第一篇:4.1从问题到方程教案 苏科版
4.1从问题到方程(1)
一、教材分析: 1.学习目标:
知识与技能:学会用方程描述问题中数量之间的相等关系.过程与方法:通过对多种实际问题中数量关系的分析,使学生初步感受方程是刻画现实世界的有效模型.二、教材处理: 1.情景创设:
(1)天平称球(或硬币、铅笔等),见课本P114.(2)排球联赛,某队胜多少场?见课本P114.„„
建议根据实际情况,创设较多的与学生生活相关的实际问题,以激发学生学习兴趣.2.学生活动、意义建构、数学理论:
用天平演示实验后,学生思考问题一:可以用什么方法解决这个问题?问题二:你是如何解决这个问题的?借助方程能否解,怎样解?
对排球队胜多少场的问题,学生思考问题一:猜一猜,该队胜了多少场?问题二:可以用什么方法解决这个问题?(尝试法;枚举法;列方程等)问题三:设该队胜了x场,能用方程来解吗?如何解?从而揭示课题——从问题到方程.3.数学运用:
例1(补):见教师教学参考资料“某校七年级共有216名师生参加某次活动,用一辆面包车和若干辆客车接送,已知这一辆面包车只能坐16人,还需用多少辆40座的客车?”
学生思考一:设用x辆40座的客车,则客车能接送多少人? 学生思考二:列方程,等量关系是什么?
师提供正确的解题格式“设还需用x辆40座的客车.根据题意,得40x+16=216”.变式训练一:用四辆轿车和若干辆客车接送,已知一辆轿车只能坐4人,还需用多少辆40座的客车?
变式训练二:用轿车和客车共9辆车接送,已知一辆轿车只能坐4人,还需用多少辆轿车和多少辆40座的客车?„„
用心
爱心
专心
思维拓展见课本P115试一试;也可补充题,见教师教学参考资料„„
习题处理,见课本P115练一练1,2,3.学生说清每小题的等量关系式,而后师小结.建议补充一些能借用一元一次方程来解的简单的实际问题,如行程问题、工程问题、形积问题、商品销售问题等,介绍一些名词,为后面的学习作一铺垫,但一定要控制难度.4.回顾反思:
(1)本课只是要求教师帮助学生在现实情境中,通过对多种实际问题的分析,感受方程是作为刻画现实世界模型的重要意义,建立方程思想.为第3单元作铺垫,对本章知识的学习起到提纲挈领的作用.(2)教学时,要在调动学生的积极性和激发他们的学习兴趣上下工夫.用心
爱心
专心 2
第二篇:从问题到方程教学反思
从问题到方程教学反思
(一)用方程解决生活中的问题,关键在于让学生能正确寻找问题中的数量关系式。掌握了数量关系式,问题便可迎刃而解。问题是学生在以前的学习中缺乏这样的训练,对如何分析数量关系没有一定的基础和经验,这给教学此内容带来了诸多不便,为此,我们教师在学生的数量关系的分析上还要多花时间,多帮助学生,“磨刀不误砍柴功”,为了能让学生顺利掌握新知,教者始终把数量关系的训练作为教学的主线贯穿在教学过程中。
我们教师复习了等式的性质后,出示了“看图列方程并解答”的实际问题,学生有了前面的学习基础,很容易根据图中表示的等量关系列出方程,但这并不是教者的最终目的,学生解答师生共同评价,在此老师向学生抛出了问题:“你是根据什么关系来列方程的?”此时让学生初步感受到数量关系对列方程解决问题的重要。“那么,我们怎样写出数量关系式?”师出示第2题复习题“根据条件,写出数量关系式。”学生通过这次的练习后,对解方程的已有了足够的经验储备,这时老师不失时机地出示例题,让学生探究解决问题的途径,学生便自然地想到了数量关系,那列方程便也是水到渠成的事了。
