第一篇:高二物理教案分子热运动 能量守恒-分子间的相互作用力
11-3 分子间的相互作用力
【教学目的】
1、知道分子间同时存在引力和斥力,实际表现出来的分子力是引力和斥力的合力
2、知道分子力的引力、斥力和合力随间距变化的规律
3、知道合力为零时的特殊值r0的数量级,知道合力趣于零时的分子间距是10 r0
4、能用分子力的规律解释某些简单的现象 【教学重点】
分子力的引力、斥力和合力随间距变化的规律;用分子力规律解释一些简单的现象 【教学难点】
分子间同时存在引力和斥力的理解 【教具】
铅块、小刀 【教学过程】
○、引入
学生答问:
1、扩散现象能够说明什么样的问题?
2、大的布朗微粒和小的布朗微粒谁受到的分子撞击力的合力较大?
前面介绍了分子动理论的两个观点,今天继续学习第三个——
一、分子间存在相互作用力
理论论证:间隙→力的约束。
实验证明:演示——两块铅能够被压迫后粘在一起。学生上台体验…
正面介绍其它素材„(粉笔的笔迹能留在黑板上;胶水„)过渡:分子间的作用力的实质是什么?
二、分子间同时存在引力和斥力
探讨1:是不是由万有引力引起?
相距4×10-10 m的两个氦分子,万有引力是7×10-42 N,但测量表明,其间的分子力是6×10-23 N,他们相差1019倍!
探讨2:是不是弹力?
学生进行…
正面介绍:分子间的相互作用力是一种极其复杂的力,但从性质(产生的根源)上来讲,并不是一种基本力。它们是由组成一分子的电子及原子核与另一分子的电子及原子核相互作用而产生的。虽然每一个分子整体显现电中性,但当它们距离很近时,分子之间的电荷相互作用力会使每个分子的正电、负电物质的分布发生微妙的变化(可以理解为正电荷的“重心”和负电荷的“重心”不再重合;而且,距离越近,这种偏离就越严重),致使整体的合力不为零。计算表明,这种分析是合理。所以,分子力的实质是电磁力。
分子力的复杂性不仅仅体现在实质分析较难,还体现在另一个重要的事实:那就是,分子力同时存在引力和斥力。而我们通常感觉到的分子力则是引力和斥力的合力。
这一事实是怎么被检测和发现的呢?这里我们不便介绍。现在先介绍一下这两种力、以及它们的合力的变化规律——
三、分子力跟分子间距的关系
板图:教材P75图11-6
1、引力图象介绍;
2、斥力图象介绍;
提问:这个图象表明,引力函数和斥力函数各自是增函数还是减函数(提示:对于矢量,这里只能谈大小的增减)?
学生:均为减函数。(补充介绍:它们是一个比较复杂的幂函数。)提问:除了方向外,这两条图线还有什么区别? 学生:减小的幅度不同。(补充介绍:幂次方不同。)
3、合力图象介绍。描点;特殊点的位置描述(标示在图上:r0的数量级为10-10)„
提问:我们又该怎样描述合力函数的增减性? 学生:先减后增再减。(补充描述、板书:当r→10r0时,合力趣于零。)提问:方向变化若何? 学生:排斥变为吸引。
这个合力的变化情况显然比较复杂,但我们如果和一些相关的事实联系起来理解,就会发现这个规律的正确性——
事实1:固体或液体在常态下,既不会自发膨胀,也不会自发收缩… 事实2:当我们压缩固体或液体时,会感到非常吃力… 事实3:当我们拉伸物体时,会感到吃力… 事实4:被拉断的物体一般很难接上…
思考启示:从某种程度来讲,分子力合力的这种变化规律,有点象什么力的变化
学生:弹簧弹力。(说明:定量规律当然复杂得多。)
四、小结
本节我们学习了分子力、分子力的变化规律。通过学习,我们知道了分子力是一种极其特殊的力,象这样性质相同又会同时施加两种作用的情形我们过去还没有遇到过。而且,人们宏观上的感受,必然只能感到分子力合力的效果。这就使得我们要记住分子力的特征很不容易。
五、作业布置
阅读教材;
教材P76第(1)(2)(3)(4)上作业本;
《优化设计》P61“夯实基础”部分,做在书上。【板书设计】
注意“教学过程”的灰色部分,即是板书计划。【教后感】
好,真的很好,一堂如此“边缘”的物理课能够上出这样的感觉,非常不易。充分的准备是关键。对“变化规律”的挖掘程度很合适,事实的调用方面,分量也很恰当。学生能积极地反映,和谐地完成教与学的合作,整个课堂活跃、融洽。
板书很少,但是少得有理、少得有力。
演示实验很费力,第二堂差一点没做成,上台的学生也基本上都是失望而归。这是一个遗憾,有不有改进的空间?
