数学史作业(5篇材料)

时间:2019-05-15 02:20:30下载本文作者:会员上传
简介:写写帮文库小编为你整理了多篇相关的《数学史作业》,但愿对你工作学习有帮助,当然你在写写帮文库还可以找到更多《数学史作业》。

第一篇:数学史作业

我看古中国数学

古中国数学,和天文学以及其他许多科学技术一样,在中国历史上占有重要的地位,并且取得了极其辉煌的成就。可以毫不夸张地说,直到明代中叶以前,在数学的许多分支领域里,中国一直处于遥遥领先的地位。,根据古中国数学发展的特点,可以分为六个时期:萌芽;体系的形成;发展;繁荣和中西方数学的融合,衰落。古中国数学具有悠久的历史,丰富的内容,重大的成就,它持续不断,长期发达,成就辉煌,呈现出鲜明异常的“东方数学”的色彩,对于世界数学发展的历史进程有着深远的影响,时至今日,仍影响着我们生活的方方面面,并且有重要的现实意义和应用价值。

关键词:

产生

特点

发展

衰落

价值

一古中国数学的产生

古中国数学思想扎根于中国古人的社会实践之中,体现着中国古代生产方式、生活方式和思维方式的特点。反过来数学思想也推动着生产和其他社会实践的发展,促进着中国古代文化的发展。可以通过中国数学思想产生的文化背景,历史文物以及古代典籍探讨中国古代数学思想的产生。

1、古中国数学思想产生的文化背景

当代历史学中,文明起源的“挑战和应战”学说占有重要的地位,正是人类的应战促使了人类的创造性行为,开创了文明,与此相应的则是文明未必在宜于人类生活的各种有利环境中产生。

2、中国文明产生的自然、历史条件

中国东部和东南部面临着浩瀚的海洋,西部蜿蜒着巍峨的高山及号称“世界屋脊”的青藏高原,北部是蒙古高原的戈壁瀚海。这些地理环境在古代交通不发达的条件下,形成了相对的封闭状态,使我们的祖先与外界交往存在着困难,因而使中国的古代文化在相当长的时期内保持不变。并且受当时的哲学、理学、历史学等文明的的发展的影响,独具特色。

二、古中国数学的特点

1.浓厚的人文色彩和鲜明的社会性。为社会实际服务是中国古代数学的传统,也是它的特色。外国古代数学著作相比较,中国传统数学在学以致用方面可以独树一帜。这主要表现在中国古代数学典籍具有浓厚的应用数学色彩,与古希腊腊人数学看做纯理念的精神活动形成鲜明的对照,中国古代数学家的知识更注重来源于社会实践。例如,九章算术更是秦汉之际封建统一帝国形成过程中政治,经济,军事文化各领域的映射;方田反映了土地分配的需要,粟米反映了易物交换的本源,商功来自水利和土木工程,均输来自官派劳役制度;总之,中代数中学的格局与时代的政治,经济,乃至学术思想休戚相关

2.便捷的记数制和计算工具

中国是最早发明和使用10进位制计数法的国家。春秋时代发展起来的筹算不但是10进位制得以完善,而且为我们的祖先提供了便捷的技术和运算工具,利用筹算的纵横捭阖,中国古代数学家可以相当迅速而准确的进行计算。3..不拘一格的推理模式;

与古希腊唯一接受的演绎的逻辑推理有别,中学是一种从实际出发,进过分析提高而概括出一般原里和方法,以求最终解决一打类问题的体系。与此格局相适应,中国数学经典尤其独特的表达形式,其中术和相应的注就体现了中国古代数学家对一般方法的重视以及对逻辑推理的追求。中国古代数学的推理方式是丰富多彩的

4.经典著作的示范作用

如同西方学者把《原本》看做“科学的圣经”中算家把《九章算术》连同他的注文奉为从事研究和著述的“楷模”。从《数学九章》《九章翼》《九章通明法算》„.可以看出,都已成为中算家这一科学共同体的主要学术规范。

5.土生土长,独具中国特色,呈现出鲜明异常的“东方数学”的色彩,6.涉及范围广,影响深远,对人类文明具有特殊的贡献。《九章算术》标志以筹算为基础的中国古代数学体系的正式形成。它对以后中国古代数学发展所产生的影响巨大,在中国,它在一千几百年间被直接用作数学教育的教科书。它还影响到国外,朝鲜和日本也都曾拿它当作教科书。

古中国数学,是一个延续了近两千年的知识体系,它有丰富的内涵的并且经历了不同的发展阶段,因而以上概括出开的特征只能是就整体而言 三古中国数学的发展、成就、衰落

从公元前后至公元14世纪,中国古典数学先后经历了三次发展高潮,即两汉时期、魏晋南北朝时期和宋元时期,并在宋元时期达到顶峰。

1.先秦奠基时期

先秦时期中国古代数学已经取得多方面的成就,逐渐形成系统的初等数学体系,这是我国古代数学的奠基时期。当时筹算作为一种计算工具已经得到初步的普及,四则运算也得到发展,并且计算口诀的出现,也是中国数学的特色所在,这在《孙子算经》中有所体现。早期的农业生产和生活的需要也促进了我国古代几何的发展。当时极限思想,排列组合,干支记日,对策论也都体现了我国先秦数学的显著成就。

2.汉唐初创时期

汉唐时期是中国封建社会的上升时期,经济,文化和科技都得到了迅速的发展。《九章算术》标志以筹算为基础的中国古代数学体系的正式形成。它对古代数学的各个方面全面完整地进行叙述,是十部算书中最重要的一部,它对以后中国古代数学发展所产生的影响深远。在中国,它在一千几百年间被直接用作数学教育的教科书。它还影响到国外,朝鲜和日本也都曾拿它当作教科书。同时,《杜忠算数》,《许商算数》是最早见于著录的数学专著。同时随着天文学,历法等的发展,我国数学知识也不断丰富起来,并确立了自己的体系。

3.三国两晋南北朝

中国古代数学在三国及两晋时期侧重于理论研究,其中以赵爽与刘徽为主要代表人物。赵爽是三国时期吴人,在中国历史上他是最早对数学定理和公式进行证明的数学家之一,其学术成就体现于对《周髀算经》的阐释。在《勾股圆方图注》中,他还用几何方法证明了勾股定理,其实这已经体现“割补原理”的方法。用几何方法求解二次方程也是赵爽对中国古代数学的贡献。南北朝是中国古代数学的蓬勃发展时期,计有《孙子算经》、《夏侯阳算经》、《张丘建算经》等算学著作问世。祖冲之、祖暅父子的工作在这一时期最具代表性。根据史料记载,其著作《缀术》(已失传)取得如下成就:圆周率精确到小数点后第六位,《大衍历》中将其发展为不等间距二次内插公式。