另外,在解决问题的过程中,我们教师还鼓励学生从多角度对问题展开思考和研究,并要求学生把方程解法和算术方法进行比较,寻找之间的联系和区别,组交流中明白为什么不能这样列。像学生在解答中出现144÷X=1.5这样的方程,教者应给予肯定,但也要向学生讲清这类方程用我们现在所学的等式性质解决有一定困难,只有以后进一步学习新的本领才能很容易解决这类,在这里既有对学生获得知识的肯定,也有善意的提醒和无声的激励,为学生进一步努力学习留下思考的空间和探究的天地。
从问题到方程教学反思
(二)数学教学活动必须建立在学生的认知发展水平和已有的知识经验基础之上;数学学习内容应当是现实的、有意义的、富有挑战的,这些内容要有利于学生主动地进行观察、实验、猜测、验证、推理与交流等数学活动;要求关注学生学习数学的水平,更要关注他们在数学活动中所表现出来的情感与态度”。本节课的教学就是围绕新课标倡导的“自主、合作、交流、探究”来设计,通过不同的活动方式来有效地呈现教学内容。
1.问题情境的创设要有鲜明的指向性
问题情境要结合课堂,有目的的选择和设计,既要关注学习内容、学习对象的引出与揭示,更需要从学生的需要出发,关注学生的认识和认同,为学生有效的自主建构提供时间和空间。选择合理的问题情境,有助于学生自主学习和自主建构,这也是新课程的价值追求。
本节课创设用“天平称量食盐的质量”这一情境引入课题比较合适,因为从天平的平衡学生可以直接获得相等关系,直观、形象、易懂。在有效地激发学生兴趣的同时,()又揭示了方程是表达数量之间相等关系的天平。方程是解决实际问题的有效工具。从而引入课题:从问题到方程。
2.课堂活动的设计要有多样性、层次性
本节课三个活动层次分明,安排的三个活动环环相扣,既相互独立又自然形成一个整体。活动一用数学语言诠释天平平衡的道理,使学生初步体会到方程可以描述天平所表示的数量之间的相等关系;活动二使学生体会到运用方程来表示实际问题中相等关系的一般性和优越性;活动三从不同的角度去分析问题,解决问题,进一步提升从问题到方程的认识,从而完成整个建构活动。
3.教材的使用要有创造性
对课本素材的充分利用,即每一个活动都是在课本所提供的基础上,或挖掘内涵,或利用变式,或改变题型,体现了数学课程标准中创新使用教材的要求。同时这样的设计,也使得每一个“活动”中的问题之间具有了一定的“逻辑联系”,这就使得解决问题的过程成为一个动态的、连续的过程,可以给学生留下长久的回味和对知识的深刻理解,从而有利于学生对知识的整体建构。
课堂教学是学生学习的主阵地,是学生认识数学、形成能力的场所,也是学生成长的舞台。教学设计要为学生的发展服务,以生为本,关注学生在学习过程中体验和认识,学会设计建构性活动,提升学生的认知水平和数学化水平,防止用简单的解题训练,替代数学化认识。教学应以学生为主线,关注学生的数学化认识,体现直接经验形成所经历的认知过程,变简单传授为理解而教。
从问题到方程教学反思
(三)这是第四章一元一次方程的第一节课,这节课的主要教学目标有三个方面:知识与技能上要求会分析题目中数量的相等关系、会设合适的未知数并列方程;过程与方法要求学生经历探索实际问题中的数量关系,并用方程描述的过程;情感、态度、价值观目标要求学生通过对多种实际问题中数量关系的分析,使学生初步感受方程是刻画现实世界的有效模型。
学生反馈上来的问题主要有以下两点:
1.认识方程概念时有一个误区:代数式与方程的区别误认为是代数式的值不确定而方程的值确定。分析原因是学生没有认识到代数式与方程的本质区别,方程是等式而代数式不含等号,这主要还是在教学代数式时没有特别强调代数式的形式特征。我的解决办法除了再次巩固概念以外还有举一个例子说明方程的解也可以是不确定的:比如x+y=3的解既可以是x=1,y=2也可以是x=2,y=1,不过一元一次方程的解是确定的。