第二篇:高二物理教案分子热运动 能量守恒-热力学第二定律
热力学第二定律
课时:1 课时
教学要求:
1、以热传导和机械能与内能的相互转化为例,让学生知道宏观热学过程是有方向性的;
2、让学生知道第二类永动机是不可能制成的;
3、让学生初步了解热力学第二定律的两种内容 表述,并能用之去解释一些简单的现象;
教学过程:
一、引入新课:
有趣的问题:地球上有大量海水,它的总质量约为1.4×1018 t,只要这些海水的温度0.1℃,就能放出5.8×1023 J的热量,这相当于1800万个核电站一年的发电量。为什么人们不去研究这种“新能源”呢?原来,这样做是不可能的。这涉及物理学的一个基本定律。
二、新课讲授:
(一)热传导的方向性:
大家都有这样的经验:两个温度不同的物体相互接触时,热量会自发地从高温物体传给低温物体,使高温物体的温度降低,低温物体的温度升高。从未有过这样的现象:热量会自发地从低温物体传给高温物体,使低温物体的温度越来越低,高温物体的温度越来越高。(这里所说的“自发地”,指的是没有任何外界的影响或者帮助)也许会产生一个疑问:电冰箱内部的温度比外部低,为什么致冷系统还能不断地把箱内的热量传给外界的空气?这是因为电冰箱消耗了电能,对致冷系统做了功。一旦切断电源,电冰箱就不能把箱内的热量传给外界的空气了。相反,外界的热量会自发地传给电冰箱,使箱内的温度逐渐升高。
在这里,我们看到,热传导的过程是有方向性的,这个过程可以向一个方向自发地进行,但是向相反方向却不能自发地进行。要实现相反方向的过程,必须借助外界的帮助,因而产生其化影响或引起其化变化。
(二)第二类永动机:
一个在水平地面上运动的物体,由于克服磨擦力做功,最后要停下来。在这个过程中,物体的动能转化为内能,使物体和地面的温度升高。但是,人们决不会看到这样的现象:一个放在水平地面上的物体,温度降低,可以把内能自发地转化为动能,使这个物体运动起来!
有人可能提出一种设想:发明一种热机,它可以把物体和地面磨擦所生的热量都吸收过来,对物体做功,将内能全部转化为动能,使物体在地面上重新运动起来,而不引起其他变化。这是一个非常诱人的设想。这个设想并不违反能量守恒定律,若真能制成这种热机,本节开始时提到的,单从海水中吸取热量来做功,就成为可能了,“能源问题”也就解决了。
热机是一种把内能转化为机械能的装置。以内燃机为例:气缸中的气体得到燃料燃烧时产生的热量Q1,推动活塞做功W,然后排出废气,同时把热量Q2。
我们把热机做的功W和它从热源吸收的热量Q1的比值叫做热机的效率,用表示,则有:
= W / Q1实际上,热机不能把它得到的全部内能转化为机械能。以汽车内燃机为例:只有当气缸中工作物质的温度比大气温度高时内燃机才能工作,所以Q2这部分热量是不可避免的。热机工作时,总要向冷凝器散热,总要由工作物质带走一部分热量Q2,所以总有Q1>W。因此,热机的效率不可能达到100%,汽车上的汽油机,效率只有20%∽30%,燃气轮机的效率比较高,也只能达到60%。即使是理想热机,没有磨擦,也没有漏气等能量损失,它也不可能把吸收的能量百分之百地转化成机械能,总要有一部分热量散发到冷凝器中。
第三篇:高二物理教案分子热运动 能量守恒-能源与环境
§11~7 能源&环境
【教学目的】
1、了解什么是能源,什么是常规能源,知道常规能源的储量和人类需求的矛盾
2、了解常规能源的使用和环境污染方面的关系
3、了解哪些是清洁能源,哪些是可再生能源 【教学重点】
1、能源、常规能源、可再生能源的教学
2、能源和环境之间的关系 【教学难点】
能源和环境之间的关系 【教具】
投影仪 【教学过程】
○、引入
热力学第二定律告诉我们,很多与热现象有关的物理过程都是不可逆的。涉及内能的能量转化过程具有方向性,这在上一节已经提到过了。在本节,我们讨论这种方向性的现实意义。
一、能源
一段木料燃烧后化为灰烬,能够释放给我们所需要的能量。然而,灰烬却不能立即被合成而成为一段木料。但是,我们至少可以将灰烬作为肥料施在一颗小树苗上,促成它长成一段未来的木料,以供人类(可能是种树、施肥者的子孙,也可能是别人的子孙)再次燃烧。
