问题银行教学设计

时间:2019-05-15 16:34:08下载本文作者:会员上传
简介:写写帮文库小编为你整理了多篇相关的《问题银行教学设计》,但愿对你工作学习有帮助,当然你在写写帮文库还可以找到更多《问题银行教学设计》。

第一篇:问题银行教学设计

“问题银行” 教学设计

铜冶镇东街小学?? 李矿兰

一、教学目标

1.激发学生对提问的兴趣,为下一个活动做好准备。

2.通过活动,鼓励学生成为爱提问的孩子。

二、学情分析

学生刚接触科学课,特别兴奋激动,能够很积极地投入活动中去,教师要用丰富多彩的活动吸引学生,把孩子带到神奇的科学世界。

三、重点难点

激发学生对提问的兴趣。

四、教学过程

活动1【导入】

1、通过游戏,引出课题

(1)教师根据班级人数选择一些绘有动物图像的卡片用衣服夹子夹到孩子们的后背上,孩子本人不能看到自己背后的动物卡片。

(2)提问的过程中逐渐知道自己背后的动物是什么。

(3)作为逐步探询正确答案的要点,要从哺乳、鸟类、虫等大范围中考虑是很有必要的。实在找不到正确答案时,教师可以给予启发暗示。如果知道自己后背上卡片的名称,可以说“我是××”然后把卡片挪到胸前来核实一下。

(4)孩子们对其他同学提出的问题,根据回答,猜自己后背上贴的是什么动物。例:“我有四只脚吗?”回答仅限“是、不是、不知道”三种。(5)如果有五六个人都猜不出,可以由一个人对这些人分别进行提示。

活动2【活动】

2、问题银行开业了

(1)各小组认领问题银行储蓄箱,宣布问题银行开业了。

(2)教师用“头脑风暴法”激发学生提出自己从小到大心中所藏的问题。

(3)将问题记录在大白纸上,并进行交流。

(4)以小组为单位把问题卡分成生物类、地球与宇宙类和其他问题三大类,分类记录在问题银行存折上。

(5)鼓励学生提出更多的问题,成为问题银行的百万富翁。

第二篇:搭配问题教学设计

搭配问题教学设计

教学内容:《数学广角》教材91—92页。教学目标:

1.使学生通过观察、猜测、实验等活动,找出简单事物的组合数。

2.培养学生初步的观察、分析及推理能力以及有顺序地、全面地思考问题的意识。

3.使学生感受数学在现实生活中的广泛应用,能够用数学的方法解决实际生活中的问题。

4.使学生在数学活动中养成与人合作的良好习惯,并初步学会表达解决问题的大致过程和结果。

教学重点:

找出简单事物的排列数和组合数。教学难点:

有序、全面地对简单事物进行排列与组合。教具、学具:课件(教师用)教学过程:

一、情景导入,展开教学,1.师:孩子们,这节课,首先我们来欣赏一些漂亮的图片。(课件出示)

白云、牛羊、湖水搭配成了美丽的草原,生活中有搭配,数学中也有搭配,今天我们就一起来研究数学中的搭配问题

2、出示碗筷,让学生自己动手操作怎么进行搭配,并回答有几种搭配方法。

3、展示学生作品,并提出连线法。

二、自主探索,解决问题

1、吃完中饭,下午我们就要为“六一”的节目进行排练了,现在有这样的衣服,只能选一件上衣,一条裤子,你们怎么搭配,有多少种搭配方法?

2、学生回答。

3、这样吧,小组的四个同学合作,拿出学具里的卡片来摆一摆,看看到底有多少种不同的搭配方法?

听好要求了:小组内的同学互相交流,并画出图。师巡视指导。

4、学生汇报。

师:一共有几种不同的搭配方法?

接下来我们要去美丽的内蒙大草原,现在从呼和浩特出发,有2条路到包头,从包头到草原有3条路,你们认为有几条路线可以到草原?

三、拓展训练

做书上91页的1、2题,学生独立完成后再集体评价。

四、全课总结:

在这节课中,你有什么收获?你快乐吗?