2.学生的计算能力偏弱,对于简单的合并同类项比如:判断2x+1-2x+2=3是不是方程的时候学生想不到要去合并同类项,有学生想到了却算错了。分析其原因在于合并同类项本身是才学过的新知,体会和感受不深,解决方案是需要在这一章进一步强化训练。
本节课标题是“从问题到方程”,主线应当是:实际问题->无法直接解决->抽象为数学问题(用方程来描述)。在此之前我听了一节同课题的课,上课的老师给出了用方程解决问题的一般步骤:一审、二找、三设、四列、五解、六验、七答,这个想法我在备课中思考过,最终还是没有在第一节课上全部用上。在这节课当中,我强调先找等量关系,利用找到等量关系设未知数列方程,我个人认为这是一个解决问题的更一般也更实际的思路,并且也符合审找设列这四个基本步骤的要求。由于学生尚未接触到解方程,所以解、验、答三步留作4.3节补充说明。
在找相等关系中也出现一个问题,学生不愿意找相等关系而可以直接列出方程,在实际教学中我不鼓励这样的做法,但并未禁止,我认为学生不愿意找相等关系是因为题中的相等关系比较明显,不需要写出来也可以顺利地列出方程。这个我在备课中有所准备,应对的办法是拿出一些数量关系比较复杂的实际问题(书上练一练第3小题),先让学生尝试自己列方程,学生不分析相等关系往往很难列出正确的方程,进而带着他们一起分析,列出方程。这时候学生对于先分析的好处有所了解再出现一道复杂问题练手,很快就可以解决。这样做可以促进其遇到问题用“先分析”的方法去解决问题,尤其是面临一个比较困难的问题时要养成一个良好的先分析问题,再解决问题的好习惯。我想学生会用严谨的、科学的思想方法思考问题应该是老师对学生提出的最高要求。
第三篇:从问题到方程的教学反思
《从问题到方程》的教学反思
数学教学活动必须建立在学生的认知发展水平和已有的知识经验基础之上;数学学习内容应当是现实的、有意义的、富有挑战的,这些内容要有利于学生主动地进行观察、实验、猜测、验证、推理与交流等数学活动;要求关注学生学习数学的水平,更要关注他们在数学活动中所表现出来的情感与态度”本节课的教学就是围绕新课标倡导的“自主、合作、交流、探究”来设计,通过不同的活动方式来有效地呈现教学内容。
1.问题情境的创设要有鲜明的指向性
问题情境要结合课堂,有目的的选择和设计,既要关注学习内容、学习对象的引出与揭示,更需要从学生的需要出发,关注学生的认识和认同,为学生有效的自主建构提供时间和空间。选择合理的问题情境,有助于学生自主学习和自主建构,这也是新课程的价值追求。
本节课创设用“天平称量食盐的质量”这一情境引入课题比较合适,因为从天平的平衡学生可以直接获得相等关系,直观、形象、易懂。在有效地激发学生兴趣的同时,又揭示了方程是表达数量之间相等关系的天平。方程是解决实际问题的有效工具。从而引入课题:从问题到方程。
2.课堂活动的设计要有多样性、层次性
本节课三个活动层次分明,安排的三个活动环环相扣,既相互独立又自然形成一个整体。活动一用数学语言诠释天平平衡的道理,使学生初步体会到方程可以描述天平所表示的数量之间的相等关系;活动二使学生体会到运用方程来表示实际问题中相等关系的一般性和优越性;活动三从不同的角度去分析问题,解决问题,进一步提升从问题到方程的认识,从而完成整个建构活动。
3.教材的使用要有创造性
对课本素材的充分利用,即每一个活动都是在课本所提供的基础上,或挖掘内涵,或利用变式,或改变题型,体现了数学课程标准中创新使用教材的要求。同时这样的设计,也使得每一个“活动”中的问题之间具有了一定的“逻辑联系”,这就使得解决问题的过程成为一个动态的、连续的过程,可以给学生留下长久的回味和对知识的深刻理解,从而有利于学生对知识的整体建构。