在这一人与资源的交互行为中,我们会发现,首先,能量转化的方向性并没有被破坏,也就是说,热力学第二定律仍被得到尊重。其次,这将形成了一个循环,因为只要时间足够,让树苗成长成为木料的数目大于我们燃烧木料的数目,它就不会破坏需求与资源的动态平衡关系。其三,在这个循环中,必须要有第三者参与——如果没有太阳的光合作用,循环就终止了——所以人与资源(树木)之间并不是“今天你给我,明天我还给你”的关系(我们与其说在燃烧树木,还不如说是在利用储存的太阳能)。其四,这种循环还有一种隐忧,那就是:灰烬“成为”树木的速度要远远小于树木变成灰烬的速度,表面的平衡是以内部数量上的不平衡为代价的。
以上的四点中,第三点事实上已经决定了循环“返回”过程的速度(不能由人类操控),第二点和第四点则意味着人类的行为、世界观对“平衡”能否被破坏有着直接的关系。
在工业化时代到来之前,人们过着田园牧歌式的生活,没有电器、没有汽车、没有空调,人类使用大自然的资源只是为了满足最基本的生活需求,因此,这种“平衡”没有被破坏。
随着工业化时代的到来,这种状况立即显现出危机,循环就要被终止了。于是,人们想到了地底下的资源:煤和石油。他们提供的能量很有用,燃烧的速度和效能和木材相差无几。但是,形成煤和石油的速度比长成树木的速度,就不能同日而语了!可以这样说,人们自从使用煤的第一天起,就没有想到一个可能形成循环的问题,更不用说什么平衡了。所以,煤和石油事实上是一种坐吃山空的资源:我们今天用得越多,我们的子孙将来可以使用的就越少。
在不久的将来,人们用完了所有的煤和石油,会怎么办?这是一个令社会学家睡不安枕的问题。然而,经济学家们却不这样看。经济学教授给学生们讲课,出了这样一个题目:地底下现有石
油储量X吨,近五年的开采量是Y吨/年,请预测石油将在多少年后被开采完?有的学生开始用计算器摁键:X/Y = ? „这样的学生被认为是经济学的盲者。教授的观点是:永远也开采不完。因为,随着石油储量的减少,开采的成本会加大,成本大于销售价格时,市场规律决定了人们在也不会去开采石油了。此时石油存在事实已经失去了利用价值,任它在地底下沉睡多少年也和我们没有关系了。
那么人们会使用什么能源呢?巨大的市场潜力和利润空间将驱使人们去研究一种石油的替代品。因此,能源的危机也就解决了。
是社会学家们悲天悯人,还是经济学家们盲目乐观?这需要我们冷静地去判断。至少,以下的一些事实可以显示,这两派观点都有一定的道理——
世界上石油储量最大的中东地区一直是发达国家关注的焦点,外交、军事莫不围绕着这片从地表上看毫无魅力的区域打转。世界警察(美国)和他的随从们最愿意去管中东的事情:两次海湾战争、伊拉克战争等等„说明能量消耗巨大的富国们对石油的心痛程度。
令以一方面,“替代品”——新能源的研发、形式层出不穷。
1、水能:水作为能量的载体,被太阳能驱动地球上三栖(水、陆、空)循环。地表水的流动时,在落差大、流量大的地区,形成可利用的水能资源。目前世界上水力发电还处于起步阶段。
2、海洋能:由于地球受月球和太阳引力的周期性不均衡,海水发生非气候性的涨潮和落潮现象,形成潮汐。潮汐蕴含着巨大能量,既可以用来推动机械装置,又可以用来发电。
此外,由于海水表层和深层间的存在很大的温差,利用这种温差也可以发电(*因为水的沸点与气压有关,如果建造一个装置,用抽真空的方法使表层的海水在20摄氏度时汽化,并推动汽轮机,再将深层的冷水提上来使蒸汽冷却,如此周而复始,就可以发电了。除这种方法外,还可以用低沸点的流体如丙烷和氨来作为热机的工作介质)。法国已经建成了世界上第一座温差发电站,发电容量为14,000kW。
3、风能:利用风的机械能发电,风能是一种重要的自然能源。据有关专家估算,在全球边界层内的总能量为1.3×1015瓦,一年中约为1.4×1016千瓦时电力的能量,相当于目前全世界 每年所燃烧能量的3000倍。其中1/10为可取用的极限量。
风能的优点是:总能量巨大,利用简单、无污染、可再生。缺点是:能量密度低(当流速同为3米/秒时,风力的能量密度仅为水力的1/1000)、不稳定性大,连续性、可靠性差,时空分布不均匀。
4、生物质能:利用厌氧微生物在密闭条件下分解(废弃)有机物,产生沼气,沼气具有很高的热值,燃烧后生成二氧化碳和水,不污染空气,不危害农作物和人畜健康。生成沼气的原料本身就是各种废弃物,生产过程可以减少(有机物)垃圾的数量。