第三篇:植树问题 教学设计

五年级上植树问题教学设计

舒兰市第一小学校 杨洋

教学目标:

1、经历将实际问题抽象出植树问题模型的过程,掌握种树棵树与间隔数之间的关系。

2、会灵活应用植树问题的模型解决一些相关的实际问题,培养学生的应用意识和解决实际问题的能力。

3、感悟寻找规律,构建数学模型是解决实际问题的重要方法之一。

4、培养学生的合作意识,养成良好的交流习惯。教学重点:理解种树棵树与间隔数之间的关系。教学难点:灵活应用发现的规律解决一些相关的实际问题。教学过程:

一、动手激趣,导入新课。

1、手指游戏,引入“五指”观察交叉的双手,一只手的五个手指有没有都插入另一只手的指缝中?为什么呢?明确五个手指间有四个空。(五指四空)数学中我们把这个空叫做间隔。也就是说(手指数比间隔数多1。)我们发现5根手指中有4个间隔,那么4根手指呢?3根呢?

2、看来这手上还藏着数学问题呢,真是个宝啊!俗话说:“人有两件宝,双手和大脑,双手会做工,大脑会思考。”这节课就让我们动手、动脑一起去学习!

3、生活中的“间隔”到处可见,你能举几个例子吗?(两棵树之间、两个同学之间、钟声…)

4、这些问题在数学中我们都可以把它归结为植树问题,这节课我们就来研究植树问题。(板书课题)

二、充分经历,探究新知。

1、课件出示例1,引导学生获取相关数学信息。让学生读题,然后指名说一说:从题中你了解到了哪些信息?重点帮助学生弄清楚下列数学信息的含义:

(1)“每隔5米栽一棵”是什么意思?

使学生明确“每隔5米栽一棵”就是指每两棵树之间的距离是5米,也可以说“两棵树之间的间隔是5米”。

(2)“两端要栽”是什么意思?“一边”是什么意思。

2、学生小组合作,选取较短的距离,利用准备的学具模拟植树。教师巡视。

3、学生汇报方案,学生用实物模拟植树,学生边栽边说明理由。教师引导学生观察。学生汇报后,教师用课件演示种树过程。

2、借助操作,探究规律。

(1)课件出示10米长的路,间隔是5米,可以栽几棵树。自主探究,填空:(2)个间隔,(3)棵树。15米长的路:(3)个间隔,(4)棵树......(2)引导学生用画线段图的方法进一步探究,小组合作,填好表格。(3)合理推测,感知规律。根据所填表格,感知棵树和间隔数之间的关系,间隔数、间隔长和全长之间的关系。

引导学生发现两端都栽,植树的棵树比间隔数多1,也可以说间隔数比棵树少1.(4)即时巩固,强化规律。

师:同学们都明白了两端栽的情况下树的棵树与间隔数之间的关系,老师出几道题考考大家。

4、运用规律,验证例1.回到例1,在100米的小路一边植树,每隔5米栽一棵(两端都栽),到底要栽多少棵树呢?学生尝试列式,全班回报交流:主要让学生弄清楚:100÷5=20表示什么?为什么还要用20+1=21(棵)

三、拓展运用,巩固练习。

1、在“植树问题”中,一定要是“树”吗?还可以是公交车站、楼梯等问题。

2、(1)5路公共汽车行驶路线全长12千米,相邻两站的距离是1千米。一共有几个站?正确的列式是()。①12÷1 ②12÷1+1 ③12÷1-1

3、小军上一层楼用了2分钟,照这样计算,他从一楼上到九楼要多少分钟?

4、在一条全长2000米的街道两旁安装节能路灯(两端都安),每隔50米安装一座。一共需要安装多少座节能路灯?

