一元二次方程渗透法制教育教案

时间:2019-05-15 02:45:52下载本文作者:会员上传
简介:写写帮文库小编为你整理了多篇相关的《一元二次方程渗透法制教育教案》,但愿对你工作学习有帮助,当然你在写写帮文库还可以找到更多《一元二次方程渗透法制教育教案》。

第一篇:一元二次方程渗透法制教育教案

九年级数学学科渗透法制教育教案

一、教学目标 知识技能

1.能根据具体问题中的数量关系,列出一元二次方程,体会方程是刻画现实世界的一个有效的数

学模型.

2.能根据具体问题的实际意义,检验结果是否合理. 数学思考

经历将实际问题抽象为代数问题的过程,探索问题中的数量关系,并能运用一元二次方程对 之进行描述。解决问题

通过解决传播问题,学会将实际应用问题转化为数学问题,体验解决问题策略的多样性,发 展实践应用意识. 3.情感态度

通过用一元二次方程解决身边的问题,体会数学知识应用的价值,提高学生学习数学的兴趣,了解数学对促进社会进步和发展人类理性精神的作用.了解《中华人民共和国传染病防治法》。

重难点、关键

重点:列一元二次方程解有关传播问题的应用题

难点:发现传播问题中的等量关系,渗透法制知识

关键:建立一元二次方程的数学模型解传播问题 教学过程

一、复习引入 【问题】

下表是某一周甲、乙两种股票每天每股的收盘价(收盘价:股票每天交易结果时的价格): 星期 一 二 三 四 五

甲 12元 12.5元 12.9元 12.45元 12.75元

乙 13.5元 13.3元 13.9元 13.4元 13.75元

某人在这周内持有若干甲、乙两种股票,若按照两种股票每天的收盘价计算(不计手续费、税费 等),则在他帐户上,星期二比星期一增加200元,•星期三比星期二增加1300元,这人持有的 甲、乙股票各多少股?

老师点评分析:一般用直接设元,即问什么就设什么,即设这人持有的甲、乙股票各x、y 张,由于从表中知道每天每股的收盘价,因此,两种股票当天的帐户总数就是x或y乘以相应的 每天每股的收盘价,再根据已知的等量关系;星期二比星期一增加200元,星期三比星期二增加 1300元,便可列出等式.

解:设这人持有的甲、乙股票各x、y张.

则 解得 答:(略)【思考】

列方程解应用题的基本步骤有哪些?应注意什么? 【活动方略】

教师演示课件,给出题目. 学生口答,老师点评。【设计意图】

复习列方程一次方程解应用题,为继续学习建立一元二次方程的数学模型解实际问题作好铺垫.

二、探索新知 【问题情境】

有一人患了流感,经过两轮传染后,有121人患了流感,每轮传染中平均一个人传染了几个人?

【分析】

(1)本题中有哪些数量关系?(2)如何理解“两轮传染”?

(3)如何利用已知的数量关系选取未知数并列出方程?(4)能否把方程列得更简单,怎样理解?

(5)解方程并得出结论,对比几种方法各有什么特点? 【解答】

设每轮传染中平均一个人传染了x个人,则依题意第一轮传染后有x+1人患了流感,第二轮传染 后有x(1+x)人患了流感。于是可列方程: 1+x+x(1+x)=121 解方程得 x1=10,x2=-12(不合题意舍去)因此每轮传染中平均一个人传染了10个人. 【思考】

如果按这样的传播速度,三轮传染后有多少人患了流感? 【活动方略】 教师提出问题

学生分组,分别按问题(3)中所列的方程来解答,选代表展示解答过程,并讲解解题过程和应 注意问题. 【设计意图】

使学生通过多种方法解传播问题,验证多种方法的正确性;通过解题过程的对比,体会对已知数 量关系的适当变形对解题的影响,丰富解题经验.

三、反馈练习

1.生物兴趣小组的学生,将自己收集的标本向本组其他成员各赠送一件,全组共互赠了182 件,如果全组有x名同学,那么根据题意列出的方程是()A.x(x+1)=182 B.x(x-1)=182 C.2x(x+1)=182 D.x(1-x)=182×2 2.一个小组若干人,新年互送贺卡,若全组共送贺卡72张,则这个小组共(). A.12人 B.18人 C.9人 D.10人

【活动方略】

学生独立思考、独立解题.