在农村到处可以看到许多生物质的废弃物,如人畜粪便、秸秆、杂草和不能食用的果蔬,等等。将这些废弃物收集起来,经过细菌发酵可以产生沼气,用沼气做燃料和照明,也可以发电。
5、太阳能:太阳能是一种可广泛利用的清洁能源。我们目前的利用方式主要是两种—— 一是将阳光聚焦,将光能转化为热能(传说阿基米德就曾经利用聚光镜反射阳光,烧毁了来犯的敌舰)。在日照充分的地方,人们在生产和生活中已大量使用太阳灶、干燥器和太阳能热水器(太阳能热水器的构造要简单的多。因为不需要它产生太高的温度。在大多数情况下,可以将太阳能热水器的集热器制成箱式、蛇型管式、直管式、平板式或枕式,通过管道与水源和储水箱相连。太阳能热水器在我国北方比较常见)。
二是将太阳能转化为化学能,再用化学能发电。比较常见的光电池是硅电池(它能将13%-20%的日光能转化为电能)。许多电子计算器和其他小型电子仪器现在已经采用太阳能电池供电,人造卫星和宇宙飞船更是主要依靠太阳能电池来提供电力。
但是阳光在达到地面以前要经过大气的反射、散射和吸收,能量损失较大,加上阴天、昼夜变化和雨雪等降水过程的影响,目前地面上利用日光发电受到一定限制。
无论是生物质能、风能,还是水力、温差和潮汐能,归根结底都是太阳能的转化形式。即使矿物燃料,也是通过生物的化石形式保存下来的亿万年以前的太阳能。
6、地热能:用地热采暖、将地热用于农业、水产养殖业、工业生产等,在全世界范围内受到关注。(从直接利用地热的规模来说,最常用的是地热水淋浴,占总利用量的1/3以上,其次是地热水养殖和种植约占20%,地热采暖约占13%,地热能工业利用约占2%)。
利用地热能,占地很少,无废渣、粉尘污染,用后的弃(尾)水既可综合利用,又可回注到地下储层,达到增加压力、保护储层、保护地热资源的双重目的。*据美国地热资源委员会(GRC)1990年的调查,世界上18个国家有地热发电,总装机容量5827.55兆瓦,装机容量在100兆瓦以上的国家有美国、菲律宾、墨西哥、意大利、新西兰、日本和印尼。我国的地热资
源也很丰富,但开发利用程度很低。主要分布在云南、西藏、河北等省区。除以上利用外,从热水中还可提取盐类、有益化学组分和硫磺等。
7、核能:铀在自然界中有三种放射性同位素:U235、U238、U234,在衰变过程中放出热量。在军事上铀主要用来制造核武器和核动力燃料。铀的和平用途十分广泛,其中最主要的是用作核电反应堆的燃料。
由于核电具有发电成本低、对环境污染小和安全等优点,世界各国,尤其是工业发达的国家和地区都大力发展核电,估计到2000年核电将达到世界总发电量的25%左右。我国已建成秦山、大亚湾核电站,目前还有多处正在筹建。
铀裂变时产生的同位素及其射线,在工农业生产和科学技术领域中有广泛的用途。例如,在工业上利用射线实现生产自动控制,无损伤检查等;在农业上利用射线培育良种,防止病虫害等;在医学上用于灭菌消毒,临床诊断及治疗;在地质勘探工作中用来找矿等等。
从种种迹象看来,能源危机的解决也许并不是难事。但这是不是就意味着人类可以高枕无忧呢?答案是否定的——
二、环境
可以说,自打人类寻找到木材的替代品——煤和石油开始,就已经意识到了“替代”绝不就是“等同”。我们前面说过,木料的灰烬能够作为肥料施在小树下,这样就促进了循环的完整与良性发展,而煤渣并不能做到这一点。也许学过化学的我们会说,煤和石油的衍生物也可以制成肥料,但是,请大家不要忘了,木料的灰烬可以被大自然“照单全收”地降解、燃烧的二氧化碳也是植物(新树苗)呼吸作用的必须,可煤燃烧的废渣、石油的衍生物(塑料等)却不能或很难被降解,他们燃烧的废气(二氧化硫等)是天怨人怒的有害物质(石油燃烧的废气还是城市人们致癌的罪魁祸首)。所以说,垃圾问题、大气问题,共同构成了——环境问题。
在新的能源中,环境问题是不是彻底解决了呢?从前面介绍的1~6种能源中,人们确实充分考虑了这个问题,理论上是不会有环境问题的。但是,不知大家注意到了没有,它们都会受自然条件和资源条件的制约(没有风,风车能转吗?太阳能需要面积,你能把热效应管架在别人的房子上去吗?潮汐能需要海岸线的长度,你去侵略别人的海域吗?)。随着人们需求的增长,可以说,这前6能源的供应量必然不能满足要求,所以第7种能源成为人们关注的焦点:核能(因为它有一个突出的优点,那就是能量巨大)。在发达国家,核能的使用量日益增多„但是,核能的直接或潜藏的环境问题比煤合石油的要严重得多„