广场上的大钟5时敲响5下,8秒敲完。12时敲12下,需要多长时间? 课堂小结:

说说这节课你有什么收获?对解决植树问题的方法进行总结。鼓励学生探索其他相关问题。

第四篇:植树问题教学设计

《植树问题》教学设计

执教者:古冲小学 肖媛

教学目标:

一、知识与技能性:

1.利用学生熟悉的生活情境,通过动手操作的实践活动,让学生发现在两端都栽的情况下间隔数与植树棵数之间的关系。

2.通过小组合作、交流,使学生能理解间隔数与植树棵数之间的规律。

3.能够借助学具,利用规律来解决简单植树的问题。

二、过程与方法:

1.进一步培养学生从实际问题中发现规律,应用规律解决问题的能力。

2.渗透建模的思想,培养学生由具体到抽象的转化思想。

3.培养学生的合作意识,养成良好的交流习惯。

三、情感态度与价值观

1.渗透爱绿、护绿的德育教育。

2.通过实践活动激发热爱数学的情感,感受日常生活中处处有数学、体验学习成功的喜悦。教学重点:

引导学生在观察、操作和交流中探索并发现在两端都栽的情况下间隔数与树的棵数之间的规律,并能运用规律解决实际问题。教学难点:

1.引导学生在观察、操作和交流中探索并发现在两端都栽的情况下间隔数与树的棵数之间的规律。2.能把现实生活中类似的问题同化为“植树问题”,建立物体总个数与间隔数之间的关系,并运用植树问题的思想方法解决这些实际问题。教学准备:

学具、课件 教学过程:

一、创设情境,导入新知: 出示林荫大道的画面及植树情境图

师:每年的春夏两季,我们总是可以看到道路两旁绿树成荫,让人感觉心旷神怡。美好的环境对我们的生活和健康大有益处,植树造林能够使我们的环境变得更好。植树与我们的数学也有很大的关系呢,今天,我们一起来研究数学中的植树问题。

(板书课题:植树问题)

二、提出问题 1.出示例1 同学们在全长100 m的小路一边植树,每隔5 m栽一棵(两端要栽)。一共要栽多少棵树?

2.学生提出解决方法:100÷5=20(棵)3.提出质疑:这样解决对吗?

4.验证方法:可以画图验证。但是要画在100米的路上植树,太长了,可以先用简单的数试试。

三、探究问题

1.问题一:同学们在全长10 米的小路一边植树,每隔5米栽一棵(两端要栽)。一共要栽多少棵?

(1)理解题意。“一边”:展示一条小路,将路的一边用红色线段标出;“两端都栽”:利用图片,介绍每条路都有开端和终端,两端都栽就是路的开端和终端都要植树。“每隔5米栽一棵”:从路的开端起,隔5米栽一棵树,再隔5米又栽一棵树„„一直到路的终端。(2)显示直观形象的植树情况。

(3)根据形象图,介绍线段图的画法和优势。

(4)介绍什么是间隔长度与间隔数。植树问题中,将树与树之间的距离称为间隔长度,此题中的间隔长度是多少?(生答:5米)在全长10 米的小路一边植树,每隔5米栽一棵,会出现两个这样的间隔长度,我们就说有两个间隔,及间隔数为2。

(5)根据图中的植树情况,写出在全长10 米的小路一边植树,每隔5米栽一棵(两端要栽)时,间隔数与树的棵数分别是多少。2.问题二:同学们在全长12 米的小路一边植树,每隔3米栽一棵(两端要栽)。一共要栽多少棵?

(1)仿照问题一的研究方法,自己用线段图画出植树情况,写出在全长12 米的小路一边植树,每隔3米栽一棵(两端要栽)时,间隔数与树的棵数分别是多少,并观察间隔数与树的棵数之间有什么关系。

(师提醒线段图的画法和要求:用铅笔直尺作图,用一根线段表示12米长的小路,这条小路要平均分成几段就可以表示每隔3米栽一棵呢?生活动)

(2)展示线段图和间隔数与树的棵数。

3.问题三:同学们在全长20 米的小路一边植树,每隔4米栽一棵(两端要栽。一共要栽多少棵?

仿照问题一的研究方法,自己用线段图画出植树情况,写出在全长20 米的小路一边植树,每隔4米栽一棵(两端要栽)时,间隔数与树的棵数分别是多少,并观察间隔数与树的棵数之间有什么关系。

(2)展示线段图和间隔数与树的棵数。4.总结。

(1)展示问题一、二、三中的题干内容、间隔数、树的棵数和线段图。(2)从这三个问题中,你发现在路的一边植树,两端都栽的情况下,间隔数与树的棵数之间有着怎样的关系?