教师巡视、指导,并选取两名学生上台书写解答过程(或用投影仪展示学生的解答过程)【设计意图】

检查学生对所学知识的掌握情况.四、应用拓展 渗透法制教育

《中华人民共和国传染病防治法》

第一条 为了预防、控制和消除传染病的发生与流行,保障人体健康和公共卫生,制定本法。第二条 国家对传染病防治实行预防为主的方针,防治结合、分类管理、依靠科学、依靠群众。第十九条 国家建立传染病预警制度。

国务院卫生行政部门和省、自治区、直辖市人民政府根据传染病发生、流行趋势的预测,及 时发出传染病预警,根据情况予以公布。

第三十一条 任何单位和个人发现传染病病人或者疑似传染病病人时,应当及时向附近的疾病预 防控制机构或者医疗机构报告。

五、小结作业 1.问题:

通过本课的学习,大家有什么新的收获和体会?(1)数学知识(2)法制知识

2.作业:教材P53,习题22.3第1、2、6题,P58,复习题22第6题.

第二篇:《一元二次方程》参考教案

21.1 一元二次方程教学内容

本节课主要学习一元二次方程概念及一元二次方程一般式及有关概念.

教学目标

知识技能

探索一元二次方程及其相关概念,能够辨别各项系数;能够从实际问题中抽象出方程知识.

数学思考

在探索问题的过程中使学生感受方程是刻画现实世界的一个模型,体会方程与实际生活的联系.

解决问题

培养学生良好的研究问题的习惯,使学生逐步提高自己的数学素养.

情感态度

通过用一元二次方程解决身边的问题,体会数学知识应用的价值,提高学生学习数学的兴趣,了解数学对促进社会进步和发展人类理性精神的作用.

重难点、关键

重点:一元二次方程的定义、各项系数的辨别,根的作用. 难点:根的作用的理解.

关键:通过提出问题,建立一元二次方程的数学模型,•再由一元一次方程的概念迁移到一元二次方程的概念.

教学准备

教师准备:制作课件,精选习题

学生准备:复习有关知识,预习本节课内容

教学过程

一、情境引入 【问题情境】

问题1 如图,有一块矩形铁皮,长100 cm,宽50 cm.在它的四个角分别切去一个正方形,然后将四周突出的部分折起,就能制作一个无盖方盒.如果要制作的无盖方盒的底面积是3 600 cm2,那么铁皮各角应切去多大的正方形?

问题2 要组织一次排球邀请赛,参赛的每两个队之间都要比赛一场.根据场地和时间等条件,赛程计划安排7天,每天安排4场比赛,比赛组织者应该邀请多少个队参赛? 【活动方略】

教师演示课件,给出题目.

学生根据所学知识,通过分析设出合适的未知数,列出方程回答问题. 【设计意图】

由实际问题入手,设置情境问题,激发学生的兴趣,让学生初步感受一元二次方程,同时让学生体会方程这一刻画现实世界的数学模型.

二、探索新知 【活动方略】

学生活动:请口答下面问题.

(1)上面几个方程整理后含有几个未知数?

(2)按照整式中的多项式的规定,它们最高次数是几次?

(3)有等号吗?或与以前多项式一样只有式子?

老师点评:(1)都只含一个未知数x;(2)它们的最高次数都是2次的;(3)都有等号,是方程.

归纳:像这样的方程两边都是整式,只含有一个未知数(一元),并且未知数的最高次数是2(二次)的方程,叫做一元二次方程.

一般地,任何一个关于x的一元二次方程,•经过整理,•都能化成如下形式ax2+bx+c=0(a≠0).这种形式叫做一元二次方程的一般形式.

一个一元二次方程经过整理化成ax2+bx+c=0(a≠0)后,其中ax2是二次项,a是二次项系数;bx是一次项,b是一次项系数;c是常数项.

【设计意图】

主体活动,探索一元二次方程的定义及其相关概念.

三、范例点击 例1 将方程3x(x1)5(x2)化成一元二次方程的一般形式,并指出各项系数. 解:去括号得

0

3x23x5x1,移项,合并同类项,得一元二次方程的一般形式

3x28x100.

其中二次项系数是3,一次项系数是-8,常数项是-10. 【活动方略】 学生活动:

学生自主解决问题,通过去括号、移项等步骤把方程化为一般形式,然后指出各项系数.