人类要在以上问题中寻求一种协调与和谐,在调整需求意识、珍惜资源、科研开发等多个方面都有工作要做。无论今后大家会致力于哪一方面的工作,今天的意识形成都会大有必要。
三、小结
本节我们介绍了能源于环境的问题,通过介绍,希望大家能够了解:
1、能量和能源是两回事;
2、非再生能源和可再生能源是两回事;
3、人类不能打破与环境的和谐,破坏环境等于摧毁自己的生存家园。
四、作业布置
阅读教材;
《优化设计》P68“同步练习”部分,做在书上。【板书设计】
注意“教学过程”的灰色部分,即是板书计划。【教后感】
纯讲座式的课很难控制速度,第一堂只“说”了23分钟,第二堂加了一点板书,把网页内容机械的复述了一下,差不多35分钟。是太激动了吗?语言的润色和激情的控制看来要动脑筋。
几种“新能源”的准备不够充分,没有化为自己的语言,说来就很别扭。刚才化时间改了一下。调动学生的效果好象不是太好,有一种吃亏不讨好的感觉。距自己的期望值有不小的距离。
第四篇:高二物理教案分子热运动_能量守恒-能源与环境
能源与环境
玉屏名族中学 安力
(一)教学目标 1.知识与技能
(1)了解什么是常规能源,什么是新型能源(2)了解能源与人类生存环境的关系,使学生认识能源的合理利用与环境保护对可持续发展的重要意义
2.过程与方法
(1)通过指导学生分析事例,培养学生分析问题和理论联系实际的能力(2)通过指导学生阅读教材,培养学生的自学能力
(3)未来的能源应该是安全、环保、高效的能源.对能源标准的讨论,将有助于学生树立有关能源的正确观点 3.情感、态度与价值观
(1)了解大量的能源消耗带来的全球性环境问题(2)提高学生的节能、环保意识
(二)教学重难点
重点:
1、能源、常规能源、可再生能源的教学
2、能源和环境之间的关系
难点:能源和环境之间的关系
(三)教学过程
引入
热力学第二定律告诉我们,很多与热现象有关的物理过程都是不可逆的。涉及内能的能量转化过程具有方向性,这在上一节已经提到过了。在本节,我们讨论这种方向性的现实意义。
一、能源
一段木料燃烧后化为灰烬,能够释放给我们所需要的能量。然而,灰烬却不能立即被合成而成为一段木料。但是,我们至少可以将灰烬作为肥料施在一颗小树苗上,促成它长成一段未来的木料,以供人类(可能是种树、施肥者的子孙,也可能是别人的子孙)再次燃烧。
在这一人与资源的交互行为中,我们会发现,首先,能量转化的方向性并没有被破坏,也就是说,热力学第二定律仍被得到尊重。其次,这将形成了一个循环,因为只要时间足够,让树苗成长成为木料的数目大于我们燃烧木料的数目,它就不会破坏需求与资源的动态平衡关系。其三,在这个循环中,必须要有第三者参与——如果没有太阳的光合作用,循环就终止了——所以人与资源(树木)之间并不是“今天你给我,明天我还给你”的关系(我们与其说在燃烧树木,还不如说是在利用储存的太阳能)。其四,这种循环还有一种隐忧,那就是:灰烬“成为”树木的速度要远远小于树木变成灰烬的速度,表面的平衡是以内部数量上的不平衡为代价的。
以上的四点中,第三点事实上已经决定了循环“返回”过程的速度(不能由人类
操控),第二点和第四点则意味着人类的行为、世界观对“平衡”能否被破坏有着直接的关系。
在工业化时代到来之前,人们过着田园牧歌式的生活,没有电器、没有汽车、没有空调,人类使用大自然的资源只是为了满足最基本的生活需求,因此,这种“平衡”没有被破坏。
随着工业化时代的到来,这种状况立即显现出危机,循环就要被终止了。于是,人们想到了地底下的资源:煤和石油。他们提供的能量很有用,燃烧的速度和效能和木材相差无几。但是,形成煤和石油的速度比长成树木的速度,就不能同日而语了!可以这样说,人们自从使用煤的第一天起,就没有想到一个可能形成循环的问题,更不用说什么平衡了。所以,煤和石油事实上是一种坐吃山空的资源:我们今天用得越多,我们的子孙将来可以使用的就越少。
在不久的将来,人们用完了所有的煤和石油,会怎么办?这是一个令社会学家睡不安枕的问题。