4.宋元全盛时期

宋元时期中国古代数学的发展达到了一个高峰,其数学思想绽放出了惊人的异彩。这一时期的数学思想继承和发扬了刘徽的数学思想的同时,进行了数学思想理论化、抽象化的转换,这是世界上不多见的群体性全方位的数学成果。中国古代数学,经过从汉到唐一千多年间的发展,已经形成了更加完备的体系。在这基础上,到了宋元时期(公元十世纪到十四世纪)又有了新的发展。宋元数学,从它的发展速度之快、数学著作出现之多和取得成就之高来看,都可以说是中国古代数学史上最光辉的一页。从公元11世纪到14世纪的宋、元时期,是以筹算为主要内容的中国古代数学的鼎盛时期,其表现是这一时期涌现许多杰出的数学家和数学著作。中国古代数学以宋、元数学为最高境界。在世界范围内宋、元数学也几乎是与阿拉伯数学一道居于领先集团的。例如,《数书九章》主要讲述了两项重要成就:高次方程数值解法和一次同余式解法。宋元算书中的这些成就,和西方同类成果相比:高次方程数值解法比霍纳(1786—1837)方法早出五百多年,四元术要比贝佐(1730—1783)①早出四百多年,高次招差法比牛顿(1642—1727)等人早出近四百年。宋元算书中所记载的辉煌成就再次证明:直到明代中叶之前,中国科学技术的许多方面,是处在遥遥领先地位的。

5.明清时期整理,融合阶段

宋元以后,明清时期也有很多算书。此时我国数学基本上进入大规模整理阶段,融合,衰落阶段。例如明代就有著名的算书《算法统宗》。这是一部风行一时的讲珠算盘的书。入清之后,虽然也有不少算书,但是像《算经十书》、宋元算书所包含的那样重大的成就便不多见了。特别是在明末清初以后的许多算书中,有不少是介绍西方数学的。这反映了在西方资本主义发展进入近代科学时期以后我国科学技术逐渐落后的情况,同时也反映了中国数学逐渐融合到世界数学发展总的潮流中去的一个过程。

由于演算天文历法的需要,自16世纪末开始,来华的西方传教士便将西方一些数学知识传入中国。数学家徐光启向意大利传教士利马窦学习西方数学知识,而且他们还合译了《几何原本》

中国数学发展的历史表明:中国数学曾经为世界数学的发展作出过卓越的贡献,只是在近代才逐渐落后了。我们深信,经过努力,中国数学一定能迎头赶上世界先进水平

四古中国数学的贡献和时代价值 1.古中国数学对世界数学发展的贡献

古中国数学有其自身的历史渊源和独特的发展道路。它持续不断,长期发达,成就辉煌,对于世界数学发展的历史进程有着深远的影响。

数学的发展包括了两大主要活动:证明定理和创造算法。在数学史上,算法倾向与演绎倾向总是交替地取得主导地位。东方数学在文艺复兴前夕通过阿拉伯传播到欧洲,对近代数学兴起产生了深刻影响。事实上,作为近代数学诞生标志的解析几何与微积分,从思想方法的渊源看都不能说是演绎倾向而是算法倾向的产物。现在再来看一看更早的解析几何的诞生。通常认为,笛卡儿发明解析几何的基本思想,是用代数方法来解几何问题。这同欧氏演绎方法已经大相径庭了。而事实上如果我们去阅读笛卡儿的原著,就会发现贯穿于其中的彻底的算法精神。

任何问题→数学问题→代数问题→方程求解而笛卡儿的《几何学》,正是他上述方案的一个具体实施和示范,解析几何在整个方案中扮演着重要的工具作用。这与上面介绍的古代中国数学家解决问题的路线可以说是一脉相承。2.对当前人类社会的影响

数学无处不在,它影响着我们生活的方方面面,对当前人类经济、文化、政治、甚至生态建设都有着重大的影响。以电子计算机为例,随着电子计算机的广泛应用和进一步发展,构造性理念和算法传统将日益显示出重要性。例如《九章算术》中的消元法在计算机中解线性方程组,就远比克莱姆方法简捷。即使撇开计算机不谈,即使仍使用价值。例如有亮亮连环求等计算若干整数的最小公倍数和最大公约数,在数学较大较多的情况下就远比素因数分解法来的简介。至于,中算家于理于算的思想,无疑是现代机器证明的先声,当代数学家已在该领域勾画出了逻辑与算法两大传统并驾齐驱的美妙途径。3.古为今用,创新价值

研究科学的历史,其重要意义之一就是从历史的发展中获得借鉴和汲取教益,促进现实的科学研究,通俗地说就是“古为今用”。:“假如你对数学的历史发展,对一个领域的发生和发展,对一个理论的兴旺和衰落,对一个概念的来龙去脉,对一种重要思想的产生和影响等这许多历史因素都弄清了,我想,对数学就会了解得更多,对数学的现状就会知道得更清楚、更深刻,还可以对数学的未来起一种指导作用,也就是说,可以知道数学究竟应该按怎样的方向发展可以收到最大的效益” 数学的发展呈现出算法创造与演绎证明两大主流交替繁荣、螺旋式上升过程:演绎传统——定理证明活动算法传统——算法创造活动中国古代数学家对算法传统的形成与发展做出了毋容置疑的巨大贡献。数学机械化方法已使中国在数学机械化领域处于国际领先地位,这便是古代中国数学的启发与创新。其中,“吴方法”,是中国古代数学算法化、机械化精髓的发扬光大。

数学机械化理论的创立,正是这种古为今用原则的硕果。我国科学技术的伟大复兴,呼唤着更多这样既有浓郁的中国特色、又有鲜明时代气息的创新。4.文化意义

数学有两种品格,其一是工具品格,其二是文化品格。„„数学之文化品格、文化理念与文化素质原则之深远意义和至高价值在于其对人类精神文明的影响。有一位数学家说:他们当年所受到的数学训练,一直会在他们中潜在地起着根本性的作用,并且受用终身。数学影响我们生活的方方面面,包括我们的思考方式,行为方式,甚至影响着我们的人生观,价值观,世界观。

总之,古代中国数学具有悠久的历史,丰富的内容,重大的成就,它持续不断,长期发达,成就辉煌,呈现出鲜明异常的“东方数学”的色彩,对于中国和世界数学发展的历史进程有着深远的影响,时至今日,仍影响着我们生活、经济、文化等方方面面,同时也是我国家加强与别国交流与沟通的平台,有重要的现实意义和应用价值。

参考文献

【1】 袁小明,《自然科学史研究》,1990.6 【2】 沈康身,《中算导论》,上海教育出版社1986.4 【3】胡作玄,《第三次数学危机》,四川人民出版社,1985.6 【4】李文林,《数学史教程》,高等教育出版社,2000.3 【5】斯蒂芬,《自然科学史》,上海译文出版社,1980.3 【6】钱宝琮,《中国数学史》,北京科学出版社,1964.2 【7】梁宗巨,《世界科学通史》,辽宁教育出版社,1996.3 【8】白寿彝,《中国通史纲要》,上海人民出版社,1980.7

