第一篇:《费马大定理》读后感:一个浪漫严谨的世界
一个浪漫严谨的世界
——《费马大定理》读后感
罗雪
花了4天时间认真咀嚼了《费马大定理》,去挑战一个困惑了世间智者358年的顶尖数学谜题,这是我一个数学白痴以前想都不敢想的事情。但是,人生如白驹过隙,把握当下,勇敢向那些陌生领域挑战和进发,从而延展生命的深度和广度,尽管有些不自量力,不过应该不失为一种对抗虚无命运的尝试?下面简单分享一个数学门外汉的几点感受吧,不妥之处望见谅。
一、数学是严谨浪漫的世界
《费马大定理》这本书是以费马大定理为核心,追溯到它的起源、诞生与发展,描述了在漫长岁月中为寻求它的证明发生在数学界中发生的可歌可泣的动人故事。
什么是费马大定理呢?这得追溯到古希腊的毕达哥拉斯以及毕达哥拉斯定理(类似于勾股定理:直角三角形的两条直角边的平方和等于斜边的平方,即x?+y?=z?),而费马大定理是“业余数学家之王”费马在法官全职工作之余突发奇想提出来的:将上述次幂数改为3及以上,则不能解出整数解,即方程xn+yn=zn在n≥3时没有非零整数解。这个初中生也能看懂的问题,它的证明竟然让358年中一代代数学家前仆后继,却都壮志未酬;满怀热情,却都铩羽而归:导致人们不禁怀疑费马大定理的正确性,怀疑费马的那句千古名句:“我有一个对这个命题的十分美妙的证明,这里空白太小,写不下。”
从小我就深知自己数学思维先天不足,后天又没能得到有效训练,因此求学期间深受数学的困扰,高一分科时果断选了文科,大学和工作后也为不用再碰数学而欢呼雀跃。以前一直在困惑一个问题:数学到底有什么用呢?那些数学公式、解题技巧除了成为重点中学、大学的敲门砖外,对不直接从事数学工作的我来说实在感受不到它的具体用处,当然不能否定学习数学过程中帮助我们塑造了一种系统化、理性化、条理化的思维方式以及教给我们足以应付日常生活中简单运算的能力。以我浅薄的数学认知,我至今还是认为很多数学家现在做的工作是无用的,尤其是纯粹数学,但这也是我不禁困惑和敬佩的原因。
读了《费马大定理》这本书,我才知道,原来数学是如此严谨,却又如此浪漫,这是一个兼具理性与感性的国度。
数学应该是全世界最严格的一种科学。证明是数学的核心,也是它区别于别的科学之处,别的科学有各种假设,它们为实验证据所验证直到它们被推翻,被新的假设替代。如物理学上牛顿的力学定律,即使不说他被推翻但我们能够发现它使用的局限;再如对物质基本粒子的探索,由原子到质子电子中子,再到反物质、夸克,最后到现在被称作弦的粒子……可是数学不一样,在数学中,绝对的证明是其目标,如果我们从一个正确的陈述或者公理开始,然后严谨地按照逻辑,一步一步去推论,得出最后结果的时候,这个东西就定下来了,就再也推翻不了了。毕达哥拉斯定理,后人能够推翻吗?不可能,任你有多大的反对的力量跟意志,你都没办法毁灭数学所取得的成就。数学家所做的就是用他们的心灵去思考那些数学的柏拉图理念,追求天衣无缝的逻辑推理。
数学因它的严谨让世间绝大多数凡人都望而却步,只可远观而不可亵玩,但它又是如此有魅力,吸引一代代智力卓绝的精英,把自己的生命献祭上去,这是一件多么浪漫的事情!尤其是他们干这些外人看来完全没用的事的时候,这么投入,这么专注,哪怕生命威胁就在眼前,都浑然不觉。()比如说在罗马军队入侵的时候,古希腊数学家阿基米德浑然不觉,还在沙地上做算术,一个罗马士兵喊他他不理,其实很可能是他太专注于沙地上他写的那些算式了。于是罗马士兵很生气,一剑刺进了他的胸膛,就结束了这一代大数学家的性命。可以说,整个数学史,就是一曲波澜壮阔的浪漫史诗。
严谨而浪漫的数学是人类无法抗拒的智力游戏,就像造物主在实物世界之外留下的线索,看不见却实实在在。
二、兴趣和执着点亮人的生命
三百多年来,费马大定理见证着一代代数学精英的雄心壮志和折戟,终于在1993年英国剑桥大学的一个演讲上,这本书的男主角安德鲁·怀尔斯实现了自己童年时的梦想——证明了费马大定理,虽然后来因为一个小缺陷推迟了证明的最终公布,但这并不影响怀尔斯解决了费马大定理这一卓越成就。
10岁那年,怀尔斯在图书馆遇见了这道百年谜题,自此与数学结下了不解之缘,成为职业数学家后,开始研究看似与费马大定理完全没关系的椭圆曲线,后来他通过学习伽罗尔的“群论”和谷山、志村对于椭圆曲线和模型式一一对应的猜想(千万不要问我椭圆曲线、群论、模型式是什么?我也不懂),突然眼前一亮:原来困扰人类几百年的费马大定理,是有可能通过模型式这个数学的独立领域,作为桥梁过渡到他自己熟悉椭圆曲线的领域,从而反过来间接地证明费马大定理。紧接着就是长达7年一个人孤独地躲进自家小楼,从此目不窥园,潜心研究费马大定理的证明,除了他的妻子外没有人知道他在研究什么。尽管这一证明过程我无法理解,但这肯定是极其漫长与艰难的。