教师活动:

在学生指出各项系数的环节中,分析可能出现的问题(比如系数的符号问题). 【设计意图】

进一步巩固一元二次方程的基本概念. 例2 猜测方程x2x560的解是什么? 【活动方略】 学生活动:

学生可以采取多种方法得到方程的解,比如可以用尝试的方法取x=1、2、3、4、5等,发现x=8时等号成立,于是x=8是方程的一个解,如此等等.

教师活动:

教师引导学生自主探索,多种途径寻找方程的解,在此基础上让学生进行总结: 使一元二次方程等号两边相等的未知数的取值叫作一元二次方程的解(又叫作根). 【设计意图】

探究一元二次方程根的概念以及作用.

四、反馈练习课本P4 练习1、2题 补充习题:

1.将方程(x+1)2+(x-2)(x+2)=•1化成一元二次方程的一般形式,并写出其中的二次项、二次项系数;一次项、一次项系数;常数项.

2.你能根据所学过的知识解出下列方程的解吗?(1)x2360;

【活动方略】

学生独立思考、独立解题.

教师巡视、指导,并选取两名学生上台书写解答过程(或用投影仪展示学生的解答过程)

【设计意图】

检查学生对基础知识的掌握情况.五、应用拓展

例3:求证:关于x的方程(m2-8m+17)x2+2mx+1=0,不论m取何值,该方程都是一元二次方程.

分析:要证明不论m取何值,该方程都是一元二次方程,只要证明m2-8m+17•≠0即可.

证明:m2-8m+17=(m-4)2+1

∵(m-4)2≥0

∴(m-4)2+1>0,即(m-4)2+1≠0

∴不论m取何值,该方程都是一元二次方程.

例4:有人解这样一个方程(x5)(x1)7.

解:x+5=1或x-1 = 7,所以x1=-4,x2 =8,你的看法如何?

由(x5)(x1)7得到x+5=1或x-1=7,应该是x+5=1且x-1=7,同时成立才行,此时得到x=-4且x=8,显然矛盾,因此上述解法是错误的.

【活动方略】

教师活动:操作投影,将例

3、例4显示,组织学生讨论. 学生活动:合作交流,讨论解答。【设计意图】

使学生进一步理解一元二次方程的概念,对一元二次方程的根有更深刻的理解.(2)4x290. 作业:

第三篇:实际问题与一元二次方程教案

教学过程

〖活动1〗 问题 通过上节课的学习,大家学到了哪些知识和方法? 教师提出问题,学生回忆,选一位同学作答,其他同学补充.在本次活动中,教师应重点关注:(1)学生对列方程解应用问题的步骤 是否清楚;(2)学生能否说出每一步骤的关键和应注意问题.(活动1为学生创设了一个回忆、思考的情景,又是本课一种很自然的引入,为本课的探究活动做好铺垫).〖活动2〗 问题 要设计一本书的封面,封面长27cm ,宽21cm,正中央是一个与整个封面长宽比例相同的矩形,如果要使四周的彩色边衬所占面积是封面面积的四分之一,上下边衬等宽,左右边衬等宽,应如何设计四周边衬的宽度(精确到0.1cm).(1)本题中有哪些数量关系?

(2)正中央是一个与整个封面长宽比例相同的矩形如何理解?(3)如何利用已知的数量关系选取未知数?(4)列方程并得出结论.(5)反思解决问题的关键是什么?