然而,经济学家们却不这样看。经济学教授给学生们讲课,出了这样一个题目:地底下现有石油储量X吨,近五年的开采量是Y吨/年,请预测石油将在多少年后被开采完?有的学生开始用计算器摁键:X/Y = ? „这样的学生被认为是经济学的盲者。教授的观点是:永远也开采不完。因为,随着石油储量的减少,开采的成本会加大,成本大于销售价格时,市场规律决定了人们在也不会去开采石油了。此时石油存在事实已经失去了利用价值,任它在地底下沉睡多少年也和我们没有关系了。
那么人们会使用什么能源呢?巨大的市场潜力和利润空间将驱使人们去研究一种石油的替代品。因此,能源的危机也就解决了。
是社会学家们悲天悯人,还是经济学家们盲目乐观?这需要我们冷静地去判断。至少,以下的一些事实可以显示,这两派观点都有一定的道理——
世界上石油储量最大的中东地区一直是发达国家关注的焦点,外交、军事莫不围绕着这片从地表上看毫无魅力的区域打转。世界警察(美国)和他的随从们最愿意去管中东的事情:两次海湾战争、伊拉克战争等等„说明能量消耗巨大的富国们对石油的心痛程度。
令以一方面,“替代品”——新能源的研发、形式层出不穷。
1、水能:水作为能量的载体,被太阳能驱动地球上三栖(水、陆、空)循环。地表水的流动时,在落差大、流量大的地区,形成可利用的水能资源。目前世界上水力发电还处于起步阶段。
2、海洋能:由于地球受月球和太阳引力的周期性不均衡,海水发生非气候性的涨潮和落潮现象,形成潮汐。潮汐蕴含着巨大能量,既可以用来推动机械装置,又可以用来发电。
此外,由于海水表层和深层间的存在很大的温差,利用这种温差也可以发电(*因为水的沸点与气压有关,如果建造一个装置,用抽真空的方法使表层的海水在20摄氏度时汽化,并推动汽轮机,再将深层的冷水提上来使蒸汽冷却,如此周而复始,就可以发电了。除这种方法外,还可以用低沸点的流体如丙烷和氨来作为热机的工作介质)。法国已经建成了世界上第一座温差发电站,发电容量为14,000kW。
3、风能:利用风的机械能发电,风能是一种重要的自然能源。据有关专家估算,在全球边界层内的总能量为1.3×1015瓦,一年中约为1.4×1016千瓦时电力的能量,相当于目前全世界 每年所燃烧能量的3000倍。其中1/10为可取用的极限量。
风能的优点是:总能量巨大,利用简单、无污染、可再生。缺点是:能量密度低(当流速同为3米/秒时,风力的能量密度仅为水力的1/1000)、不稳定性大,连续性、可靠性差,时空分布不均匀。
4、生物质能:利用厌氧微生物在密闭条件下分解(废弃)有机物,产生沼气,沼气具有很高的热值,燃烧后生成二氧化碳和水,不污染空气,不危害农作物和人畜健康。生成沼气的原料本身就是各种废弃物,生产过程可以减少(有机物)垃圾的数量。
在农村到处可以看到许多生物质的废弃物,如人畜粪便、秸秆、杂草和不能食用的果蔬,等等。将这些废弃物收集起来,经过细菌发酵可以产生沼气,用沼气做燃料和照明,也可以发电。
5、太阳能:太阳能是一种可广泛利用的清洁能源。我们目前的利用方式主要是两种——
一是将阳光聚焦,将光能转化为热能(传说阿基米德就曾经利用聚光镜反射阳光,烧毁了来犯的敌舰)。在日照充分的地方,人们在生产和生活中已大量使用太阳灶、干燥器和太阳能热水器(太阳能热水器的构造要简单的多。因为不需要它产生太高的温度。在大多数情况下,可以将太阳能热水器的集热器制成箱式、蛇型管式、直管式、平板式或枕式,通过管道与水源和储水箱相连。太阳能热水器在我国北方比较常见)。
二是将太阳能转化为化学能,再用化学能发电。比较常见的光电池是硅电池(它能将13%-20%的日光能转化为电能)。许多电子计算器和其他小型电子仪器现在已经采用太阳能电池供电,人造卫星和宇宙飞船更是主要依靠太阳能电池来提供电力。
但是阳光在达到地面以前要经过大气的反射、散射和吸收,能量损失较大,加上阴天、昼夜变化和雨雪等降水过程的影响,目前地面上利用日光发电受到一定限制。
无论是生物质能、风能,还是水力、温差和潮汐能,归根结底都是太阳能的转化形式。即使矿物燃料,也是通过生物的化石形式保存下来的亿万年以前的太阳能。