后来,他回想这一段研究时光的时候,怀尔斯打了个比方,他说:解决费马大定理就像穿过一个一个的黑屋子,首先我来到一个黑屋子,什么都看不见,我先得去摸,摸这个屋子里的所有家具,所有摆设,等摸得烂熟,对这个房间的每一个纹理都清楚的时候,我才能找到它的电灯开关,我打开电灯开关,才能知道下一个屋子的门在哪儿,打开那个门,然后进入下一个屋子,然后又开始这个过程,而且不知道什么时候是一个头。
当然,最后这些负担都变成了礼物,这些受的苦照亮了前行的路。这是少年时代的梦想和7年潜心努力的终极,怀尔斯终于向世界证明了他的才能。正如马克思所说:“在科学的道路上没有平坦的大路可走,只有在崎岖小路的攀登上不畏劳苦的人,才有希望到达光辉的顶点。”
其实,人类知识领域智力领域的任何丰碑,每一块砖,每一块瓦,都是必须由两个基本元素——兴趣和执着堆积出来的,兴趣开启了事业的大门,而执着成就了最后的成功,两者共同点亮了其中的每一块砖,每一块瓦,每一个人的生命。
当然,在费马大定理的动人故事中,怀尔斯不是唯一的主角,无数数学家为之奋斗过,他们甘为基石,他们也是英雄:失明却多产的欧拉,罕见的女数学家热尔曼,众所周知的数学天才高斯,充满悲壮色彩的伽罗尔,日本数学家谷山和志村……他们高瞻远瞩,耐住寂寞,矢志不渝,执着于追求科学真理,哪怕付出自己的全部也在所不惜。
三、生活赋予学术源泉和灵魂
生活与学术是什么关系呢?我之前一篇随感里面提到的:两者不是完全对立的,而是相互交融、相互促进的。怀尔斯用自己的学术人生告诉我们:生活并不是学术的绊脚石,()相反,生活不仅赋予了学术源泉,也为学术注入了灵魂,提供了更多的支持。
怀尔斯在长达7年秘密、孤独的求证之旅中,也曾经压力大到想放弃。当压力变得很大时,他会转向他的家庭,他放松的唯一方式就是和“和孩子们在一起,年幼的他们对费马好唔想去,他们只需要听故事,他们不想让你做任何别的事情”.同时,他对妻子许诺:要把这份研究成果作为给她的生日礼物,尽管迟了2年,但他最后还是成功地将这份数学史上最伟大的证明敬献给了他的妻子。
除了家庭给予了怀尔斯精神动力之外,他的“朋友圈”也在他最终证明关键一步雪中送炭。当1993年那场演讲后,审核证明原稿时发现的一个小错误让怀尔斯压力大到几度崩溃,想要放弃。但他此时不再关起门来自己搞,而是找到了在求证工具领域有很深造诣的约翰泰勒来合作探究,彼此分享思想,弥补那一个小缺陷,最终实现了童年的梦想,完成了数学史上最伟大的证明。
学术如果还待在书斋,不能融入火热的社会和沸腾的生活,这样的学术必死无疑。当然,孤芳自赏式钻研学术,没有生活的气息,可能人生的幸福感会降低很多,会留下些许遗憾。
最后,借用费马的那句俏皮话结束我一个文科生对于这本数学著作的分享吧,我有很多未竟之言,但这里空白太小,写不下。
第二篇:费马大定理的启示
“费马大定理”的启示
“设想你进入大厦的第一间房子,里面很黑,一片漆黑,你在家具之间跌跌撞撞,但是你搞清楚了每一件家具所在的位置,最后你经过6个月或者再长些的时间,你找到了开关,拉开了灯,突然整个房间充满光明,你能确切地明白你身在何处。然后,你又进入下一个房间,又在黑暗中摸索了6个月。因此每一次这样的突破,尽管有的时候只是一瞬间的事,有时候是一两天的时间,但它们实际上是之前许多个月在黑暗中跌跌撞撞的最终结果,没有前面的这一切它们是不可能出现的”——1996年3月,维尔斯因证明费马大定理获得沃尔夫奖
作为一个数学老师,数学是大多数学生讨厌的学科,而我们教师更多的只是告诉、教会学生就这么用,就这么做。怎么才能让学生不那么讨厌数学呢?我想应该从尊重数学开始。
当我第二次翻看《明朝那些事》时,我不禁又一次感慨:历史原来可以这样写?历史就应该这样写。本着这样的思维,在严谨的数学叙事中加上事件节点人物的历史,可能更有意思一些,最起码,让学生喜欢读,读的有趣味。从而使学生明白伟大的数学家是怎么影响整个世界的。尊重应该从这里开始。
这个念头一直萦绕脑海,直到我无意中打开选修3-1,才鼓舞起余勇,翻找资料,以费马大定理为主线说说几千年来数学家们前仆后继的历史。
222xyz
首先,我们来看一个公式:。
有人说:“这不就是勾股定理吗?直角三角形的两条直角边的平方等于斜边的平方。谁不知道?”