第二篇:数学史作业

大卫·希尔伯特,一个领域中的伟人。他出生于1862年1月23日卒于1943年2月14日,是一位伟大的德国数学家。他一生的数学成就包括了很多方面,他提出了希尔伯特空间的理论(是泛函分析的基础之一);他还是证明论、数理逻辑区分数学与元数学之差别的奠基人之一;希尔伯特和他的学生为形成量子力学和广义相对论的数学基础做出了重要的贡献。并且在1900年,在巴黎的国际数学家大会上,希尔伯特发表了题为《数学问题》的著名演讲,他根据过去特别是十九世纪数学研究的成果和发展趋势,提出了23个重要的数学问题,这为二十世纪的许多数学研究指出了方向。所以说希尔伯特是推动着一个时代的数学的伟人。希尔伯特作为数学领域中的伟人受到了世人的欣赏与敬仰。对我来说,我所欣赏的是希尔伯特的是希尔伯特具有很强的概括能力和远见,他在1900年所提出的23个问题是在对之前的研究基础以及对未来的发展趋势的预测上提出了,可见他对前人所总结出的知识的高度概括能力,以及他自身的远见能力。而23个问题的提出为二十世纪的许多数学研究指出了方向,这一点也更能充分说明希尔伯特的能力。作为一位伟大的数学家,希尔伯特具有伟人的气魄,他说过“在我们中间,常常听到这样的呼声:这里有一个数学问题,去找它的答案!你能通过思维找到它,因为在数学中没有不可知。”从这句话可以感受到他对数学的尊重以及他的自信,而这一点也我所对他欣赏的方面。

数学史之读后感

数学史是一门既有趣涵盖的知识又面颇多颇深的课。在这里我对数学课本上出现的熟悉而又陌生的数学家有了跟进一步的了解。每一位数学家都有自己的一段可歌可泣的故事,每个故事也都激励着我们。在他们身上我学习到了刻骨钻研的精神。

教授我数学史的老师他自身在数学方面的研究也是一段深刻的“数学史”,老师在讲课的过程中也会提及他早年在数学上的研究经历,他生动的演讲让我懂得了数学研究道路上的不易以及具备坚持不懈的精神的可贵。我印象最深的就是老师有一次提到他年轻时在外国留学时如何解决老师给的他的数学难题的事迹。老师花了很长是的时间解决了数学难题令他的老师对他刮目相看,真是一件很耐人寻味的事。

一个学期的数学史就要结束了,在这个学期里我收获颇多,虽然课程已经结束,但是在接下来的时间里,我会更加关注数学史的。

第三篇:数学史

1学习数学史有何意义?研究数学史主要有那些形式?

与其他知识部门相比,数学是门历史性或者说累积性很强的科学。重大的数学理论总是在继承和发展原有理论的基础上建立起来的,它们不仅不会推翻原有的理论,而且总是包容原先的理论。人们也常常把现代数学比喻成一株茂密的大树,它包含着并且正在继续生长出越来越多的分支。

数学史不仅是单纯的数学成就的编年记录。数学的发展决不是一帆风顺的,在更多的情况下是充满忧郁、徘徊,要经历艰难曲折,甚至会面临危机。数学史也是数学家们克服困难和战胜危机的斗争记录。对这种记录的了解可使我们从前人的探索与奋斗中汲取教益,获得鼓舞和增强信心。因此,可以说不了解数学史就不可能全面了解数学科学。

大类分为内史和外史。具体有编年史(随时间前后)、国别史(按不同国家区域)、学科史(按数学分科)、断代史(截开一个历史横断面,研究同一个时期内各个国家各个区域的数学情况)

2作为世界四大文明古国之一,中国在先秦时期有哪些主要的数学成就?

商高定理:又叫“勾股定理”。在任何一个直角三角形中,两条直角边的平方之和一定等于斜边的平方。在中国,《周髀算经》记载了勾股定理的公式与证明,相传是在商代由商高发现,故又有称之为商高定理。勾股定理是几何学中一颗光彩夺目的明珠,被称为“几何学的基石”,而且在高等数学和其他学科中也有着极为广泛的应用。

《墨经》:诸子百家中阐述自然科学理论与学说最丰富的著作,包括光学、力学、逻辑学及几何学等各方面的知识,还包含了无限分割的思想。

《周髀算经》:《周髀(bì)算经》乃是算经的十书之一。原名《周髀》,它是我国最古老的天文学著作,主要阐明当时的盖天说和四分历法。唐初规定它为国子监明算科的教材之一,故改名《周髀算经》。《周髀算经》在数学上的主要成就是介绍了勾股定理及其在测量上的应用以及怎样引用到天文计算。

3刘徽是中国历史上。最重要的数学家之一,他的«九章算术注»对于中国传统数学体系的形成具有特别重要的意义。试阐述他的主要数学成就。

刘徽的数学成就大致为两方面:

一是清理中国古代数学体系并奠定了它的理论基础。这方面集中体现在《九章算术注》中。它实已形成为一个比较完整的理论体系:二是在继承的基础上提出了自己的创见。

用数的同类与异类阐述了通分、约分、四则运算,以及繁分数化简等的运算法则;他从开方不论述了无理方根的存在。他还用“率”来定义中国古代数学中的“方程”,即现代数学中线性方程组的增广矩阵。逐一论证了有关勾股定理与解勾股形的计算原理,建立了相似勾股形理论,发展了勾股测量术;用出入相补、以盈补虚的原理及“割圆术”的极限方法提出了刘徽原 1

理,并解决了多种几何形、几何体的面积、体积计算问题。他在《九章算术•圆田术》注中,用割圆术证明了圆面积的精确公式,并给出了计算圆周率的科学方法。

4宋元时期我国最杰出的数学家有哪些?试阐述他们的代表作和主要数学成就。

宋元时期数学,可以说是以算筹为主要工具的中国古代数学的极盛时期,出现了沈括、秦九韶、李治、杨辉、朱世杰等著名的数学家和他们编写的数学著作。如沈括的《梦溪笔谈》,秦九韶的《数学九章》等。这一时期数学家取得了很多具有世界意义的成就,特别是高次方程数值解法、天元术和四元术、大衍求一术、垛积术和招差术等。北宋沈括《梦溪笔谈》中曾经研究二阶级数求和问题,首创“隙积术”。南宋杨辉丰富和发展了隙积术的成果,提出

S=12+22+32+…+n2=1/6n(n+1)(2n+1)

S=1+3+6+10+…+n(n+1)/2=1/6n(n+1)(n+2)

之类的垛积公式。

5中国传统数学是世界数学发展长河的一支不容忽视的源头, 她有哪些重要特点?

一是追求实用,如《周髀算经》是我国最古老的天文学著作;二是注重算法,“问—答—术”的解题程序,“术”就是解答该类问题的程序化算法;三是寓理于算,如中国传统几何理论基础“出入相补”等原理。20世纪数学的发展有哪些显著的特点?

一是更高的抽象性,包括集合论观点(数学的研究对象是抽象集合)和公理化方法(数学的研究对象);二是更强的统一性,体现在几何与分析的统一、几何与代数的统一、几何分析和代数的统一;三是更深刻的基础性,体现在集合论悖论、三大学派(逻辑主义、直觉主义、形式主义)、数理逻辑体系;四是更广泛的应用性。20世纪应用数学的发展有哪些特点?