6、地热能:用地热采暖、将地热用于农业、水产养殖业、工业生产等,在全世界范围内受到关注。(从直接利用地热的规模来说,最常用的是地热水淋浴,占总利用量的1/3以上,其次是地热水养殖和种植约占20%,地热采暖约占13%,地热能工业利用约占2%)。
利用地热能,占地很少,无废渣、粉尘污染,用后的弃(尾)水既可综合利用,又可回注到地下储层,达到增加压力、保护储层、保护地热资源的双重目的。*据美国地热资源委员会(GRC)1990年的调查,世界上18个国家有地热发电,总装机容量5827.55兆瓦,装机容量在100兆瓦以上的国家有美国、菲律宾、墨西哥、意大利、新西兰、日本和印尼。我国的地热资 源也很丰富,但开发利用程度很低。主要分布在云南、西藏、河北等省区。除以上利用外,从热水中还可提取盐类、有益化学组分和硫磺等。
7、核能:铀在自然界中有三种放射性同位素:U235、U238、U234,在衰变过程中放出热量。在军事上铀主要用来制造核武器和核动力燃料。铀的和平用途十分广泛,其
中最主要的是用作核电反应堆的燃料。
由于核电具有发电成本低、对环境污染小和安全等优点,世界各国,尤其是工业发达的国家和地区都大力发展核电,估计到2000年核电将达到世界总发电量的25%左右。我国已建成秦山、大亚湾核电站,目前还有多处正在筹建。
铀裂变时产生的同位素及其射线,在工农业生产和科学技术领域中有广泛的用途。例如,在工业上利用射线实现生产自动控制,无损伤检查等;在农业上利用射线培育良种,防止病虫害等;在医学上用于灭菌消毒,临床诊断及治疗;在地质勘探工作中用来找矿等等。
从种种迹象看来,能源危机的解决也许并不是难事。但这是不是就意味着人类可以高枕无忧呢?答案是否定的——
二、环境
可以说,自打人类寻找到木材的替代品——煤和石油开始,就已经意识到了“替代”绝不就是“等同”。我们前面说过,木料的灰烬能够作为肥料施在小树下,这样就促进了循环的完整与良性发展,而煤渣并不能做到这一点。也许学过化学的我们会说,煤和石油的衍生物也可以制成肥料,但是,请大家不要忘了,木料的灰烬可以被大自然“照单全收”地降解、燃烧的二氧化碳也是植物(新树苗)呼吸作用的必须,可煤燃烧的废渣、石油的衍生物(塑料等)却不能或很难被降解,他们燃烧的废气(二氧化硫等)是天怨人怒的有害物质(石油燃烧的废气还是城市人们致癌的罪魁祸首)。所以说,垃圾问题、大气问题,共同构成了——环境问题。
在新的能源中,环境问题是不是彻底解决了呢?从前面介绍的1~6种能源中,人们确实充分考虑了这个问题,理论上是不会有环境问题的。但是,不知大家注意到了没有,它们都会受自然条件和资源条件的制约(没有风,风车能转吗?太阳能需要面积,你能把热效应管架在别人的房子上去吗?潮汐能需要海岸线的长度,你去侵略别人的海域吗?)。随着人们需求的增长,可以说,这前6能源的供应量必然不能满足要求,所以第7种能源成为人们关注的焦点:核能(因为它有一个突出的优点,那就是能量巨大)。在发达国家,核能的使用量日益增多„但是,核能的直接或潜藏的环境问题比煤合石油的要严重得多„
人类要在以上问题中寻求一种协调与和谐,在调整需求意识、珍惜资源、科研开发等多个方面都有工作要做。无论今后大家会致力于哪一方面的工作,今天的意识形成都会大有必要。
三、小结
本节我们介绍了能源于环境的问题,通过介绍,希望大家能够了解:
1、能量和能源是两回事;
2、非再生能源和可再生能源是两回事;
3、人类不能打破与环境的和谐,破坏环境等于摧毁自己的生存家园。
(四)作业 阅读教材;
《优化设计》P68“同步练习”部分,做在书上。
第五篇:高二物理教案分子热运动 能量守恒-热力学第二定律2
热力学第二定律
教学目标
①、了解热力学第二定律的发展简史,②、了解什么是第二类永动机,为什么第二类永动机不可以制成。③、了解热传导的方向性,④、了解热力学第二定律的两种表述方法,以及这两种表述的物理实质,⑤、了解什么是能量耗散 教学重点
热力学第二定律及所反映出的热现象的宏观过程的方向性。教学难点
热力学第二定律中所描述的 “不发生其他变化” 教学方法
多媒体辅助教学,分析讨论讲解相结合 教学器材
多媒体演示系统、自制电脑教学软件 教学过程
一、引入新课
1、复习提问
①热力学第一定律的内容是什么? ②第一类永动机为什么没有制成? ③能量守恒定律是怎样表述的?