课堂教学是学生学习的主阵地,是学生认识数学、形成能力的场所,也是学生成长的舞台。教学设计要为学生的发展服务,以生为本,关注学生在学习过程中体验和认识,学会设计建构性活动,提升学生的认知水平和数学化水平,防止用简单的解题训练,替代数学化认识。教学应以学生为主线,关注学生的数学化认识,体现直接经验形成所经历的认知过程,变简单传授为理解而教。
第四篇:3.1 从算式到方程 教学设计 教案
教学准备
1.教学目标
知识与技能:
①体验从算术方法到代数方法是一种进步;
②初步学会如何寻找问题中的相等关系,列出方程,了解方程的概念; ③理解一元一次方程、方程的解等概念; ④掌握检验某个值是不是方程的解的方法。过程与方法:
①通过处理实际问题,让学生体验从算术方法到代数方法是一种进步。②培养学生根据问题寻找等量关系,根据相等关系列出方程。情感态度与价值观 :
①培养学生热爱数学,热爱生活的乐观人生态度。
②体验用估算方法寻求方程的解的过程,培养学生求实的态度。
2.教学重点/难点
教学重点
①了解一元一次方程及相关概念。②寻找相等关系,列出方程。教学难点
①寻找问题中的相等关系,列出方程。
②对于复杂一点的方程,用估算的方法寻求方程的解,需要多次的尝试,也需要一定的估计能力。
3.教学用具 4.标签
教学过程 问题引入及方程概念 问题一:汽车匀速行驶途经王家庄、青山、秀水三地的时间如表所示,翠湖在青山、秀水两地之间,距青山50千米,距秀水70千米.王家庄到翠湖的路程有多远?怎样用算术方法解决这个问题?怎样用方程的方法解决这个问题?
【教师说明】总结学生的回答,得出算术方法为:,如果用方程解答,设王家庄到翠湖的路程为x千米,用含有x的式子表示下列路程,王家庄距青山 x-50 千米,王家庄距秀水 x+70 千米. 根据时间表得知,从王家庄到青山行车 3 小时,王家庄到秀水行车 5 小时.而整个行驶过程中车是匀速的,所以可列方程为:。说明什么是方程。
=【板书】3.1.1一元一次方程 含有未知数的等式叫做方程。
【问题】从题目中可以得到什么等量关系?根据等量关系列出怎样的方程? 【教师说明】
=
等式中,的意义是从王家庄到青山的车速;的意义是从王家庄到秀水的车速。汽车是匀速前进的,所以两段路程的速度相等,从而得到方程。
2如何用方程解决问题
1.对于上面的问题,你还能列出其他方程吗?如果能,你依据的是哪个相等关系? 2.想一想列方程的过程?
【教师说明】首先要设字母表示数------->然后找出问题中的等量关系------>最后写出含有未知数的等式(方程)3 一元一次方程
练习1 根据下列问题,设未知数并列方程:
(1)一台计算机已使用1700小时,预计每月再使用150小时,经过多少月这台计算机使用时间达到规定的检修时间2450小时?
(2)用一根长600px的铁丝围成一个长方形,使它的长是宽的1.5倍,长方形的长、宽各应是多少?
(3)某校女学生占全体学生数的52%,比男生多80人,这个学校有多少学生? 【教师说明】观察上述所得方程(1)1700+150x=2450(2)2(x+1.5x)=24(3)0.52x-(1-0.52)x=80 像这样只含有一个未知数(元)x,未知数x的次数是1(次),这样的方程叫做一元一次方程(linear equation with one unknown)。列方程解决问题的方法是分析实际问题中的数量关系,利用其中的相等关系列出方程,使用数学解决实际问题的一种方法。
4解方程情景引入
练习2 天平左盘中放置两个小球和一个1克的砝码,右盘中放置一个5克的砝码,天平处于平衡。你能列出恰当的方程吗?