生总结:树的棵数=间隔数+1,间隔数=树的棵数-1。(师板书)(3)除了画图之外还可以怎么知道间隔数?(计算得来:间隔数=全长÷间隔长度)

(4)在路的一边植树,两端都栽的情况下,利用间隔数与树的棵数之间的关系,可以解决很多问题。

5.解决例1。(1)生独立完成。

(2)回顾研究之前的解决方法与研究后的解决方法,对比找出问题所在。再次提醒学生,在此问题中,用全长除以间隔长度得到的只是间隔数,不是树的棵数。

四、巩固练习1.为了庆祝元旦节,学校在100米的笔直跑道外侧每隔4米插一面彩旗(两端要插)。一共要准备多少面彩旗?(生练习后,集体订正)

2.5路公共汽车行驶路线全长12千米,相邻两站之间的路程都是1千米。一共设有多少个车站?

(生练习后,集体订正)

3.(1)同学们在全长600米大路一边植树,每隔6米栽一棵(两端要栽)。一共要栽多少棵树?

(生练习后,集体订正)

(2)同学们在全长600米大路两旁植树,每隔6米栽一棵(两端要栽)。一共要栽多少棵树?

(此题与上一题有什么不同?你是怎样想的?独立完成后汇报)

4.园林工人沿一条笔直的公路一侧植树,每隔6米种一棵,一共种了36棵。从第一棵到最后一棵的距离有多远?

(这是求什么?全长与什么有关系?学生提出解决思路,再独立完成,汇报)

五、全课总结

这节课我们学到了什么?

引导学生说出,在路的一边植树,两端都栽时,树的棵数=间隔数+1。

六、课后思考

假如是两端都不栽的情况,植树的棵数和间隔数又是什么关系呢?思考问题:同学们在全长100 m的小路一边植树,每隔5 m栽一棵(两端不栽)。一共要栽多少棵树?

板书设计:

植树问题

两端都栽:树的棵数=间隔数+ 1

100÷5+1=21(棵)

第五篇:排队问题教学设计

排 队 问 题

一、教学目标:

1.在解决实际问题的过程中深化对数的大小、数序以及“之间”含义的理解,加深对基数和序数含义的认识。

2.体验解决问题的一般过程,积累解决问题的经验,同时理解“画示意图”和“数数”两种重要的解题策略。

3.经历捕捉信息、分析问题并通过画图、数数或简单运算解决问题的过程,感受数学与生活的密切联系。

二、教学重点:在解决实际问题的过程中深化对数的大小、数序以及“之间”含义的理解,加深对基数和序数含义的认识。

三、教学难点:体验解决问题的一般过程,积累解决问题的经验,同时理解“画示意图”和“数数”两种重要的解题策略。

四、教学过程:

(一)引入(盒子问题)

“桌上有一个大盒子,它里面有2个中盒子,每个中盒子里面又有2个小盒 子。”从该题的求解中引出:“画图法”的重要性。

(在很多时候,画图的方法能帮助我们轻松的解决问题。今天我们学习的内容也跟画图有着密切的联系,让我们一起来解决问题。)

(二)解决“之间”问题

1.例:“小丽排在第10,小宇排在第15,小丽和小宇之间有几人?” 用不同的方法解决问题:画图法、数数法、尺子找数法。

(从中你知道了什么?小丽排第10,小宇排第15。“之间”是什么意思?你会怎样解决这一问题?)

2.练:“滑滑梯上,玲玲排第4,东东排第8,东东和玲玲之间有几人?”

学生思考,教师结合学生的汇报进行板书

(从中你知道了什么?在解决这个问题之前,请你进行独立的思考,有什么要注意的?“之间”不包括两头的人。)

(三)解决排队问题(几和第几)

1.例:“一组小朋友在排队,其中小红的前面有4人,后面有5人,这一队小朋友共有多少人?”用画图法解决问题:先画图,再写算式。

(看到这一信息,你能提出什么问题?在解决这个问题之前,我们先来分析一下,题中的主角是谁?还告诉我们哪些信息?看到这里,那你会怎么解决这个问题?)(画图:用圆表示:黑白。有了图,如果再让你用算式表示,你会怎么表示?)