教师展示课件,教师提出问题(1)学生分析,请一位同学回答,教师在题目中指出数量关系.教师提出问题(2)学生思考,请一位同学回答,可举简单例子说明,最后引导学生得出正中央矩形的长宽比是9︰7.问题(1)(2)都是帮助学生更好的理解题意,为后面的解题做以铺垫.教师提出问题(3)学生分组讨论,选代表上台演示、回答,每位同学要着重分析对题目中的数量关系的处理方法.问题(3)是活动2的中心环节,在本次活动中,教师应重点关注:(1)学生对几何图形的分析能力;(2)学生在未知数的选择上,能否根据情况,灵活处理;(3)在讨论中能否互相合作;(4)学生回答问题时的语言表达是否准确.学生充分的讨论,得出多种不同的方法,激发学生的学习热情,使学生体会解决问题的方法多样性.为活动3埋下一个伏笔.教师提出问题(4)学生分组,分别按问题三中所列的方程来解答,选代表展示解答过程.教师提出问题(5)学生充分的讨论,丰富解题经验.〖活动3〗某校为了美化校园,准备在一块长32米,宽20米的长方形场地上修筑若干条宽度相同的道路,余下部分作草坪,并请全校同学参与设计,现在有两位学生各设计了一种方案(如图),根据两种设计方案各列出方程,求图中道路的宽分别是多少?使图(1),(2)的草坪面积为540米2.教师展示课件,请一位同学朗读题目.教师提出问题,学生回答方案1,学生通过探究与讨论,活跃了解题思路.教师提出方案(2)学生思考.因为有活动2的基础,选一位同学回答这一组问题即可,如有不完全的地方,教师适当补充.教师做屏幕演示,特别提醒学生:剩余草坪的面积,是否就是原草坪的面积减去2条路的面积?以引导学生注意道路重叠部分的处理.活动2是针对活动2的巩固性练习.《思考》:能不能把纵、横两条路移动一下,使列方程容易些? 学生分组讨论,教师指导.引领学生 讨论后请一位同学回答.教师引领学生发现两个图形都存重叠部分,但除此之外的剩余部分,第一个图是一个完整的矩形,易于表示;而第二个图中分为4块,所以不容易表示.《思考》是活动3的中心环节,以图形对比的问题为 引导,通过对比两个图形的联系与区别,启发学生方案1为模型,构建草坪问题的解题思路.学生分组讨论,画图,上台演示.教师与学生一起评价,总结图形变换的基本原则.在本次活动中,教师应重点关注:(1)学生的学习效果;(2)使学生充分体会图形变换的灵活性;(3)学生对图形的观察、联想能力;(4)教师要强调图形变换中图形改变、位置改变、关键量不变的原则.在学生充分的思维活动之后,学生会自然产生动手实践的欲望,教师可以给学生一定的空间去发挥想象,同时也要注意对图形变换的指导,可以对部分不太合适的答案也进行一下点评.〖活动4〗 问题 通过本课的学习,大家有什么新的收获和体会?

〖活动5〗当堂测试

布置作业: 教科书53页,习题21.3第5、8题;教科书58页,复习题21第7、10题,教师应重点关注:

第四篇:一元二次方程复习课教案

一元二次方程 复习与小结 复习目标

1.知识与技能.

(1)了解一元二次方程的有关概念.

(2)能运用直接开平方法、配方法、公式法、•因式分解法解一元二次方程.

(3)会根据根的判别式判断一元二次方程的根的情况.

(4)知道一元二次方程根与系数的关系,并会运用它解决有问题.

(5)能运用一元二次方程解决简单的实际问题.

(6)了解数学解题中的方程思想、转化思想、分类讨论思想和整体思想.

2.过程与方法.

(1)经历运用知识、技能解决问题的过程.

(2)发展学生的独立思考能力和创新精神.

3.情感、态度与价值观.

(1)初步了解数学与人类生活的密切联系.

(2)培养学生对数学的好奇心与求知欲.

(3)养成质疑和独立思考的学习习惯.

重难点、关键

1.重点:运用知识、技能解决问题.

2.难点:解题分析能力的提高.

3.关键:引导学生参与解题的讨论与交流. 复习过程

一、复习联想,温故知新

基础训练.

1.方程中只含有_______•未知数,•并且未知数的最高次数是_______,•这样的______的方程叫做一元二次方程,通常可写成如下的一般形式:_______()其中二次项系数是______,一次项系数是______,常数项是________.

例如:一元二次方程7x-3=2x2化成一般形式是________•其中二次项系数是_____、一次项系数是_______、常数项是________.

2.解一元二次方程的一般解法有

(1)_________;(2)________;(•3)•_________;•(•4)•求根公式法,•求根公式是______________.

3.一元二次方程ax2+bx+c=0(a≠0)的根的判别式是____________,当_______时,它有两个不相等的实数根;当_________时,它有两个相等的实数根;当_______时,•它没有实数根.

例如:不解方程,判断下列方程根的情况:

(1)x(5x+21)=20(2)x2+9=6x(3)x2-3x=-5

4.设一元二次方程x2+px+q=0的两个根分别为x1,x2,则x1+x2=_______,x1·x2=______.

例如:方程x2+3x-11=0的两个根分别为x1,x2,则x1+x2=________;x1·x2=_______.

5.设一元二次方程ax2+bx+c=0(a≠0)的两个根分别为x1,x2,则x1+x2=•_______,•x1·x2=________.

二、范例学习,加深理解

例:解下列方程.

