、合作、交流,有利于激发学生的学习兴趣)

六、交流收获,归纳总结 各组同学都积极开动脑筋,想出了各种方法解决问题,看来同学们今天都是“学有所获”,我们共同来对今天的学习活动作一个总结与回顾。通过本节课的学习,你有哪些收获?

七、课后作业,拓展视野

1.必做题:阅读课本第86页“阅读与思考”;完成课本第84页第1题,第2题。

2.选做题:课本第85页第10题。

教学反思:

本节课我在初一(2)班教学的时候效果较好,而到初一(1)班上这一节课,结果却不尽如人意,甚至没有能完成预定的教学任务。通过这一节课,我感受最深的一点是:要上好一节课不仅要埋头钻研教材,设计教学过程,还必须善于与学生交流,要学会从学生的角度看问题,也就是常说的要学会备学生,应从学生能否理解的角度来安排适当的教学程序,用有趣的资料激发学生的学习热情,更应主动地去了解学生对过去相应的知识的掌握程度,这样才能把握住施教的深浅及分寸,做到进行适当的引导,达到事半功倍的效果。

第五篇:从算式到方程教学设计

教学目标:

1.理解一元一次方程、方程的解等概念.2.掌握检验某个值是不是方程的解的方法.3.培养学生根据问题寻找相等关系、根据相等关系列出方程的能力.4.体验用估算方法寻求方程的解的过程,培养学生求实的态度.教学重点:寻找相等关系,列出方程.教学难点:对于复杂一点的方程,用估算的方法寻求方程的解,需要多次的尝试,也需要一定的估计能力.教学过程:

一、情境引入

问题:小雨、小思的年龄和是25.小雨年龄的2倍比小思的年龄大8岁,小雨、小思的年龄各是几岁?

如果设小雨的年龄为x岁,你能用不同的方法表示小思的年龄吗?(25-x,2x-8)

由于这两个不同的式子表示的是同一个量,因此我们又可以写成:25-x=2x-8,这样就得到了一个方程.二、自主尝试

1.尝试:让学生尝试解答课本p79的例1.2.交流:

在学生基本完成解答的基础上,请几名学生汇报所列的方程,并解释方程等号左右两边式子的含义.3.教师在学生回答的基础上作补充讲解,并强调:(1)方程等号两边表示的是同一个量;(2)左右两边表示的方法不同.4.讨论:

问题1:在第(1)题中,你还能用两种不同的方法来表示另一个量,再列出方程吗?

问题2:在第(3)题中,你还能设其它的未知数为x吗?

5.建立概念

(1)概念的建立:

在学生观察上述方程的基础上,教师进行归纳:各方程都只含有一个未知数,并且未知数的次数都是1,这样的方程叫做一元一次方程.“一元”:一个未知数;“一次”:未知数的指数是一次.判断下列方程是不是一元一次方程:

①23-x=-7;②2a-b=3;

③ y+3=6y-9;④ 0.32m-(3+0.02m)=0.7.(2)引导学生归纳:

从上面的分析过程我们可以发现,用方程的方法来解决实际问题,一般要经历哪几个步骤?在学生回答的基础上,教师用方框表示:

实际问题 一元一次方程

分析实际问题中的数量关系,利用其中的相等关系列出方程,是用数学解决实际问题的一种方法.6.估算求解

列出方程后,还必须解这个方程,求出未知数的值.对于简单的方程,我们可以采用估算的方法.(1)问题:你认为该怎样进行估算?

可以采用“尝试—发现—归纳”的方法:让学生尝试后发现,要求出答案必须用一些具体的数值代入,看方程是否成立,最后教师进行归纳.(2)在此基础上给出概念:能使方程左右两边的值相等的未知数的值,叫做方程的解.求方程的解的过程,叫做解方程.一般地,要检验某个值是不是方程的解,可以用这个值代替未知数代入方程,看方程左右两边的值是否相等.三、课时小结 对于本节课的学习,你有什么收获?

四、课堂作业

1.x=3是下列哪个方程的解()

a.3x-1-9=0 b.x=10-4x

c.x(x-2)=3 d.2x-7=12

2.方程=6的解是()

a.-3 b-

c.12 d.-12

3.已知x-5与2x-4的值互为相反数,列出关于x的方程.4.某班开展为贫困山区学校捐书活动,捐的书比平均每人捐3本多21本,比平均每人捐4本少27本,求这个班共有多少名学生?如果设这个班有x名学生,请列出关于 x的方程.第3课时 等式的性质

教学目标:

1.了解等式的两条性质.2.会用等式的性质解简单的(用等式的一条性质)一元一次方程.3.渗透“化归”的思想.教学重点:理解和应用等式的性质.教学难点:应用等式的性质把简单的一元一次方程化成“x=a”.教学过程:

一、提出问题

用估算的方法我们可以求出简单的一元一次方程的解.你能用这种方法求出下列方程的解吗?