没错我们中国人知道勾股定理十分久远,公元前1100年,西周开国时期,周公与商高讨论测量时,商高就提到过“勾广三,股修四。径隅五”。这段话被记载于《周脾算经》中。而西方记载勾股定理的是哥伦比亚大学图书馆的泥版“普林顿322”大约公元前1900~公元前1600年的事。
但是中国人说的数学严格的说,应该叫算学。我国古代就有丰富的数学典籍注1,但是你看这些书籍的章节结构,就不难看出它鲜明的特点——实用。比如:《九章》中的方田、粟米、差分、少广、商功、均输等,就字面意思也能看出它就是为了解决实际问题。
我们中国就是一个实用的民族,就比如勾股定理,你拿去用就可以,不用计较为什么这样,这也就是为什么我们的典籍中很少有公理和定律的原因了。所以在世界主流数学史中,我国数学家是没有太多地位的,说起这个就不得不说有一个让国人气愤的事情,1972年,美国数学史家莫里斯·克莱因的《古今数学思想》注2序言里有这么一段话:“为了不让本书内容漫无目的的铺张,所以有些民族的数学我们就自动忽略了,如:日本、玛雅、中国。”他还说:“他们的数学对世界人类的主流思想是没有什么贡献的。”很让人不服气的说法,但是你回到数学历史的主流,不难发现我国的算学,跟世界主流数学的目的就不一样。
言归正传,我们回到古希腊。说道古希腊,就不得不提一个人——毕达哥拉斯。我们引以为豪的勾股定理,在初中的课本中也是用的毕达哥拉斯定理来引入的。毕达哥拉斯定理和勾股定理的区别就在于他们要证明这个结论。从这里你就可以发现东西方数学的区别,西方数学史这种死心眼般的研究精神,完全就是一种剔除了理性的宗教迷狂,是一种不出于实用的目的完全的智力上的比拼竞赛。就是佛教里的“贪嗔痴”!比如那些著名的数学问题:“四色问题”,不就是四种颜色就可以区分出复杂地图的行政区域么,放在我国,知道了就可以,但是在西方就一定要搞清楚为什么?还有“哥德堡七桥问题”,就是不重复的走过七座桥,对中国人来说我们讲究的是说走就走的旅行,神经病才研究这个,有这功夫,走两遍不就观光了吗?这就是实用主义和智力竞赛之间的区别。从一开始就分道扬镳了。
毕达哥拉斯就是前文那个公式的发现者。毕达哥拉斯(约公元前580~约前500)古希腊数学家、哲学家。他的信徒们组成了一个唯心主义学派——毕达哥拉斯学派。这个政治和宗教团体旨在用“数”去描述世间一切,他们从数学中感受到了整个世间那种美妙,他们认为数就是世界的规律。这也难怪,没有手机食物单调,娱乐空乏的年代,人们尤其是那些高智商圣贤智力充裕的人们找到了这个世界上让他兴奋的事情——从事“数”的研究,他的门徒们发现原来世间一切,上帝就是通过“数”来统治世界的。比如:音乐,和音好听,是因为一根弦是另一根弦的整数倍。凡此种种,这不就是天神的暗示么,我们就应该在数中生活啊,我们的一切包括生命就应该奉献、祭祀给这些数。公正的说这个学派早期它推动了数学研究发扬了这种精神,但后期也阻碍了数学的发展,著名的数学史上“第一次数学危机”就是又这个学派成员西帕索斯发现了2,从而颠覆了毕达哥拉斯学派的数学信仰,因为毕达哥拉斯终生的信仰就是,世间一切都是由整数构成,小数是两个整数的比,而西帕索斯发现一个问题:当x=y=1时,z等于什么?现在的初中生都知道是2。,而根据那个时候的数系,这推翻了毕达哥拉斯的世界理论依据。因为根号2是一个无限不循环小数,无法被两个整数表示。我们来证明根号2永远不能化成分数即可。这里又要用到反证法(高中数学课本有证明过程我复制了一下),我们先假设√2=a/b(a,b都是正整数不用说了吧)。现在,我们平方一次,a^2/b^2=2,于是,a^2=2*(b^2),这样一看,a^2就是偶数了,那么,a必然也是偶数。那就设a=2m吧,(2m)^2=2*(b^2),4*(m^2)=2*(b^2),b^2=2*(m^2),再一看,b也成偶数了,好吧,设为2n。现在问题来了,根号2不仅可以化成a/b,还可以化成m/n,而且,后者更简洁。按照同样的方法,可以一直化简下去,而分数必然存在最简形式,不可能无限化简,于是得出矛盾。所以,根号2永远不能化成分数。毕达哥拉斯最后没有办法解决,就像坚持日心说的布鲁诺一样西帕索斯本人也就被同门扔到河里杀害。此后30年数系才进一步扩充到了实数领域。
考虑到希腊文明的数学挺牛的,而这个毕达哥拉斯还不够牛,只是名气比较大而已,所以,我们得让古希腊人多出场几位。接下来,我可以推荐两个与费马大定理有关的重量级人物。
一个是欧几里得,欧几里得最大的贡献体现在几何学,最牛的著作叫《几何原本》。不过,他也有很多数论成就,所以,在费马大定理的故事中,他的名字会反复出现,根号2是无理数是他第一个证的,有无穷多个素数是他第一个证的,算术基本定理也是他第一个证的。罗胖不是提到“比如说我们学平面几何都知道,由那么简单的几个公理,居然可以推出如此缤纷的一个定理的世界”,第一个系统性(这个系统太牛逼了)地干这个事情的人就是欧几里得。至于那么简单的公理到底是几个?这个是有数字的,23个定义,5条公理,5条公设,这是所有推导的基础。当然,《几何原本》也有一些不严谨的地方,却仍然笑傲江湖两千年,直到希尔伯特写出《几何基础》,才算彻底完善了欧几里得几何。不过,欧几里得还是给后人挖了一个坑,就是他的第五公设比较啰嗦,怎么看都不像一个公理而像一个定理。于是,无所牛人前赴后继去证明这个东西,却发现,所有宣称证明了第五公设的人,其证明都陷入了循环论证的陷阱中,换句话说,证来证去只是它自己不同的变形而已。