2、引入新课
教师说明:在能量守恒定律中,存在着能量的 “转移”和 “转化”,具体到热力学第二定律,内能和内能之间存在着“转移”以及内能和机械能之间也存在着“转化”的过程,引入课题:热力学第二定律。
二、新课教学
(一)内能的转移
内能转移实质就是热传递。举例: 冰箱中的冰激凌在停电时的融化过程,引导学生分析融化的原因。(热量可以从高温物体传递给低温物体)冰箱里的冰激凌在冰箱正常工作时并没有融化。
进一步引导学生思考热量只能从高温物体传递给低温物体这种说法是否妥当。如果不妥当应该怎样说。从而得出所谓的热量从高温物体向低温物体传递是一个自发的过程,热量从低温物体向高温物体转移需要其他的物理过程参与。以模拟动画说明内能转移过程的方向性)得出热力学第二定律克劳修斯表述:不可能使热量从低温物体传递到高温物体而不产生其他变化。
内能转移过程的方向性
说明: 不产生其他变化是指没有其他物理过程参与
(二)内能和机械能之间的转化
瓦特蒸汽机的发明说明人们开始了热机理论的研究,(“热机”就是一种把内能转化为机械能的机械)
1824年,卡诺在《论火的动力》中指出 “凡是有温度差的地方就能够发生动力” 1834年,克拉珀龙把卡诺这一思想几何化为“卡诺循环” 热机从高温热源吸收热量Q,其中一部分对外做功W,另一部分被释放给低温热源,根据能量守恒定律
Q1 = Q2 + W η=W/ Q1 =(Q1-Q2)/Q1 =1-Q2/ Q1
可以知道Q2 越少,η越高
于是人们就考虑能否让Q2不存在,这样就可以产生一个η=100%的热机,就可以产生另一种永动机,可以看到这种机械并不违反能量守恒定律,这一类永动机叫第二类永动机。第二类永动机:能从单一热源吸收热量全部用来做功而不引起其他变化的机械。
如果这一类永动机能够制成,它就可以从外界诸如空气、海洋、土壤等单一热源中不断地吸取能量,而对外做功。众所周知在空气和海洋中内能是取之不尽的,这样的话飞机不用带油箱,轮船不用带燃料。人们为此做出了许多努力,做了大量的尝试,但是第二类永动机始终还是没能制成。伴随着一次次的失败,终于认识到第二类永动机是不可能制成的。这个结论是开尔文首先提出来的。
开尔文表述:不可能从单一热源吸收热量并把它全部用来做功,而不产生其他变化。即:第二类永动机是不可能制成的。
说明热力学第二定律两种表述形式实质是一样的,只是侧重角度不同:
1、克劳修斯表述体现热传导的方向性
2、开尔文表述体现机械能和内能之间转化的方向性 能量耗散
引导学生阅读46页能量耗散的内容并归纳出自然界中的能量有的便于利用而有的不便于利用,内能作为能量发展的最终形式是没有办法把这些流散的内能重新收集起来加以利用。
举例:电能转化为光能再转化为内能:烤火时高温物体的内能变为低温物体的内能都是无法将散失的内能重新再利用能量耗散是从能量转化的角度反映出自然界中的宏观过程具有的方向性。说明能量耗散不是能量损失,只是可便于利用的能量减少了。第四环节:强调“方向性”进行小结,使课堂难点、重点突出。
总结扩展:热力学第二定律提示了有大量分子参与的宏观过程的方向性,使得它成为独立于热力学第一定律的一个重要自然规律。
说明:不仅仅在物理上存在这种“方向性”,在其他领域也都存在。比如:化学中的不可逆反应;生物中的进化过程的不可逆都说明了这一点。
第五环节:思考练习:以简答的形式来巩固“方向性”和对热力学第二定律内容的理解。