(1)3x-5=22;(2)0.28-0.13y=0.27y+1.第(1)题要求学生给出解答,第(2)题较复杂,估算比较困难,此时教师提出:我们必须学习解一元一次方程的其他方法.二、探究新知

1.实验演示:

教师先提出实验的要求,请同学们仔细观察实验的过程,思考能否从中发现的规律,再用自己的语言叙述你发现的规律,然后按课本p81图3.1-1的方法演示.教师可以进行两次不同的实验.2.归纳:

请几名学生回答前面的问题.3.表示:

问题1:你能用文字来叙述等式的这个性质吗?

在学生回答的基础上,教师必须说明:等式两边加上的可以是同一个数,也可以是同一个式子.问题2:等式一般可以用a=b来表示.等式的性质1怎样用式子的形式来表示?

如果a=b,那么a±c=b±c.字母a、b、c可以表示具体的数,也可以表示一个式子.4.拓展:

观察课本p81图3.1-2,你又能发现什么规律?你能用实验加以验证吗?

然后让学生用两种语言表示等式的性质2.如果a=b,那么ac=bc;

如果a=b(c≠0),那么=.问题3:你能再举几个运用等式性质的例子吗?

5.应用举例:

方程是含有未知数的等式,我们可以运用等式的性质来解方程.例1:课本p82例2

分析:所谓“解方程”,就是要求出方程的解“x=?”,因此我们需要把方程转化为“x=a(a为常数)”的形式.问题 1:怎样才能把方程x+7=26转化为“x=a”的形式?

问题2:式子“-5x”表示什么?我们把其中的-5叫做这个式子的系数.你能运用等式的性质把方程-5x=20转化为“x=a”的形式吗?

例2(补充):小涵的妈妈从商店买回一条裤子,小涵问妈妈:“这条裤子需要多少钱?”妈妈说:“按标价的八折是36元.”你知道标价是多少元吗?

要求学生尝试用列方程的方法进行解答.在学生基本完成的情况下,教师给出示范.三、课堂练习

1.分别说出下列各式的系数:

3x,-7m,a,-x,.2.利用等式的性质解下列方程.(1)x-5=6;(2)0.3x=45;

(3)-y=0.6;(4)y=-2.3.七年级3班有18名男生,占全班人数的45%,求七年级3班的学生人数.四、课时小结

谈谈对“化归”思想的认识.

下载从问题到方程教学反思word格式文档
下载从问题到方程教学反思.doc
将本文档下载到自己电脑,方便修改和收藏,请勿使用迅雷等下载。
点此处下载文档

文档为doc格式


声明:本文内容由互联网用户自发贡献自行上传,本网站不拥有所有权,未作人工编辑处理,也不承担相关法律责任。如果您发现有涉嫌版权的内容,欢迎发送邮件至:645879355@qq.com 进行举报,并提供相关证据,工作人员会在5个工作日内联系你,一经查实,本站将立刻删除涉嫌侵权内容。

相关范文推荐

    4.1从问题到方程教案 苏科版

    4.1从问题到方程(1) 一、教材分析: 1.学习目标: 知识与技能:学会用方程描述问题中数量之间的相等关系. 过程与方法:通过对多种实际问题中数量关系的分析,使学生初步感受方程是刻画......

    3.1 从算式到方程 教学设计 教案

    教学准备 1. 教学目标 知识与技能: ①体验从算术方法到代数方法是一种进步; ②初步学会如何寻找问题中的相等关系,列出方程,了解方程的概念; ③理解一元一次方程、方程的解等概......

    数学f1初中数学《从问题到方程(第一课时)》教学实践报告

    知识决定命运 百度提升自我 本文为自本人珍藏版权所有仅供参考 本文为自本人珍藏版权所有仅供参考 《从问题到方程(第一课时)》教学实践报告(指导思想,设计方法等说明) 依据课程......

    《从算式到方程》教学设计(小编整理)

    《从算式到方程》教学设计 设计教师:薛俊龙 教材分析:本节课是人教版七年级数学上册第三章第一节内容,在掌握整式的基本性质以后,本章利用整式的性质和基本运算对方程求解,建立方......

    《从生物圈到细胞》教学反思

    《从生物圈到细胞》教学反思 生物组何伟伟 本节内容是必修1教材的第1节,它的学习是为后续知识做铺垫,共用2课时。第二节课所讲的知识点是生命系统的结构层次,本节内容主要是通......

    方程教学反思

    方程教学反思 方程教学反思1 一、4点说明1、单元中的地位及重难点;本节课是人教版七年级上册第三章第四节《实际问题与一元一次方程》的第二课时——销售中的盈亏问题的探究......

    《方程》教学反思

    《方程》教学反思 《方程》教学反思1 三元一次方程组的解法,是学生在具备二元一次方程组解法这一基础知识后的拓展内容。这节课是三元一次方程组的第一节新课,学生刚刚比较熟......

    《方程》教学反思

    《方程》教学反思 《方程》教学反思1 长期以来,小学教学简易方程时,方程变形的依据总是加减运算的关系或乘除运算之间的关系,这实际上是用算术的思路求未知数,解简易方程教学反......