这个第五公设真正的问题在哪里呢?很简单,欧几里得几何叫平面几何,这个第五公设只在平面几何中成立,而别的公理或公设却都是具有普遍适用性的。修改一下第五公设,别的公理不变,非欧几何就诞生了。事实上,非欧几何遇到的最大障碍不是数学家解决这个问题的水平不够,而是来自传统观念的压力。高斯早就研究过非欧几何,但迟迟不敢发表,因为担心遭受各种攻击。还有一个波尔约,研究非欧几何成就斐然,可惜被高斯一盆凉水浇灭了激情。再一个就是罗巴切夫斯基,名气最大的非欧几何创始人,生前遭受各种打击,仍不屈不挠传播罗氏几何,死后多年才被承认,被赞誉为“几何学中的哥白尼”。这三个人不约而同地研究了非欧几何中的双曲几何情形,却留下一种椭圆几何情形,让黎曼捡了个漏。不过,黎曼搞定这种情形可不是凭运气,他从思路上就领先其他人了,其他人都是从公理系统出发研究,黎曼手握微分几何之武器直接玩起了曲率,不仅补充了椭圆几何的情形,还一举统一了欧氏平面几何、罗氏双曲几何和他的椭圆几何。这种牛逼人的牛逼事儿讲起来还是蛮有意思的。
好啦,下一个古希腊人,丢番图。欧几里得写了本《几何原本》,成了几何学的一代宗师,丢番图写了本《算术》,也是数论中的经典之作,他本人也荣登“代数学之父”的宝座。他提出的丢番图方程让无数后人为之奋斗,至今仍有大量问题未能解决。《算术》是本好书,费马有空就抱着读,费马大定理就是读《算术》的心得。
按照时间顺序,下一个该费马出场了。费马这辈子活得可是够值了。官场得意、婚姻美满、家庭幸福、子女争气,更牛逼的是,一个业余爱好让他名垂青史。读读别的数学家的故事,贫困、疾病、家庭不幸,还是来自同行的打击,各种问题层出不穷,简直就是“天才多磨难”,而费马的小日子,滋润得让人嫉妒。而且,费马这人不像同行那么玩命死磕,不就一业余爱好嘛,玩票心态就好了。结果,很多灵感嗖嗖地冒出来,挡都挡不住。后来人们一总结,这家伙比很多职业数学家成就还大:解析几何的发明者之一,对于微积分诞生的贡献仅次于牛顿和莱布尼茨,概率论的主要创始人之一,以及17世纪数论界第一人。不过,费马还是干了一件不厚道的事儿,就是在费马大定理的问题上,他宣称自己有了一个美妙的证法,就是不说,害得数学家们为之死磕了三百多年。
接下来,该欧拉上场了。欧拉是有史以来最多产的数学家,虽然眼睛不好使,但心算能力却是一流,简直是一台人体计算机。成就太多太多,就只好省略了。我们知道几件事就够了。欧拉无比牛逼,却仅仅证明了费马大定理n=3的情形,说明费马大定理真的很难。此外,罗胖提到哥德堡七桥问题,想说明西方人这种琢磨精神和中国人不同,其实,这个论据不充分,论点也不对,中国人也搞出了很多孤立的趣题和难题,这一点,东西方人是相似的。区别在哪儿呢?区别在于西方有欧拉这种数学家,他不是搞明白一个孤立问题就完事儿啦,而是由此出发,上升到理论高度,圆满地解决一类问题,更牛逼的是,一群数学家马上跟进,搞出更多东西,直到形成系统仍在推进,这就是我一直强调的数理系统的可怕之处。其实,这个哥德堡七桥问题本质上就是一笔画问题,中国人恰好也研究过,但中国人只是把它当成一种游戏,从来没想过要搞出一个数学分支。而到了西方人那里,“七桥问题”的研究是图论研究的开端,同时也为拓扑学的起源。顺便说下,“四色问题”和“七桥问题”是同类问题,属于图论,也可以看成拓扑学问题。别看“七桥问题”被欧拉轻松搞定,这个“四色问题”看似简单,却是一道难度绝不亚于费马大定理的难题。爱因斯坦的老师闵可夫斯基就曾经在学生面前夸下海口要证明之,结果失败只好放弃。最后,这个证明是依靠计算机完成的,虽然计算机的证明无法核对,这让很多数学家很不爽,但是,这提供了证明问题的新思路,也标志着计算机将在数学世界中发挥更大的作用,你能说,这种问题的研究没有意义吗?更何况,在证明的过程中,虽然多次失败,数学家们得到的东西可比问题本身多得多,这正是证明难题的意义,它会催生出很多宝贝,从而进一步完善数理体系。
下一个,该讲高斯了。高斯的贡献就不说了,这种神级人物,有多大贡献都是正常的,我讲讲他的两个毛病吧。第一个,就是研究问题时,只发表成熟而完善的证明,却不让别人捕捉到他的证明思路的蛛丝马迹。这非常不好,他的思路会给别人很多启发,反而是证明步骤,可利用价值低多了。另一个就是,高斯本人很牛逼,可是,却没干过什么提携后生的事情,反而不利于别人成长。也不是说他故意打击人家,就是别人觉得他牛逼,想请他指点一二时,他要么压根儿不理睬,要么冷冰冰的。前文提到的阿贝尔,其成果寄给高斯看,让高斯给扔了,伽罗华临死前写的东西也没忘给高斯寄一份儿,估计高斯也没看,波尔约(这次可是他朋友的儿子)研究非欧几何的成果,想得到他的支持,他说自己早就研究过了,波尔约于是心灰意冷。当然,高斯虽然有缺点,但他由于过于牛逼,世人赞扬崇拜唯恐不及,缺点也就没人计较了。
伽罗华肯定也是要谈的,但是,前面讲的伽罗华的故事太多了,这里不再赘述。就说一点,有人认为伽罗华是一个好色之徒,这是不公平的。一来,他是法国人,他只是做了一个正常法国男人会做的事情;二来,他也没有到处沾花惹草;三来,这件事本身就可能是一个圈套,作为一个激进的共和派青年,政府早就想把他弄死。说到底,伽罗华是一个数学天才,但运气不好,他之所以政治上这么激进,也是数学方面处处碰壁郁闷无处发泄造成的。当然了,伽罗华的悲剧也有自身缺点,就是写东西太简洁,年轻人容易浮躁,天才更是年少轻狂,思想本来就已经非常超前了,又不表述清楚,那些前辈们怎么会认真看呢?