向人类几乎所有的知识领域渗透,纯粹数学几乎对所有的分支都获得应用;现代数学对生产技术的应用变得越来越直接,向外渗透产生了一些相对独立的学科,如数理统计、运筹学、控制论和信息论等。现代计算机的出现,对数学科学的发展有何影响?对您影响最大的现代数学的学科有哪些?为什么?对您影响最大的数学家有哪些人?为什么?

第四篇:数学史

数学史读后感

寒假读了数学史,有很多感触。原来最简单的数字在诞生之前,也经历了那么多曲折,现在看起来很自然的数字0、无理数、负数等,在当时看来是那么奇怪。历史上经历了蛮长的过程才被接受,他们是许多学者前仆后继、辛勤耕耘的结果。

数学史上的三次危机,正是由于数学家们不怕困难,坚持真理,数学才得以继续发展。正如数学的发展过程一样,数学的学习过程也会遇到各种困难和挫折,但是我们要向祖冲之,陈景润、欧拉他们那样,孜孜不倦的学习,以顽强拼搏的精神和勇气,经过思考和探索获得只是。同时,我们也要学习数学家们敢于质疑和创新精神,善于思考。创新是发展的灵魂。在以后的学习中,不因困难而放弃,刻苦钻研。我的数学不太好,但是我不会放弃。虽然不会成为数学家,但是我一定会把数学学好,多写、多练。祖冲之的故事给了我很多感悟。

祖冲之(公元429——500年)是我国南北朝时代一位成绩卓著的科学家。他不仅在天文、数学等方面有过闻名世界的贡献,而且在机械制造等方面也有许多发明创造。他的发明为促进社会生产的发展,建立了不可磨灭 的功绩,受到了中国人民和世界人民的尊敬。刘徽发明了用分割的方法,求得圆周率的近似值3.14。他说用无限分割方法可以求得更加精确的数值,但是后来是由祖冲之求得了更加精确的数值。他的毅力和坚持是多么让人敬佩啊。相比之下,我们的那点困难又算的了什么呢。我们现在有如此优越的条件,更应该努力学习,不能因为一点小小的挫折,就倒下了,要坚持。要明确自己的目标,人正是因为有了清晰的目标和坚定的信仰,有了脚踏实地的行动,才能成功。以后要积极思考,发现问题,学习数学家创新的精神,如果没有欧几里得第五公设的怀疑就不会有非欧几何的产生,如果没有创新的勇气哪儿会有康托尔集合论的创立。

数学的发展只一个漫长而又曲折的过程,我们学习的只是很少的一部分,没有理由不好好学。这个过程正如人生一样,布满荆棘,但不能阻挡我们的前进。

第五篇:数学史

前言

一、数学史研究哪些内容? P1 答:数学史研究数学概念、数学方法和数学思想的起源与发展,及其与社会政治、经济和一般文化的联系。

二、历史上关于数学概念的定义有哪些? P5~8 答:

1、公元前4世纪的希腊哲学家亚里士多德将数学定义为“数学是量的科学”。2、16世纪英国哲学家培根(1561—1626)将数学分为“纯粹数学” 与“混合数学”。

3、在17世纪,笛卡儿(1596—1650)认为:“凡是以研究顺序(order)和度量(measure)为目的的科学都与数学有关”。4、19世纪恩格斯这样来论述数学:“纯数学的对象是现实世界的空间形式与数量关系”。根据恩格斯的论述,数学可以定义为:“数学是研究现实世界的空间形式与数量关系的科学。” 5、19世纪晚期,集合论的创始人康托尔(1845—1918)曾经提出: “数学是绝对自由发展的学科,它只服从明显的思维,就是说它的概念必须摆脱自相矛盾,并且必须通过定义而确定地、有秩序地与先前已经建立和存在的概念相联系”。6、20世纪50年代,前苏联一批有影响的数学家试图修正前面提到的恩格斯的定义来概括现代数学发展的特征:“现代数学就是各种量之间的可能的,一般说是各种变化着的量的关系和相互联系的数学”。

7、从20世纪80年代开始,又出现了对数学的定义作符合时代的修正的新尝试。主要是一批美国学者,将数学简单地定义为关于“模式” 的科学:“【数学】这个领域已被称作模式的科学,其目的是要揭示人们从自然界和数学本身的抽象世界中所观察到的结构和对称性”。

三、数学史通常采用哪些线索进行分期?P9

答:一般可以按照如下线索:

(1)按时代顺序;(2)按数学对象、方法等本身的质变过程;(3)按数学发展的社会背景。

四、本书对数学史如何分期?P9

答:

1、数学的起源与早期发展(公元前6世纪前)

2、初等数学时期(公元前6世纪一16世纪)

(1)古代希腊数学(公元前6世纪-6世纪)

(2)中世纪东方数学(3世纪一15世纪)

(3)欧洲文艺复兴时期(15世纪一16世纪)

3、近代数学时期(变量数学,17世纪-18世纪)

4、现代数学时期(1820年一现在)(1)现代数学酝酿时期(1820„一1870)(2)现代数学形成时期(1870—1940’)

(3)现代数学繁荣时期(当代数学时期,1950-现在)

第一章

一、世界上早期常见有几种古老文明记数系统,它们分别是什么数字,采用多少进制数系? P13 答:1.古埃及的象形数字(公元前3400年

左右):十进制数系

2.巴比伦楔形数字(公元前2400年左右):六十进制数系 3.中国甲骨文数字(公元前1600年左右):十进制数系 4.希腊阿提卡数字(公元前500年左右):十进制数系 5.中国筹算数码数字(公元前500年左右):十进制数系 6.印度婆罗门数字(公元前300年左右):十进制数系

7.玛雅数字(?):二十进制数系

二、“河谷文明”指的是什么? P16 答:历史学家往往把兴起于埃及。美索不大米亚、中国和印度等地域的古代文明称为“河谷文明”。

三、关于古埃及数学的知识主要依据哪两部纸草书?P17 纸草书中问题绝大部分都是实用性质,但有个别例外,请举例。P23

答:古埃及数学的知识主要依据莱茵德纸草书和莫斯科纸草书两部纸草书。例如:莱茵德纸草书第79题:“7座房,49只猫,343只老鼠,2401棵麦穗,16807赫卡特。

四、美索不达米亚人的记数制远胜埃及象形数字之处主要表现在哪些方面?P23—2

5答:

1、六十进制为主德楔形文记数系统。

2、巧妙地将位值原理应用到整数以外的分数。

3、计算程序化。

4、数表计算。

第二章

一、希腊数学一般是指什么时期,活动于什么地方的数学家创造的数学? P32 答:希腊数学一般指从公元前600年至公元600年间,活动于希腊半岛、爱琴海区域、马其顿与色雷斯地区、意大利半岛、小亚细亚以及非州北部的数学家们创造的数学。

二、什么使泰勒斯获得了第一位数学家和论证几何学鼻祖的美名? P33 答:关于泰勒斯并没有确凿的传记资料留传下来。但是以下命题记载却流传至今,使泰勒斯获得了第一位数学家和论证几何学鼻祖的美名。泰勒斯曾证明了下列四条定理:

1、圆的直径将圆分为两个相等的部分;

2、等腰三角形两底角相等;

3、两相交直线形成的对顶角相等;

4、如果一三角形有两角、一边分别与另一三角形的对应角、边相等,那么这两个三角形全等。传说泰勒斯还证明了现称“泰勒斯定理”的命题:半圆上的圆周角是直角。

三、毕达哥拉斯学派认为宇宙万物皆依赖于整数的信条由于什么发现而受到动摇?这个“第一次数学危机”是由于什么人提出的新比例理论而暂时消除,P38这个新比例理论当今的语言可怎么叙述?P48 答:毕达哥拉斯学派认为宇宙万物皆依赖于整数的信条由于不可公度量的发现而受到动摇, 这个“第一次数学危机”是大约一个世纪以后,由于毕达哥拉撕学派成员阿契塔斯的学生欧多克斯提出的新比例理论而暂时消除。

这个新比例理论当今的语言可叙述为(P48):设A,B,C,D是任意四个量,其中A和B同类,C和D同类,如果对于任意两个正整数m和n,关系mA()nB是否成立,相应地取决于关系mC()nD是否成立,则称A与B之比等于C与D之比,即四量成比例。

四、希腊数学学派主要有哪些学派? P39

答:希腊数学也随之走向繁荣,学派林立,主要有:

1、伊利亚学派;

2、诡辩学派;

3、雅典学院(柏拉图学派);

4、亚里士多德学派。

五、古希腊三大著名几何问题是什么?P40 答:(1)化圆为方,即作一个给定的圆面积相等的正方形。

(2)倍方立体,即求作一立方体,使其体积等于已知立方体的两倍。(3)三等分角,即分任意角为三等分。

六、亚里士多德《物理学》中记载芝诺提出的四个著名的悖论是什么?P43 答:芝诺四个著名悖论:

1、两分法

2、阿基里斯

3、飞箭

4、运动场

七、希腊数学的“黄金时代”指的是什么时间?这时期希腊数学的中心从雅典移到何处,此处出现了哪三大数学家? P45

答:从公元前338年希腊诸邦被马其顿控制,至公元前30年罗马消灭最后一个希腊化国家托勒密王国的三百余年,史称希腊数学的“黄金时代”。

这时期希腊数学的中心从雅典移到亚历山大城;此处出现了欧几里得、阿基米德和阿波罗尼奥斯三大数学家,标志着古代希腊数学的颠峰。

八、几何《原本》共分多少卷,包括有多少条公理,多少条公设,多少个定义和多少条命题? P46 答:几何《原本》共分13卷,包括有5条公理,5条公设,119定义和465条命题。

九、阿基米德数学研究的最大功绩是什么? P52~53 答:阿基米德数学研究的最大功绩是集中探讨与面积与体积计算相关的问题。主要著述:(1)《圆的度量》(2)《抛物线求积》(3)《论螺线》(4)《论球和圆柱》(5)《论劈锥曲面和旋转椭球》(6)《引理集》(7)《处

理力学问题的方法》(8)《论平面图形的平衡或其重心》(9)《论浮体》(10)《沙粒计数》(11)《牛群问题》。

十、阿波罗尼奥斯最重要的数学成就是什么?P58 答:阿波罗尼奥斯最重要的数学成就是创立了相当完美的圆锥曲线理论。

第三章

一、中国数学史上何时何人何种方法最先完成勾股定理证明?P70

答:公元3世纪三国时期的赵爽在注《周髀算经》,作“勾股圆方图“,其中的”弦图“,相当于运用面积的出入相补证明了勾股定理。

二、《九章算术》中各章名称是什么?这些章节中谈论算术、代数、几何方面的内容为哪些章节?P71----78 答 :《九章算术》采用问题集的形式,全书246个问题,分成九章,依次为:方田、粟米、衰分、少广、商功、均输、盈不足、方程、勾股,其中所包含的数学成就是丰富和多方面的。

算术方面:方田、粟米、衰分、均输、盈不足;

代数方面:方程;

几何方面:方田、商功、勾股。

三、刘徽的数学成就中最突出是什么? P78

答:刘徽的数学成就中最突出是 “割圆术”和“体积理论”

四、贾宪增乘开方法能否适用于开任意高次方? P93

答:贾宪增乘开方法,是一个非常有效的和高度机械化的算法,可适用于开任意高次方。

五、为什么说一次同余组求解的剩余定理常常被称为“中国剩余定理”? P96 答:秦九韶(约公元1202――1261)的“大衍求一术”是完全正确且十分严密的,但本人没有给出证明,到18、19世纪,欧拉(1743)和高斯(1801)分别对一次同余组进行了详细研究,重新独立地获得与秦九韶“大衍求一术”相同的定理,并对模数两两互素的情形作出了严格证明。1876年德国人马蒂生首先指出秦九韶的算法与高斯算法是一致的,因此关于一次同余组求解的剩余定理常常被称为“中国剩余定理”。

第四章

一、印度数学的发展可划分为3个重要时期,这3个重要时期是指什么时期?

答;印度数学的发展可以划分为三个重要时期,首先是雅利安人入侵以前的达罗毗(pi)荼人时期(约公元前3000——前1400),史称河谷文化;随后是吠(fei)陀(tuo)(约公元前10世纪——前3世纪);其次是悉檀(tan)多时期(5世纪——12世纪)。

二、用圆圈符号“O”表示零,可以说是印度数学的一大发明,印度人起初用什么表示零,直到最后发展为圈号。答:点号,直到最后发展为圈号。

1.“0”表示空位;

2.“0”表示“无”;

3.数域的一个基本元素,可以运算。

三、“巴克沙利手稿”中涉及到哪些的数学内容? P107 答:“巴克沙利手稿”中涉及到分数,平方根、数列、收支与利润计算、比例算法、级数求和、代数方程等,其代数方程包括一次方程、联立方程组、二次方程。特别值得注意的是手稿中使用了一些数学符号如:减号、零号“0”。

四、“阿拉伯数学“是否单指阿拉伯国家的数学? P113 答:“阿拉伯数学“并非单指阿拉伯国家的数学,而是指8――15世纪阿拉伯帝国统治下整个中亚和西亚地区的数学,包括希腊人、波斯人、犹太人和基督徒等所写的阿拉伯文及波斯文等数学著作。

五、第一次给出一元二次方程的一般代数解法是来自何人著的著作?