【教师说明】设一个小球的质量为x,可列方程为:2x+1=5 5 解方程与方程的解
分别把0、1、2、3、4代入2x-1=5,哪一个能使方程成立: 【教师说明】
x=0时,方程的左边=-1,右边=5.x=1时,方程的左边=1,右边=5.x=2时,方程的左边=3,右边=5.x=3时,方程的左边=5,右边=5.x=4时,方程的左边=7,右边=5.当x=3时,方程左右两边相等,所以x=3是方程的解。能使方程左右两边相等的未知数的值叫做方程的解。例如:2x-1=5的解是x=3。求方程的解的过程叫做解方程。巩固练习:
练习3 判断对错
⑴ x=2是方程x-10=4x的解。(错)⑵ x=3和x=-3都是方程 x2-9=0 的解。(对)⑶ 方程12﹙x-3﹚-1=2x+3的解是x=3。(错)【教师说明】检验一个数是不是方程的解的步骤:(1)将数值代入方程左边进行计算,(2)将数值代入方程右边进行计算,(3)比较左右两边的值,若左边=右边,则是方程的解,反之,则不是。
课堂小结
1.含有未知数的等式叫做方程。
2.只含有一个未知数(元)x,未知数x的次数是1(次),这样的方程叫做一元一次方程。
3.解决实际问题中,要根据题意找到等量关系,合理设定未知数,列出方程。4.能使方程左右两边相等的未知数的值叫做方程的解。5.求方程的解的过程叫做解方程。
6.检验一个数是不是方程的解的关键是比较左右两边的值,若左边=右边,则是方程的解,反之,则不是。
课后习题
1.填空(1)某数x的1/2与3的差是7,列方程为:_(2)某数y的25%与15的和等于它的45%,列方程为
______
(3)爸爸今年37岁,是儿子年龄的3倍还多1岁,设儿子为x岁,列方程为: ______ 2.解答
(1)X=1000和X=2000中哪一个是方程0.52x-(1-0.52)x=80的解?
解:X=1000时,左边=40,右边=80,左边≠右边,所以x=1000不是方程的解。X=2000时,左边=80,右边=80,左边=右边,所以x=2000是方程的解。3.方程 =-6 的解是(D)
C.12 D.-12 A.-3 B.-4.某班开展为贫困山区学校捐书活动,捐的书比平均每人捐3本多21本,比平均每人捐4本少27本,求这个班有多少名学生?如果设这个班有x名学生,请列出关于x的方程。
3x+21=4x-27 板书
3.1从算式到方程 3.1.1一元一次方程 方程:含有未知数的等式
一元一次方程:只含有一个未知数(元)x,未知数x的次数是1(次)方程的解:能使方程左右两边相等的未知数的值 解方程:求方程的解的过程 检验某个值是不是方程的解的方法(提示:板书可以适当增加演算过程)
第五篇:从算式到方程教学设计
教学目标:
1.理解一元一次方程、方程的解等概念.2.掌握检验某个值是不是方程的解的方法.3.培养学生根据问题寻找相等关系、根据相等关系列出方程的能力.4.体验用估算方法寻求方程的解的过程,培养学生求实的态度.教学重点:寻找相等关系,列出方程.教学难点:对于复杂一点的方程,用估算的方法寻求方程的解,需要多次的尝试,也需要一定的估计能力.教学过程:
一、情境引入
问题:小雨、小思的年龄和是25.小雨年龄的2倍比小思的年龄大8岁,小雨、小思的年龄各是几岁?
如果设小雨的年龄为x岁,你能用不同的方法表示小思的年龄吗?(25-x,2x-8)
由于这两个不同的式子表示的是同一个量,因此我们又可以写成:25-x=2x-8,这样就得到了一个方程.二、自主尝试
1.尝试:让学生尝试解答课本p79的例1.2.交流:
在学生基本完成解答的基础上,请几名学生汇报所列的方程,并解释方程等号左右两边式子的含义.3.教师在学生回答的基础上作补充讲解,并强调:(1)方程等号两边表示的是同一个量;(2)左右两边表示的方法不同.4.讨论:
问题1:在第(1)题中,你还能用两种不同的方法来表示另一个量,再列出方程吗?
问题2:在第(3)题中,你还能设其它的未知数为x吗?
5.建立概念
(1)概念的建立:
在学生观察上述方程的基础上,教师进行归纳:各方程都只含有一个未知数,并且未知数的次数都是1,这样的方程叫做一元一次方程.“一元”:一个未知数;“一次”:未知数的指数是一次.判断下列方程是不是一元一次方程:
①23-x=-7;②2a-b=3;
③ y+3=6y-9;④ 0.32m-(3+0.02m)=0.7.(2)引导学生归纳:
从上面的分析过程我们可以发现,用方程的方法来解决实际问题,一般要经历哪几个步骤?在学生回答的基础上,教师用方框表示:
实际问题 一元一次方程
分析实际问题中的数量关系,利用其中的相等关系列出方程,是用数学解决实际问题的一种方法.6.估算求解
列出方程后,还必须解这个方程,求出未知数的值.对于简单的方程,我们可以采用估算的方法.(1)问题:你认为该怎样进行估算?