前面提到的这些人都是大神,年轻时就很牛逼,然后牛逼了一辈子(虽然有的人一辈子也很短)。事实上,数学这个东西,最牛逼的思想往往是年轻人创立的,年长者只能为数学大厦添个砖加个瓦,却很少再有开山之举。一个数学家,如果到三十岁还没搞出什么成就,这辈子基本上就这样了。所以,数学界的最高奖菲尔兹奖只发给40岁以下的人,放宽到40岁,已经把各种意外都考虑进去了,可是,怀尔斯却是意外中的意外。他年轻时实在不够牛逼,三十多岁还在埋头苦干,到了四十岁却一举成名。我想,与其把怀尔斯的故事看成一个牛逼数学家的创奇,不如看成一个老屌丝逆袭的励志故事。都说数学家成名要趁早,比如他的同行陶哲轩同学,人家7岁进高中,9岁进大学,10岁、11岁、12岁参加国际数学奥林匹克竞赛分别拿下铜奖、银奖、金奖,20岁获得博士学位,24岁当教授,31岁时拿下菲尔兹奖。而31岁的怀尔斯在干嘛,默默无闻。混到33岁时,怀尔斯终于决定要干点什么了,命运也正好给了他一个机会。1985年,德国数学家格哈德·弗赖指出了谷山-志村猜想和费马大定理之间的关系,1986年,美国数学家里贝特证明了这一命题。怀尔斯意识到自己的机会来啦,费马大定理绕了一大圈,竟然和自己现在最擅长的领域椭圆曲线有关,必须赌一把了。于是,怀尔斯开始了长达七年的闭关修炼,当然了,修炼的时候还得偶尔放放风,因为之前不够牛,教授的位置不牢固,不发表论文会下岗的。修炼的过程前面讲过,就不说了,总之,博采众家之长,功力大大加深,七年之后出山,一举震动江湖。但是,数学家对待证明的态度是非常严谨的,数学证明一旦通过就永远正确,他们必须对后人负责,所以,怀尔斯的论文需要经过严格审查。六个顶级数学家开始对怀尔斯天书般的论文进行漫长的死磕,终于有一天,一个叫尼克·凯兹的发现了漏洞。说来也巧,当初怀尔斯论文发表前,想找个人内测一下,找的就是尼克·凯兹,那个时候,这哥们儿没发现问题,这都公开了,却揪出问题了,这让怀尔斯情何以堪:你丫是不是在逗我?事实上,这是个大问题,足以破坏怀尔斯的证明。至此,怀尔斯逆袭受挫,如果漏洞不能修复,不会有人为费马大定理的证明道路上多一个失败者而惋惜。好在这时怀尔斯已经混成了终身教授,不用担心下岗的风险了,宅在家里好好研究就行了。这次,他还找了一个助手,叫泰勒,这人是他之前的学生,一个牛逼而又值得信任的人,又经过将近一年的奋斗,终于填补了漏洞且简化了证明。怀尔斯一跃成为武林泰斗,这一次,地位无人撼动。接下来,我们要给怀尔斯几句颁奖词:他不一定是最聪明的,也不一定有着耀眼头衔,但一定以科学为生命,一定坚韧、谦和并一步一个脚印向前走。在这里,我还要提一下两个人:谷山丰和志村五郎。志村五郎是一个勤奋的人,很多地方和怀尔斯气质很像,而谷山丰,是一个真正的天才。谷山-志村猜想是费马大定理证明过程中最重要的一环,可是,在怀尔斯享受各种荣誉的时候,却很少有人愿意提及他们(虽然谷山丰在30多年前就自杀了,但志村五郎还在)。数学的世界,有时候,也是只认成功者。讲这件事,也是提醒大家:在费马大定理的故事中,怀尔斯不是唯一的主角,无数人为之奋斗过,他们甘为基石,他们也是英雄。
费马大定理的故事,至此终于可以结束了。
回顾人类解开宇宙奥秘的各个节点,探得进化论,主要靠达尔文;揭示力学原理,主要靠牛顿;艰深的相对论,可能有许多天才不懂,但创建它,也全凭一个爱因斯坦。发现元素周期律,创建精神分析理论,还有宇宙大爆炸、DNA分子结构模型……都只有一个两个人。唯独这个中学生都能看懂的费马大定理,各路英雄好汉,有的退避三舍,有的自愧无力,有的倾尽其力也只抓上一鳞半爪,连万能的计算机也无可奈何。但是,我们不仅仅要看到它的困难,更要看到困难背后的意义,费马大定理是一只“会下金蛋的鹅”(希尔伯特语):因为它,扩展了“无穷递降法”和虚数的应用;催生出库默尔的“理想数论”;促成了莫德尔猜想、谷山--志村猜想得证;拓展了群论的应用;加深了椭圆方程的研究;找到了微分几何在数论上的生长点;发现了伊利瓦金—弗莱切方法与伊娃沙娃理论的结合点;推动了数学的整体发展和研究……费马大定理催生出一批又一批重量级数学家,这是货真价实的事实,也是真正的厉害之处。“一个民族有一些关注天空的人,他们才有希望;一个民族只是关心脚下的事情,那是没有未来的。”