2.练:“排好队,来报数,正着报数我报五,倒着报数我报七,一共多少小朋友?”用画图法解决问题:先画图,再写算式。(学生思考,教师结合学生的汇报进行板书)

(在解决这个问题之前,请你进行独立的思考,题中的主角是谁?还告诉我们哪些信息?将这些信息与前面那个题相比,你觉得我们要注意些什么?你会怎么解决这个问题?等下我请一位同学来汇报你的思考过程)(画图:用圆表示:黑白。白色的圆怎么确定?有了图,如果再让你用算式表示,你会怎么表示?)

(四)巩固提升

1.举例子

根据练习纸上的第1、2两题,你能模仿着举个排队问题的例子吗? 一人举例,其他人解决问题。

(不管问题中是几个还是第几个,只要我们能认真的分析问题,都能把“排在第几”的信息转化为“有几个”的问题,再借助画图的方法,写出算式,求得结果。)

2.提升练习

一队小朋友在做操,小明前面有3人,小丁后面有5人,小明和小丁之间有4人,这一队共有多少人?(学生独立完成后汇报校对)

(五)课堂小结 这节课对你来说,印象最深的是什么?你有哪些收获?

下载问题银行教学设计word格式文档
下载问题银行教学设计.doc
将本文档下载到自己电脑,方便修改和收藏,请勿使用迅雷等下载。
点此处下载文档

文档为doc格式


声明:本文内容由互联网用户自发贡献自行上传,本网站不拥有所有权,未作人工编辑处理,也不承担相关法律责任。如果您发现有涉嫌版权的内容,欢迎发送邮件至:645879355@qq.com 进行举报,并提供相关证据,工作人员会在5个工作日内联系你,一经查实,本站将立刻删除涉嫌侵权内容。

相关范文推荐

    《重叠问题》教学设计

    重叠问题 教学内容 《义务教育课程标准实验教科书·数学》(人教版)三年级下册第九单元“数学广角”第108页例1。 教材与学情分析 “重叠问题”是小学阶段集合思想教学的初始。......

    相遇问题教学设计

    《相遇问题》教学设计 北关小学李莉 教学目标: 1、会分析简单实际问题中的数量关系,提高用方程解决简单实际问题的能力,培养用方程解决问题的意识。 2、 进一步掌握速度、时间......

    《折扣问题》教学设计[★]

    《折扣问题》教学设计 教学内容: 苏教版义务教育教科书《数学》六年级上册99页例9、练一练,第100页练习十六第7-10题。 教学目标: 1.让学生理解商品打折出售的含义,学会列方程解......

    《沏茶问题》教学设计

    数学广角——《沏茶问题》教学设计 王凤英 教学内容:人教版小学数学四年级上册数学广角 教学目标: 1.通过简单的生活事例,让学生学会选择合理、快捷的方法解决问题。 2.使学生......

    相遇问题 教学设计

    《相遇问题》教学设计 五(2)班李莉 教学内容: 北师大版五年级数学下册第71—72页内容。 教学目标: 1、会分析简单实际问题中的数量关系,提高用方程解决简单实际问题的能力。 2、......

    《相遇问题》教学设计

    《相遇问题》教学设计 教学目标: 1、通过学习,帮学生理解“相遇问题”的意义及特点,学会分析相遇问题的数量关系,会解决相遇求路程的问题。 2、培养问题意识、应用意识,发展思维......

    植树问题 教学设计

    植树问题教学设计 卞桥中心小学刘秋菊 教学内容: 人教版小学数学教材五年级上册第106页例1及“做一做”第一题,练习二十四第5题。 教学目标: 1. 在摆一摆、画一画、想一想、说......

    相遇问题教学设计

    公开课教案 «相遇问题» 五年级数学下册 武阳西街小学 漆江林 2017年6月 相遇问题教学设计 教学内容:北师大版五年级下册第71~72页相遇问题。 教材分析:教材创设了“送材料”......