(1)2(x+3)2=x(x+3)

(2)x2-2 x+2=0

(3)x2-8x=0

(4)x2+12x+32=0

点拨:选择解方程的方法时,应先考虑直接开平方法和因式分解法;再考虑用配方法,最后考虑用公式法.

三、合作交流,探索新知

1.已知关于x的方程x2-mx-3=0的两实根为x1,x2,若x1+x2=2,求x1,x2的值.

2.将一块正方形铁皮的四角各剪去一个边长为4cm的小正方形,做成一个无盖的盒子,已知盒子的容积是400cm3,求原铁皮的边长.

3.如图,某海关缉私艇在点O处发现在正北方向30海里的A•处有一艘可疑船只,测得它正以60海里/小时的速度向正东方向航行,随即调整方向,以75海里/•小时的速度准备在B处迎头拦截,问经过多少时间能赶上?

4.某工厂一月份生产零件2万个,一季度共生产零件7.98万个,•若每月的增长率相同,求每月产量的平均增长率.

5.已知x=1是一元二次方程(a-2)x2+(a2-3)x-a+1=0的一个根,求a的值.

四、归纳总结,提高认识

1.综述本节课的主要内容.

2.谈谈本节课的收获与体会.

五、布置作业,专题突破

1.课本P38复习题第1.(1)、(3)、(5)、(6),2.(1),3. 5. 6. 9.(4),10.(1)题.

2.选用课时作业设计.

3.预习作业:本章复习提纲.

六、课后反思(略)

课时作业设计

1.一元二次方程3x2+x=0的根是________.

2.一元二次方程(1+3x)(x-3)=2x2+1化为一般形式为:________,•二次项系数为:________,一次项系数为:________,常数项为:________.

3.方程2x2=4x的解是()

A.x=0

B.x=2

C.x1=0,x2=2

D.以上都不对

4.某商品连续两次降价,每次都降20%后的价格为m元,则原价是()

A.

D.0.8m2元

5.解下列方程.

(1)3x2-x=4

(2)(x+3)(x-4)=6

(3)(x+3)2=(1-2x)2

(4)3x2+5x-2=0

(5)x2+2 x-4=0

6.已知直角三角形三边长为连续整数,则它的三边长是_________.

7.用22cm长的铁丝,折成一个面积是30cm2的矩形,求这个矩形的长和宽.又问:能否折成面积是32cm2的矩形呢?为什么?

8.某科技公司研制成功一种产品,决定向银行贷款200万元资金用于生产这种产品,贷款的合同上约定两年到期时,一次性还本付息,利息为本金的8%.该产品投放市场后,由于产销对路,使公司在两年到期时除还清贷款的本息外,还盈余72万余.若该公司在生产期间每年比上一年资金增长的百分数相同,试求这个百分数.

第五篇:实系数一元二次方程 教案

实系数一元二次方程

一、教学目标:

1、理解实系数一元二次方程在复数集中解的情况;会在复数集中解实系数一元二次方程。

2、掌握当0时,实系数一元二次方程根与系数的关系

3、培养类比推理的思想方法及探索精神。

二、教学重点:在复数集内解实系数一元二次方程。

三、教学难点:共轭虚根的应用

四、教学过程:

(一)复习旧知:

1、师问:我们初中学习了解一元二次方程axbxc0(a、b、cR且a0),对这个方程,我们有哪些认识?

生答:①当b4ac0时,方程有两个不相等的实根:x②当b4ac0时,方程有两个相等的实根; ③当b4ac0时,方程无实根。

根与系数的关系:设方程的两个根为x1,x2,则有x1x2ba2222b2ab4ac2a2;,x1x2ca

2、上一节课学习了“复数的平方根与立方根”,大家知道-1的平方根是:i.师问:一元二次方程x10在复数范围内有没有解? 师问:在复数范围内如何解一元二次方程xx10? 引出本节课的课题:实系数一元二次方程

(二)讲授新课

1、实系数一元二次方程在复数集C中解的情况:(1)回忆求解实数范围内一元二次方程的过程

设一元二次方程axbxc0(a、b、cR且a0).222因为a0,所以原方程可变形为 x2baxca,配方得(xb2a)(2b2a2)2ca,即(xb2a)2b4ac4a2.2(1)当b4ac0时,原方程有两个不相等的实数根x2b2ab4ac2a;

(2)当b4ac0时,原方程有两个相等的实数根x22b2a;