注1我国古代就有丰富的数学典籍,如:前文中的《周脾算经》、东汉末年比美《几何原本》的《九章算术》、公元400年的数学入门读物《孙子算经》,而盛唐时的李淳风,就是那个有名的“推背图”的道学家,他在算学馆整理编注了著名的《算学十书》虽然水平很次,没能培养出什么像样的数学家,但不可否认对盛唐的商业和天文历法有积极推动作用,此后各种不提,直到共济会的利玛窦和我国的徐光启共同翻译了《几何原本》等海外著作。但奇怪的是中国的数学新著往往都出现在乱世和盛世。数学家也星光璀璨,如:祖冲之,秦九韶,刘徽、杨辉,等。
注2《古今数学思想》不仅在科学界,在整个学术文化界都广泛、持久的影响。
第三篇:证明费马大定理的故事
解答数学“大问题”——证明费马大定理的故事
为了寻求费马大定理的解答,三个多世纪以来,一代又一代的数学家们前赴后继,却壮志未酬。1995年,美国普林斯顿大学的安德鲁·怀尔斯教授经过8年的孤军奋战,用130页长的篇幅证明了费马大定理。怀尔斯成为整个数学界的英雄。
费马大定理提出的问题非常简单,它是用一个每个中学生都熟悉的数学定理——毕达哥拉斯定理——来表达的。2000多年前诞生的毕达哥拉斯定理说:在一个直角三角形中,斜边的平方等于两直角边的平方之和。即X2+Y2=Z2。大约在公元1637年前后,当费马在研究毕达哥拉斯方程时,他写下一个方程,非常类似于毕达哥拉斯方程:Xn+Yn=Zn,当n大于2时,这个方程没有任何整数解。费马在《算术》这本书的靠近问题8的页边处记下这个结论的同时又写下一个附加的评注:“对此,我确信已发现一个美妙的证法,这里的空白太小,写不下。”这就是数学史上著名的费马大定理或称费马最后的定理。费马制造了一个数学史上最深奥的谜。
大问题 在物理学、化学或生物学中,还没有任何问题可以叙述得如此简单和清晰,却长久不解。E·T·贝尔(Eric Temple Bell)在他的《大问题》(The Last Problem)一书中写到,文明世界也许在费马大定理得以解决之前就已走到了尽头。证明费马大定理成为数论中最值得为之奋斗的事。
安德鲁·怀尔斯1953年出生在英国剑桥,父亲是一位工程学教授。少年时代的怀尔斯已着迷于数学了。他在后来的回忆中写到:“在学校里我喜欢做题目,我把它们带回家,编写成我自己的新题目。不过我以前找到的最好的题目是在我们社区的图书馆里发现的。”一天,小怀尔斯在弥尔顿街上的图书馆看见了一本书,这本书只有一个问题而没有解答,怀尔斯被吸引住了。
这就是E·T·贝尔写的《大问题》。它叙述了费马大定理的历史,这个定理让一个又一个的数学家望而生畏,在长达300多年的时间里没有人能解决它。怀尔斯30多年后回忆起被引向费马大定理时的感觉:“它看上去如此简单,但历史上所有的大数学家都未能解决它。这里正摆着我——一个10岁的孩子——能理解的问题,从那个时刻起,我知道我永远不会放弃它。我必须解决它。”
怀尔斯1974年从牛津大学的Merton学院获得数学学士学位,之后进入剑桥大学Clare学院做博士。在研究生阶段,怀尔斯并没有从事费马大定理研究。他说:“研究费马可能带来的问题是:你花费了多年的时间而最终一事无成。我的导师约翰·科茨(John Coates)正在研究椭圆曲线的Iwasawa理论,我开始跟随他工作。” 科茨说:“我记得一位同事告诉我,他有一个非常好的、刚完成数学学士荣誉学位第三部考试的学生,他催促我收其为学生。我非常荣幸有安德鲁这样的学生。即使从对研究生的要求来看,他也有很深刻的思想,非常清楚他将是一个做大事情的数学家。当然,任何研究生在那个阶段直接开始研究费马大定理是不可能的,即使对资历很深的数学家来说,它也太困难了。”科茨的责任是为怀尔斯找到某种至少能使他在今后三年里有兴趣去研究的问题。他说:“我认为研究生导师能为学生做的一切就是设法把他推向一个富有成果的方向。当然,不能保证它一定是一个富有成果的研究方向,但是也许年长的数学家在这个过程中能做的一件事是使用他的常识、他对好领域的直觉。然后,学生能在这个方向上有多大成绩就是他自己的事了。”
科茨决定怀尔斯应该研究数学中称为椭圆曲线的领域。这个决定成为怀尔斯职业生涯中的一个转折点,椭圆方程的研究是他实现梦想的工具。
孤独的战士
1980年怀尔斯在剑桥大学取得博士学位后来到了美国普林斯顿大学,并成为这所大学的教授。在科茨的指导下,怀尔斯或许比 世界上其他人都更懂得椭圆方程,他已经成为一个著名的数论学家,但他清楚地意识到,即使以他广博的基础知识和数学修养,证明费马大定理的任务也是极为艰巨的。