P114

答:第一次给出一元二次方程的一般代数解法是来自中世纪对欧洲数学影响最大的阿拉伯数学家花拉子米(约783-850)的《代数学》。

第五章

一、卡尔丹在1545年出版的著作《大法》中公布了形如x3+mx2=n(m,n>0)的三次方程的解法是从何人那里传授来的?在《大法》中卡尔丹对三次方程又进一步作了哪些工作?P126

答:卡尔丹在1545年出版的著作《大法》中公布了形如x3+mx2=n(m,n>0)的三次方程的解法是从塔塔利亚(1499――1557)那里传授来的。

在《大法》中卡尔丹给出了一般三次方程的解法,而且补充了几何证明;书中还把其学生费拉里(1522――1565)的一般四次方程的解法写进《大法》中。

二、学符号系统化首先应归功于哪位数学家,对这位数学使用的代数符号的改进工作是由何人完成的? P129 答:数学符号系统化首先应归功于法国数学家韦达(1540――1603),对这位数学使用的代数符号的改进工作是由法国笛卡儿(1596――1650)完成的,他首先用拉丁字母(a,b,c,d,)表示已知量,后几个(x,y,z,w,)表示未知量等。

三、球面三角与平面三角何者先出现?P131

答:球面三角先于平面三角出现。

四、对数是何人首先发明?它的产生主要是由于什么的需要?P136 答 :苏格兰贵族数学家纳皮尔正是在球面天文学的三角研究中首先发明对数方法的。对数的产生主要是由于天文和航海计算的强烈需要。

五、笛卡儿创立解析几何的灵感有几个传说,请试述其中的任意一个。P142 答:笛卡儿创立解析几何的灵感有两个传说。第一个传说“晨思”时,看见一只天花板的苍蝇,想确定其路线;另一个传说是1619年冬天的三个连惯的三个梦。

第六章

一、微积分与积分学的起源何者在先,何者在后?P145 答:积分学的起源在先,微积分的起源比积分学的起源要晚的多。

二、微积分酝酿阶段最有代表性的工作有哪几项?P146—154 答:

(一)开普勒与旋转体体积;

(二)卡瓦列里不可分量原理;

(三)笛卡尔“圆法”;

(四)费马求极大值与极小值的方法;

(五)巴罗“微分三角形”;

(六)沃利斯“无穷算术”。

三、牛顿走上创立微积分之路受哪两部著作的影响最深?P155 答:就数学思想的形成而言,笛卡儿的《几何学》和沃利斯的《无穷算术》对他的影响最深,正是这两部著作引导牛顿走上创立微积分之路。

四、牛顿1666年写了《流数简论》之后,始终不渝努力改进,完善自己的微积分学说,先后写成三篇微积分论文,这三篇论文的名称是什么?P158为什么其中第三篇是牛顿最成熟的微积分著述?P160 答:牛顿1666年写了《流数简论》之后,始终不渝努力改进,完善自己的微积分学说,先后写成三篇微积分论文,这三篇论文的名称是:

1、《运用无穷多项方程的分析》,简称《分析学》(1669)

2、《流数法与无穷级数》,简称《流数法》(1671)

3、《曲线求积分》简称《求积术》(1691)

五、为什么说在微积分的创立上牛顿需要与莱布尼茨分享荣誉?P174 答:牛顿和莱布尼茨都是他们时代的巨人,就微积分的创立而言,尽管在背景、方法和形式上存在差异、各有特色,但两者的功绩是相当的,他们都使微积分成为能普遍适用的算法,同时又都将面积、体积及相当的问题归结为反切线(微分)运算。应该说,微积分能成为独立的科学并给整个自然科学带来革命性的影响,主要是靠了牛顿与莱布尼兹的工作,在科学上,重大的真理往往在条件成熟的一定时期的探索者相互独立地发现,微积分地出来,情形也是如此。所以说在微积分的创立上牛顿需要与莱布尼茨分享荣誉。

第七章

一、18世纪微积分发展包括哪几个主要方面?P176—187 答:

(一)积分技术与椭圆积分,(二)微积分向多元函数的推广,(三)无穷级数理论,(四)函数概念的深化,(五)微积分严格化的尝试。

二、简述18世纪常微分方程的发展过程。P188 答:

1、常微分方程是伴随着微积分一起发展起来的,从17世纪末开始,摆的运动、弹性理论以及天体力学等实际问题的研究引出了一系列常微分方程。

2、数学家们起初是采取特殊的技巧来对付特殊的方程,但逐渐开始寻找带普遍性的方法,如:莱布尼兹1691年分离变量法,1696年雅各布伯努利的“伯努利方程”;欧拉和克莱洛的“积分因子法”。

3、欧拉1743年关于n阶常系数线性齐次方程的完整解法。

4、18世纪常微分方程求解的最高成就是拉格朗日1774~1775年间用参数变易法解出了一般n阶变系数非齐次常微分方程。

三、简述18世纪微分几何的形成过程。P196 答:

1、1731年十八岁的法国青年数学家克莱洛发表《关于双重曲率曲线的研究》,开创了空间曲线理论,是建立微分几何的的重要一步;

2、欧拉是微分几何的重要奠基人。他早在1736年就引进了平面曲线的内在坐标概念; 3、18世纪微分几何的发展由于蒙日的工作而臻于高峰,1795年发表的《关于分析的几何应用的活页论文》是第一步系统的微分几何著述。

四、述哥德巴赫猜想与华林问题。P204 答:哥德巴赫猜想从:每个偶数是两个素数之和;每个奇数是三个素数之和。

kkk华林问题:任一自然数n可表示成至多r次幂之和,即nx1x2x3xrk,其中x1,x2,x3,,xr为自然数,r依赖于k。

第八章

一、数学家阿贝尔通过证明什么样的结论解决了五次和高于五次的一般方程的求解问题?P208 答:1824年,年仅22岁的挪威数学家阿贝尔(1802——1829)出版的《论代数方程,证明一般五次方程的不可解性》,在其中严格证明了:如果方程的次数n5,并且系数a1,a2,,an看成字母,那么任何一个由这些字母组成的根式都不可能是方程的根,这样,五次和高于五次的一般方程的求解问题就由阿贝尔解决了。

二、布尔的逻辑代数思想集中在他的哪两本书中。P219

答:布尔(英国数学家,1815--1864)的逻辑代数思想集中在他的1847年发表的《逻辑的数学分支》和1854年出版的《思维规律研究》。

三、《算术研究》的作者是谁,发表的年份是何时?它的发表有何意义。P221

答:《算术研究》是德国数学家高斯在1801年发表的。在19世纪以前,数论只是一系列孤立的结果,《算术研究》发表后数论作为现代数学的一个重要分支得到了系统的发展。《算术研究》中有三个主要思想:同余理论,复整数理论和型的理论。

第九章

一、非欧几何三位发明人(高斯、波约、罗巴切夫斯基)中哪位是最早、最系统地发表自己关于非欧几何的研究成果?P230

答:罗巴切夫斯基。

二、最先理解非欧几何全部意义的数学家是谁?在欧几里得空间中给出非欧几何的直观模型的数学家有哪几位?P235~236 答:最先理解非欧几何全部意义的数学家是黎曼

在欧几里得空间中给出非欧几何的直观模型的数学家有:意大利数学家贝尔特拉米、德国数学家克莱因和法国数学家庞加莱。

三、在射影几何的发展过程中,庞斯列有哪些创举?P239~240 答:庞斯列(法国数学家,1788-1867)1822年出版的《论图形的射影性质》,带来了这门学科历史上的黄金时期。庞斯列有探讨一般问题:图形在射影和截影下保持不变的性质;选择并发展了对偶与调和点列理论;采用中心投影而不是平行投影及两个基本原理——连续性原理和对偶原理的创举。