2、师问:当b4ac0时,你能有上述过程及上节课的知识推倒出方程的根的情况吗? 生:当b4ac4a2220,由上一堂课的教学内容知,2b4ac4a22的平方根为4acb2ai,即xb2a4acb2ai,2此时原方程有两个不相等的虚数根:x2b2a4acb2ai 为一对共轭虚数根

3、师问:b4ac0根与系数的关系成立吗?(类比,猜想)

带领学生证明根与系数的关系:x1x2ba,x1x2ca(证明)

结论:(1)实系数一元二次方程在复数范围内必有两个解:当0时,有两个实根;当0时,有一对共轭虚根.(2)韦达定理仍然适用。

例1:在复数集中解方程:(1)xx10

(2)2x4x50 学生练习:(1)x50

(2)x2x30 2222小结:强化巩固在复数范围内解实系数一元二次方程 变式:在复数集中解方程:x23x5m0(mR)小结:渗透含参问题分类讨论的思想方法。

例2:已知实系数一元二次方程2xaxb0的一个根为2i3,求a,b的值. 小结:共轭虚根及根与系数关系的应用

例3:已知x1,x2是实系数方程xxp0的两根,且满足|x1x2|3,求实数p的值。

小结:法一:题目中没有讲明根的虚实,需对根的情况分类讨论

法二:利用复数性质|z|2|z2|转化,在利用根与系数的关系,可避免对根的情况讨论。

思考题:已知关于x的实系数方程xkxk3k0有一个模为2的根,求实数k的值

(三)课堂小结:

(四)回家作业 练习册配套作业

2222

下载一元二次方程渗透法制教育教案word格式文档
下载一元二次方程渗透法制教育教案.doc
将本文档下载到自己电脑,方便修改和收藏,请勿使用迅雷等下载。
点此处下载文档

文档为doc格式


声明:本文内容由互联网用户自发贡献自行上传,本网站不拥有所有权,未作人工编辑处理,也不承担相关法律责任。如果您发现有涉嫌版权的内容,欢迎发送邮件至:645879355@qq.com 进行举报,并提供相关证据,工作人员会在5个工作日内联系你,一经查实,本站将立刻删除涉嫌侵权内容。

相关范文推荐

    一元二次方程复习课教案

    一元二次方程复习课教案(二) 目标: 1、 让学生进一步掌握解一元二次方程的四种方法;并能灵活选择方法; 2、 通过典型例子让学生感受到选择适当方法的重要性。 3、进一步探索实际......

    教案一元二次方程的应用

    教案19.5一元二次方程的应用(沪科版八年级下一元二次方程的应用教案)教学目标; 知识与技能, 1. 使学生学会列一元二次方程解应用题的方法。 2. 掌握增长率问题建立数学模型的方......

    一元二次方程实际问题

    例3.某商店经销一种销售成本为每千克40元的水产品,•据市场分析,•若每千克50元销售,一个月能售出500kg,销售单价每涨1元,月销售量就减少10kg,针对这种水产品情况,请解答以下问题: (1)......

    实际问题一元二次方程

    22.3《实际问题与一元二次方程》学案 课型:上课时间:课时: 学习目标: 能根据具体问题中的数量关系,列出一元二次方程,体会方程是刻画现实世界的一个有效的数学模型. 学习过程:......

    渗透法制教育教案

    《那树》教案 教学目标 1.掌握文中的生字词,积累词语,理清文章脉络。 2.学习文章含蓄、深沉的语言风格,体悟字词间流露的情感。 3.正确认识人与自然的关系,树立正确的发展观。......

    21.1_一元二次方程_教学设计_教案

    教学准备 1. 教学目标 1.1 知识与技能: 探索一元二次方程及其相关概念,能够辨别各项系数;能够从实际问题中抽象出方程知识。 1.2过程与方法 : 在探索问题的过程中使学生感受方......

    二次函数与一元二次方程教案

    22.5二次函数与一元二次方程(教案) 一、教学目标 1、 经历探索二次函数与一元二次方程的关系的过程,体会方程与函数之间的关系. 2、 理解二次函数与x轴交点的个数与一元二次......

    2.3一元二次方程的应用教案

    2.3一元二次方程的应用(1)教案 一、教材分析 1、教材地位和作用 本节课是浙教版八年级数学下册第二章《一元二次方程》的内容,这是一个理论联系实际的好教材,充分体现了数学的应......