在怀尔斯的费马大定理的证明中,核心是证明“谷山-志村猜想”,该猜想在两个非常不同的数学领域间建立了一座新的桥梁。“那是1986年夏末的一个傍晚,我正在一个朋友家中啜饮冰茶。谈话间他随意告诉我,肯·里贝特已经证明了谷山-志村猜想与费马大定理间的联系。我感到极大的震动。我记得那个时刻,那个改变我生命历程的时刻,因为这意味着为了证明费马大定理,我必须做的一切就是证明谷山-志村猜想„„我十分清楚我应该回家去研究谷山-志村猜想。”怀尔斯望见了一条实现他童年梦想的道路。
20世纪初,有人问伟大的数学家大卫·希尔伯特为什么不去尝试证明费马大定理,他回答说:“在开始着手之前,我必须用3年的时间作深入的研究,而我没有那么多的时间浪费在一件可能会失败的事情上。”怀尔斯知道,为了找到证明,他必须全身心地投入到这个问题中,但是与希尔伯特不一样,他愿意冒这个风险。
怀尔斯作了一个重大的决定:要完全独立和保密地进行研究。他说:“我意识到与费马大定理有关的任何事情都会引起太多人的兴趣。你确实不可能很多年都使自己精力集中,除非你的专心不被他人分散,而这一点会因旁观者太多而做不到。”怀尔斯放弃了所有与证明费马大定理无直接关系的工作,任何时候只要可能他就回到家里工作,在家里的顶楼书房里他开始了通过谷山-志村猜想来证明费马大定理的战斗。
这是一场长达7年的持久战,这期间只有他的妻子知道他在证明费马大定理。
欢呼与等待
经过7年的努力,怀尔斯完成了谷山-志村猜想的证明。作为一个结果,他也证明了费马大定理。现在是向世界公布的时候了。1993年6月底,有一个重要的会议要在剑桥大学的牛顿研究所举行。怀尔斯决定利用这个机会向一群杰出的听众宣布他的工作。他选择在牛顿研究所宣布的另外一个主要原因是剑桥是他的家乡,他曾经是那里的一名研究生。1993年6月23日,牛顿研究所举行了20世纪最重要的一次数学讲座。两百名数学家聆听了这一演讲,但他们之中只有四分之一的人完全懂得黑板上的希腊字母和代数式所表达的意思。其余的人来这里是为了见证他们所期待的一个真正具有意义的时刻。演讲者是安德鲁·怀尔斯。怀尔斯回忆起演讲最后时刻的情景:“虽然新闻界已经刮起有关演讲的风声,很幸运他们没有来听演讲。但是听众中有人拍摄了演讲结束时的镜头,研究所所长肯定事先就准备了一瓶香槟酒。当我宣读证明时,会场上保持着特别庄重的寂静,当我写完费马大定理的证明时,我说:‘我想我就在这里结束’,会场上爆发出一阵持久的鼓掌声。” 《纽约时报》在头版以《终于欢呼“我发现了!”,久远的数学之谜获解》为题报道费马大定理被证明的消息。一夜之间,怀尔斯成为世界上最著名的数学家,也是唯一的数学家。《人物》杂志将怀尔斯与戴安娜王妃一起列为“本25位最具魅力者”。最有创意的赞美来自一家国际制衣大公司,他们邀请这位温文尔雅的天才作他们新系列男装的模特。
当怀尔斯成为媒体报道的中心时,认真核对这个证明的工作也在进行。科学的程序要求任何数学家将完整的手稿送交一个有声望的刊物,然后这个刊物的编辑将它送交一组审稿人,审稿人的职责是进行逐行的审查证明。怀尔斯将手稿投到《数学发明》,整整一个夏天他焦急地等待审稿人的意见,并祈求能得到他们的祝福。可是,证明的一个缺陷被发现了。
我的心灵归于平静
由于怀尔斯的论文涉及到大量的数学方法,编辑巴里·梅休尔决定不像通常那样指定2-3个审稿人,而是6个审稿人。200页的证明被分成6章,每位审稿人负责其中一章。
怀尔斯在此期间中断了他的工作,以处理审稿人在电子邮件中提出的问题,他自信这些问题不会给他造成很大的麻烦。尼克·凯兹负责审查第3章,1993年8月23日,他发现了证明中的一个小缺陷。数学的绝对主义要求怀尔斯无可怀疑地证明他的方法中的每一步都行得通。怀尔斯以为这又是一个小问题,补救的办法可能就在近旁,可是6个多月过去了,错误仍未改正,怀尔斯面临绝境,他准备承认失败。他向同事彼得·萨克说明自己的情况,萨克向他暗示困难的一部分在于他缺少一个能够和他讨论问题并且可信赖的人。经过长时间的考虑后,怀尔斯决定邀请剑桥大学的讲师理查德·泰勒到普林斯顿和他一起工作。
泰勒1994年1月份到普林斯顿,可是到了9月,依然没有结果,他们准备放弃了。泰勒鼓励他们再坚持一个月。怀尔斯决定在9月底作最后一次检查。9月19日,一个星期一的早晨,怀尔斯发现了问题的答案,他叙述了这一时刻:“突然间,不可思议地,我有了一个难以置信的发现。这是我的事业中最重要的时刻,我不会再有这样的经历„„它的美是如此地难以形容;它又是如此简单和优美。20多分钟的时间我呆望它不敢相信。然后白天我到系里转了一圈,又回到桌子旁看看它是否还在——它还在那里。”