可以采用“尝试—发现—归纳”的方法:让学生尝试后发现,要求出答案必须用一些具体的数值代入,看方程是否成立,最后教师进行归纳.(2)在此基础上给出概念:能使方程左右两边的值相等的未知数的值,叫做方程的解.求方程的解的过程,叫做解方程.一般地,要检验某个值是不是方程的解,可以用这个值代替未知数代入方程,看方程左右两边的值是否相等.三、课时小结 对于本节课的学习,你有什么收获?
四、课堂作业
1.x=3是下列哪个方程的解()
a.3x-1-9=0 b.x=10-4x
c.x(x-2)=3 d.2x-7=12
2.方程=6的解是()
a.-3 b-
c.12 d.-12
3.已知x-5与2x-4的值互为相反数,列出关于x的方程.4.某班开展为贫困山区学校捐书活动,捐的书比平均每人捐3本多21本,比平均每人捐4本少27本,求这个班共有多少名学生?如果设这个班有x名学生,请列出关于 x的方程.第3课时 等式的性质
教学目标:
1.了解等式的两条性质.2.会用等式的性质解简单的(用等式的一条性质)一元一次方程.3.渗透“化归”的思想.教学重点:理解和应用等式的性质.教学难点:应用等式的性质把简单的一元一次方程化成“x=a”.教学过程:
一、提出问题
用估算的方法我们可以求出简单的一元一次方程的解.你能用这种方法求出下列方程的解吗?
(1)3x-5=22;(2)0.28-0.13y=0.27y+1.第(1)题要求学生给出解答,第(2)题较复杂,估算比较困难,此时教师提出:我们必须学习解一元一次方程的其他方法.二、探究新知
1.实验演示:
教师先提出实验的要求,请同学们仔细观察实验的过程,思考能否从中发现的规律,再用自己的语言叙述你发现的规律,然后按课本p81图3.1-1的方法演示.教师可以进行两次不同的实验.2.归纳:
请几名学生回答前面的问题.3.表示:
问题1:你能用文字来叙述等式的这个性质吗?
在学生回答的基础上,教师必须说明:等式两边加上的可以是同一个数,也可以是同一个式子.问题2:等式一般可以用a=b来表示.等式的性质1怎样用式子的形式来表示?
如果a=b,那么a±c=b±c.字母a、b、c可以表示具体的数,也可以表示一个式子.4.拓展:
观察课本p81图3.1-2,你又能发现什么规律?你能用实验加以验证吗?
然后让学生用两种语言表示等式的性质2.如果a=b,那么ac=bc;
如果a=b(c≠0),那么=.问题3:你能再举几个运用等式性质的例子吗?
5.应用举例:
方程是含有未知数的等式,我们可以运用等式的性质来解方程.例1:课本p82例2
分析:所谓“解方程”,就是要求出方程的解“x=?”,因此我们需要把方程转化为“x=a(a为常数)”的形式.问题 1:怎样才能把方程x+7=26转化为“x=a”的形式?
问题2:式子“-5x”表示什么?我们把其中的-5叫做这个式子的系数.你能运用等式的性质把方程-5x=20转化为“x=a”的形式吗?
例2(补充):小涵的妈妈从商店买回一条裤子,小涵问妈妈:“这条裤子需要多少钱?”妈妈说:“按标价的八折是36元.”你知道标价是多少元吗?
要求学生尝试用列方程的方法进行解答.在学生基本完成的情况下,教师给出示范.三、课堂练习
1.分别说出下列各式的系数:
3x,-7m,a,-x,.2.利用等式的性质解下列方程.(1)x-5=6;(2)0.3x=45;
(3)-y=0.6;(4)y=-2.3.七年级3班有18名男生,占全班人数的45%,求七年级3班的学生人数.四、课时小结
谈谈对“化归”思想的认识.