第十章

一、柯西在分析基础工作方面做了哪些工作?P247

答:柯西(法国数学家,1789——1851)在分析基础工作方面,他写出了一系列著作,其中最有代表性的是《分析教程》(1821)和《无穷小计算教程概论》(1823),它们以严格化为目标,对微积分的基本概念,如变量、函数、极限、连续性、导数、微分、收敛等等给出了明确的定义,并在此基础上重建和拓展了微积分的重要事实与定理。

二、魏尔斯特拉斯在1861年举出一个什么例子来说明存在处处连续但却处处不可微的函数?P250 答:魏尔斯特拉斯在1861年举出一个例子

f(x)bncos(anx),其中a是奇数,n0b(0,1)为常数,使得ab13.2

三、魏尔斯特拉斯关于分析严格化的突出表现是创造了一套什么语言?P253 答:魏尔斯特拉斯关于分析严格化的突出表现是创造了一套ε-δ语言。

四、集合论的建立是由哪些问题研究而导致的?P255 答:在分析的严格化过程中,一些基本概念如极限、实数、级数等的研究都涉及到由无穷多个元素组成的集合,特别是在对那些不连续函数进行分析时,需要对使函数不连续或使收敛问题变得很困难的点集进行研究,这样就导致了集合论的建立。

五、19世纪分析的扩展表现在哪些方面?P258~263 答:

1、复分析的建立;

2、解析数论的形成;

3、数学物理方程与微分方程。

第十一章

一、与19世纪相比,20世纪纯粹数学的发展表现出哪些主要的特征与趋势?P271 答:

1、更高的抽象性

2、更强的统一性

3、更深入的基础探讨

二、1900年德国数学家希尔伯特在巴黎国际数学家大会上作演说中提出23个数学问题,至今这23个问题解决状况如何?P272~274 答:(略,详见教材P272~274。)

三、集合论观点的渗透和公理化方法的运用导致20世纪上半叶哪四大数学抽象分支的崛兴?P276 答:集合论观点的渗透和公理化方法的运用导致20世纪上半叶实变函数论、泛函分析、拓扑学和抽象代数四大数学抽象分支的崛兴

四、简述实变函数论的建立。P276——278 答:

1、法国数学家勒贝格1902年发表的《积分,长度与面积》中利用以集合论为基础的“测度”概念而建立勒所谓“勒贝格积分”。

2、在勒贝格积分的基础上进一步推广导数等其他微积分基本概念,并重建微积分基本定理(微分运算与积分运算的互逆性)等微积分的基本事实,从而形成了一门新的数学分支——实变函数论。

五、“泛函”这个名称是由谁最先采用的?(P279)为什么说泛函分析的建立体现了20世纪在集合论影响下空间和函数这两个基本概念的进一步变革?P279-280

答:“泛函”这个名称是由法国数学家阿达马最先采用的.因为“空间”现在被理解为某类元素的集合,这些元素按习惯被称作“点”,它们之间受到某种关系的约束,这些关系被称之为空间的结构,简言之,“空间”仅仅是具有某种结构的集合,而“函数”的概念则推广为两空间之间的元素(映射)关系。所以说泛函分析的建立体现了20世纪在集合论影响下空间和函数这两个基本概念的进一步变革。

六、《环中的理想论》的作者是谁?P282 答:《环中的理想论》的作者是诺特(1882-1935)。

七、拓扑学研究什么内容?“拓扑学”这一术语是由何人首先引用的? P285 答:拓扑学研究几何图形的连续性质,即在连续变形下保持不变的性质(允许拉伸、扭曲,但不能割断和粘合)。“拓扑学”这一术语是由高斯的学生李斯廷1847年首先引用的。

八、简述概率论起源以及公理化后概率论取得哪些突破?P287、P291 答:概率论起源于博弈问题。P287 公理化后概率论取得如下突破:P291

1、使随机过程的研究获得了新的起点,2、随机过程是“鞅”,鞅论使随机过程的研究进一步抽象化,1942年开始,日本数学家伊藤清引进随机积分与随机微分方程,不仅开辟了随机过程研究的新道路,而且为一门意义深远的数学新分支——随机分析的创立与发展奠定了基础。

九、举例说明20世纪下半叶不同分支领域的数学思想与数学方法互相融合导致重大发现的事实。P292-297 答:1.微分拓扑与代数拓扑2.整体微分几何3.代数几何 4.多复变函数论 5.动力系统6.偏微分方程与泛函分析7.随机分析

十、试述罗素关于集合的悖论。P298 答:以M表示是其自身成员的集合的几何,N表示不是其自身成员的集合的集合。然后问:集合N是否为它自身的成员?如果N是它自身的成员,则N属于M而不属于N,也就是说N不是它自身的成员;另一方面,如果N不是它自身的成员,则N属于N而不属于M,也就是说N是它自身的成员。无论出现哪一种情况,都将导出矛盾的结论。

十一、数学基础的三大学派是什么?P300 答:

1、以罗素为代表的逻辑主义

2、以布劳威尔为代表的直觉主义

3、以希尔伯特为代表的形式主义

十二、现代数理逻辑的四大分支是什么?P303 答:1。公理化集合论 2.证明论 3.模型论4.递归论

第十二章

一、应用数学新时代具有哪几个方面特点?P307——309 答:

1、数学的应用突破了传统的范围而向人类几乎所有的知识领域渗透;

2、纯粹数学几乎所有的分支都获得了应用,其中最抽象的一些分支也参与了渗透;

3、现代数学对生产技术的应用变得越来越直接;

4、现代数学在向外渗透的过程中,产生了一些相对独立的应用学科如:数理统计、运筹学、控制论等等。

二、数学向其他科学渗透表现在哪些方面?P309 答:

1、数学物理

2、生物数学

3、数理经济学

三、简述数理统计、运筹学、控制论发展过程。P317-324 答:略

四、简述电子计算机的诞生。P325答:略

五、计算机对数学的影响表现在哪些方面?P330 答:

1、计算数学的兴旺

2、纯粹数学研究与计算机

3、计算机科学中的数学

第十三章

一 简述20世纪十例现代数学成果的内容。

答:1.哥德尔不完全性定理。P339 2.高斯-博内公式的推广。P341 3.米尔诺怪球。P343 4.阿蒂亚-辛格指标定理。P344 5.孤立子与非线性偏微分方程。P345 6.四色问题。P347 7.分形与混沌。P349 8.有限单群分类。P353 9.费马大定理的证明。P355 10.若干著名未决猜想的进展。359

二、庞加莱猜想、哥德巴赫猜想、黎曼猜想的内容是什么?P359 答:庞加莱猜想是拓扑学中一个著名的和基本的问题,即任意一个三维的单连通闭流形必与三维球面同胚。

哥德巴赫猜想:偶数都是两个奇素数之和,奇数都是三个奇素数之和。

黎曼猜想:在带状区域01中,黎曼(s)11的零点都位于直线上。s2nn1

第十四章

一、为什么说数学的发展与社会的进化之间联系是双向的?P363 答:一方面,数学的发展依赖于社会环境,受着社会经济、政治和文化等诸多因素的影响; 另一方面,数学的发展又反过来对人类社会的进步起推动作用,包括对人类物质文明和精神文明两大方面的影响。