这是少年时代的梦想和8年潜心努力的终极,怀尔斯终于向世界证明了他的才能。世界不再怀疑这一次的证明了。这两篇论文总共有130页,是历史上核查得最彻底的数学稿件,它们发表在1995年5月的《数学年刊》上。怀尔斯再一次出现在《纽约时报》的头版上,标题是《数学家称经典之谜已解决》。约翰·科茨说:“用数学的术语来说,这个最终的证明可与分裂原子或发现DNA的结构相比,对费马大定理的证明是人类智力活动的一曲凯歌,同时,不能忽视的事实是它一下子就使数学发生了革命性的变化。对我说来,安德鲁成果的美和魅力在于它是走向代数数论的巨大的一步。”
声望和荣誉纷至沓来。1995年,怀尔斯获得瑞典皇家学会颁发的Schock数学奖,1996年,他获得沃尔夫奖,并当选为美国科学院外籍院士。
怀尔斯说:“„„再没有别的问题能像费马大定理一样对我有同样的意义。我拥有如此少有的特权,在我的成年时期实现我童年的梦想„„那段特殊漫长的探索已经结束了,我的心已归于平静。”
第四篇:《费马大定理-谜题的破解》
《费马大定理-谜题的破解》这个定理,本来又称费马最后定理,由17世纪法国数学家费马提出,而当时人们称之为“定理”,并不是真的相信费马已经证明了它。虽然费马宣称他已找到一个绝妙证明,但经过三个半世纪的努力,这个世纪数论难题才由普林斯顿大学英国数学家安德鲁·怀尔斯和他的学生理查·泰勒于1995年成功证明。证明利用了很多新的数学,包括代数几何中的椭圆曲线和模形式,以及伽罗华理论和Hecke代数等,令人怀疑费马是否真的找到了正确证明。而安德鲁·怀尔斯
(Andrew Wiles)由于成功证明此定理,获得了1998年的菲尔兹奖特别奖以及2005邵逸夫奖的数学奖。
1637年,费马在阅读丢番图《算术》拉丁文译本时,曾在第11卷第8命题旁写道:“将一个立方数分成两个立方数之和,或一个四次幂分成两个四次幂之和,或者一般地将一个高于二次的幂分成两个同次幂之和,这是不可能的。关于此,我确信已发现了一种美妙的证法,可惜这里空白的地方太小,写不下。”毕竟费马没有写下证明,而他的其它猜想对数学贡献良多,由此激发了许多数学家对这一猜想的兴趣。数学家们的有关工作丰富了数论的内容,推动了数论的发展。
怀尔斯证明费马大定理的过程亦甚具戏剧性。他用了七年时间,在不为人知的情况下,得出了证明的大部分;然后于1993年6月在一个学术会议上宣布了他的证明,并瞬即成为世界头条。但在审批证明的过程中,专家发现了一个极严重的错误。怀尔斯和泰勒然后用了近一年时间尝试补救,终在1994年9月以一个之前怀尔斯抛弃
过的方法得到成功,这部份的证明与岩泽理论有关。他们的证明刊在1995年的数学年刊之上。
在解决问题的过程中,数学家们不但利用了广博精深的数学知识,还创造了许多新理论新方法,对数学发展的贡献难以估量。1900年,希尔伯特提出尚未解决的23个问题时虽未将费马大定理列入,却把它作为一个在解决中不断产生新理论新方法的典型例证。据说希尔伯特还宣称自己能够证明,但他认为问题一旦解决,有益的副产品将不再产生。“我应更加注意,不要杀掉这只经常为我们生出金蛋的母鸡。” 数学家就是这样缓慢而执着地向前迈进
第五篇:费马大定理的简单证明
费马大定理的简单证明
李联忠
(营山中学四川营山 637700)
费马大定理:一个正整数的三次以上的幂不能分为两正整数的同次幂之和。即不定方程znxnyn当n≥3时无正整数解。
证明:当n=2时,有z2x2y2
∴x2z2y2(zy)(zy)(1)
令(zy)2m2 则 zy2m2代入(1)得
x2z2y22m2(2y2m2)22m2(ym2)22m2l2
22∴x2mlyl2m2zlm
当n=3时,有z3x3y3
∴x3z3y3(zy)(z2zyy2)(2)
令(zy)32m3 则 zy32m3代入(2)得
3x3z3y332m[(y32m3)2(y32m3)yy2]
32m3(3y2332m3y34m6)33m3(y232m3y33m6)
若方程z3x3y3有正整数解,则(y232m3y33m6)为某正整数的三次幂,即
(y232m3y33m6)l3
∴ y(y32m3)l333m6(l3m2)(l23m2l32m4)
则必有 y(l3m)和y3m(l3ml3m),而y,m,l都取正整数时,这两等式是不可能同时成立的。所以(y3my3m)l不成立。即x不可能取得正整数。所以,当n=3时,方程zxy无正整数解。
当n>3时,同理可证方程zxy无正整数解。
定理得证。
nnn***4