二、数学如何促进社会进步?P363—364 答:数学的发展对人类社会的进步起推动作用,包括对人类物质文明和精神文明两大方面的影响。数学对人类物质文明的影响,最突出的是反映在与能从根本上改变人类物质生活方式的产业革命的关系上。人类历史上先后共有三次重大的产业革命,其主体技术都与数学的新理论、新方法的应用有直接或间接的关联;数学对于人类精神文明的影响同样也很深刻,数学本就是一种精神,一种探索精神,这种精神的两个要素,即对理性(真理)与完美的追求,千百年来对人们的思维方式、教育方式以及世界观、艺术观等的影响是不容否认的,数学往往成为解放思想的决定性武器。

三、1850——1899年间创办,至今仍在发行的主要数学期刊有哪些?P372 答:《纯粹与应用数学年报》(1850,意大利),《数学汇刊》(1865,俄国),《数学年刊》(1868,德国),《美国数学杂志》(1878,美国),《数学年报》(1882,瑞典),《数学年刊》(1884,美国),《美国数学月刊》(1894,美国)。

四、中国数学会是建立何年建立的?P376 答:1935年中国数学会建立的。

五、试述各届国际数学家大会召开年份与地点。P375 答:略

六、两项影响最大的国际数学奖励是什么奖?何年、在何领域取得其中的哪个奖?P376,P378——379 答:两项影响最大的国际数学奖励是菲尔兹奖和沃尔夫奖。

中国数学家丘成桐,1983年,微分几何,偏微分方程,相对论,菲尔兹奖。中国数学家陈省身,1984年,整体微分几何,沃尔夫奖。

第十五章

一、试述17世纪初至19世纪末在中国出现两次西方数学传播的高潮的时间与内容。P381 答:第一次是从17世纪初到18世纪初,标志性的事件是欧几里得《原本》的首次翻译,17世纪中页以后,文艺复兴时代以来发展起来的西方初等数学知识如三角学、透视学、代数学等也部分传入中国;第二次高潮是从19世纪中叶开始,除了初等数学,这一时期传入的数学知识还包括了解析几何、微积分、无穷级数论、概率论等近代数学。

二、中国第一个大学数学系是在哪所大学设立?P383答:1912,中国第一个大学数学系是在北京大学数学系成立。

三、1912年至1930年中国有哪些大学创办了数学系?P384 答:北京大学、清华大学、南开大学、浙江大学、南京大学、北京师范大学、武汉大学、厦门大学、四川大学、中山大学、东北大学、交通大学、安徽大学、山东大学、河南大学

第十六章

一、简述华罗庚生平P387答:略

二、写一篇学习数学史教程的心得体会。答:略

填空题

1、历史学家往往把兴起于、、、和 等地域的古代文明称为“河谷文明”。

埃及、美索不达亚、中国、印度

2.欧几里得是希腊论证几何学的集大成者,他的著作中,最重要的莫过于。《原本》 3.在现存的中国古代数学著作中,是最早的一部。《周髀算经》 4.《九章算术》“ ”、“ ”、“ ”诸章集中讨论比例问题。

粟米、衰分、均输 5.刘徽数学成就中最突出的是“ ”和。割圆术、体积理论

6. 的推导和 的计算是祖冲之本人引以为荣的两大数学成就。球体积 圆周率

7.宋元数学发展中一个最深刻的动向是代数符号化的尝试,这就是“ 天元术 ”和“ 四圆术 ”。8.数学符号系统化首先归功于法国数学家。韦达

9.解析几何的真正发明归功于法国另外两位数学家 和。

笛卡儿 费马 10.牛顿的《 》标志着微积分的诞生。流数简论 11.18世纪微积分最重大的进步是由 作出的。欧拉 12.“巴黎三L”指、、。拉普拉斯 拉格朗日 勒让德 13.___________是历史上并不多见的以“神童”著称的一位数学家。高斯 14.___________可以说是最先理解非欧几何全部意义的数学家。黎曼

15.19世纪偏微分方程发展的序幕,是由法国数学家 拉开的。傅立叶 16.现代数理统计学作为一门独立学科的奠基人是英国数学家。费希尔 17.影响最大的国际数学奖励: 和。菲尔兹奖 沃尔夫奖 18.________年,中国第一个大学数学系—北京大学数学系成立(当时叫“数学门”,后改为“数学系”)。1912

下载数学史作业(5篇材料)word格式文档
下载数学史作业(5篇材料).doc
将本文档下载到自己电脑,方便修改和收藏,请勿使用迅雷等下载。
点此处下载文档

文档为doc格式


声明:本文内容由互联网用户自发贡献自行上传,本网站不拥有所有权,未作人工编辑处理,也不承担相关法律责任。如果您发现有涉嫌版权的内容,欢迎发送邮件至:645879355@qq.com 进行举报,并提供相关证据,工作人员会在5个工作日内联系你,一经查实,本站将立刻删除涉嫌侵权内容。

相关范文推荐

    数学史 勾股定理

    毕达哥拉斯定理小记 2014071137 朱燕 初等几何中最引人注目的,也是最著名最有用的一个定理,就是所谓的毕达哥拉斯定理:在任何直角三角形中,斜边上的正方形等于两条直角边上的正......

    数学史感悟

    数学史融入中小学数学课堂教学形式上的思考 ——以初二年级为例 任何事物都有其灵魂所在,而数学的灵魂便是数学史。数学史蕴含着数学概念、数学思想、数学起源的本质。学好数......

    《数学史》教学大纲

    《数学史》课程教学大纲 课程名称:数学史 英文名称:History of Mathematics 课程编码:0741122030 学时数:72 适用专业:数学与应用数学 一、课程的性质、目的和任务 数学史是数学......

    古希腊数学史

    古希腊数学史古希腊的地理范围,除了现在的希腊半岛外,还包括整个爱琴海区域和北面的马其顿和色雷斯、意大利半岛和小亚细亚等地。 公元前5、6世纪,特别是希、波战争以后,雅典取......

    数学史读书笔记

    《数学史》读书笔记 十九世纪欧洲的社会环境也为数学发展提供了适宜的舞台,法国资产阶级大革命所造成的民主精神和重视数学教育的风尚,鼓励大批有才干的青年步入数学教育和研......

    数学史学习体会

    数学史学习体会 ——浅析古希腊及古代中国数学发展 摘要:古希腊数学的成就在世界上是首屈一指的,它为人类创造了巨大的精神财富。古希腊数学家注重推理,更多的依靠逻辑思维。而......

    数学史心得

    数学史学习心得 通过一学期的学习,使我对数学史与数学文化有了进一步的了解。 学习了东方初等数学简介、西方初等数学简介和高等数学简介,使我对数学发展有了更多的了解。人类......

    数学史感想

    我学习数学史的感想 数学是从我出生开始就有了,而我对于数学的理解,也在渐渐的改变,从幼儿园的阿拉伯数字,到小学的小数,到初中的解析几何,再到高中的多元函数,以至于大学的常微分......