第一篇:人教版小学数学五年级上册说课稿 列方程解应用题
人教版小学数学五年级上册说课稿 列方程解应用题
这节课的教学内容是九年义务教育六年制小学教科书数学第九册。这节课在学生已有的解方程、分析应用题数量关系等知识的基础上进行教学,使学生掌握列方程解应用题的方法,为以后学习更深入的知识打下基础,同时培养学生积极思考问题,热爱自然科学的品质。
一、教学目的:1、使学生掌握列方程解两步应用题的方法。
2、总结列方程解应用题的一般步骤。
3、培养学生分析数量关系的能力,提高学生在列方程解应用题时分析
等理关系的能力。教学重点:分析应用题里的等量关系,会列方程解应用题。
二、教学难点:分析应用题里的等量关系。教具准备:小黑板、写好题目的纸条等。
三、教学教法:
针对本课的知识特点,采用了下面几种方法进行教学:讲授法、对比法、分组讨论法。在准备阶段,让学生独立完成习题,学生根据以前的知识可以用算术方法和列方程的方法来解答此题,从而为今天学习较复杂的列方程解应用题打下基础。在新课阶段,应用讲授法和对比法,让学生观察、比较例1和准备题的内在联系,找出数量间的相等关系,列出等量关系式,再根据等量关系式列出方程,从而掌握本课的知识重点,同时也能理解掌握本课的难点。在小结阶段,采用分组讨论法,让学生通过分组讨论得出列方程解应用题的一般步骤,完成这一课的教学任务。在练习阶段,教师灵活采用各种教学方法和手段进行巩固练习。
四、教学步骤。
在教学步骤上,我是这样进行教学的:
(一)、准备。
教师出示复习题,学生读题后说:“请同学们用两种方法解答这道题。”
商店原来有一些饺子粉,卖出35千克以后,还剩40千克。这个商店原来有多少千克饺子粉?
解法一:35+40=75(千克)
解法二:设原来有X千克,X-35=40
X=40+35
X=75
答:原来有75千克饺子粉。
(二)、新课。
教师出示例1,请学生思考:这道题和上道题有什么相同点和不同点?
商店原来有一些饺子粉,每袋5千克,卖出7袋以后,还剩40千克。这个商店原来有多少千克饺子粉?
想:原有的重量-每袋的重量X卖出的袋数=剩下的重量
X千克5千克7袋40千克
解:设原有X千克。
X-5X7=40
X-35=40
X=40+35
X=75
答:原来有75千克饺子粉。
教师:“用方程解答应用题也要检查答案对不对。检验时,要先检查方程是不是符合题意,然后再把解得的X的值代入原方程,看解得对不对。请你用上面的方法检验例1的答案对不对。”
教师出示例2:
小青买4节五号电池,付出8.5元,找回了0.1元。每节五号电池的价钱是多少元?
想:付出的钱数-4节电池的钱数=找回的钱数
8.5元4X0.1
解:设每节五号电池的价钱是X元。
8.5-4X=0.1
4X=8.5-0.1
4X=8.4
X=8.44
X=2.1
答:每节五号电池的价钱是2.1元。
想一想:这道题还可以怎样想?列出方程来。
教师:从上面的例题可以看出,列方程解应用题的特点是,用字母表示未知数,根据题目中数量之间的相等关系,列出一个含有未知数的等式(也就是方程),再解答出来。
(三)、小结。
教师:大家分组来总结列出方程解应用题的一般步骤。
1、弄清题意,找出未知数,并用X表示;
2、找出应用题中数量之间的相等关系,列方程;
3、解方程;
4、检验,再写出答案。
把例1中的前两个条件改写成“商店原来有15袋饺子粉,卖出35千克以后”,问题改成“每袋饺子粉重多少千克”,该怎样解?
(四)、练习。
1、下面两题,先找数量间的相等关系,再把每个方程补充完整。
(1)小明买4支铅笔,每支X元,付给营业员3.5元,找回0.1元。
—————————————=0.1
(2)建筑工地运来5车水泥,每车X吨,用去13吨以后还剩7吨。
—————————————=7
2、图书小组原来有一些故事书,借给3个班,每班18本,还剩35本。原来有故事书多少本?
五、布置作业。
第二篇:人教版小学数学五年级上册说课稿_列方程解应用题
列方程解应用题说课稿
这节课在学生已有的解方程、分析应用题数量关系等知识的基础上进行教学,使学生掌握列方程解应用题的方法,为以后学习更深入的知识打下基础,同时培养学生积极思考问题,热爱自然科学的品质。
一、教学目的:
1、使学生掌握列方程解两步应用题的方法。2、总结列方程解应用题的一般步骤。
3、培养学生分析数量关系的能力,提高学生在列方程解应用题时分析等理关系的能力。教学重点:分析应用题里的等量关系,会列方程解应用题。
二、教学难点:分析应用题里的等量关系。教具准备:小黑板、写好题目的纸条等。
三、教学教法:
针对本课的知识特点,采用了下面几种方法进行教学:讲授法、对比法、分组讨论法。在准备阶段,让学生独立完成习题,学生根据以前的知识可以用算术方法和列方程的方法来解答此题,从而为今天学习较复杂的列方程解应用题打下基础。在新课阶段,应用讲授法和对比法,让学生观察、比较例1和准备题的内在联系,找出数量间的相等关系,列出等量关系式,再根据等量关系式列出方程,从而掌握本课的知识重点,同时也能理解掌握本课的难点。在小结阶段,采用分组讨论法,让学生通过分组讨论得出列方程解应用题的一般步骤,完成这一课的教学任务。在练习阶段,教师灵活采用各种教学方法和手段进行巩固练习。
四、教学步骤。
在教学步骤上,我是这样进行教学的:
(一)、准备。
教师出示复习题,学生读题后说:“请同学们用两种方法解答这道题。”
商店原来有一些饺子粉,卖出35千克以后,还剩40千克。这个商店原来有多少千克饺子粉?
解法一:35+40=75(千克)
解法二:设原来有X千克,X-35=40
X=40+35
X=75
答:原来有75千克饺子粉。
(二)、新课。
教师出示例1,请学生思考:这道题和上道题有什么相同点和不同点?
商店原来有一些饺子粉,每袋5千克,卖出7袋以后,还剩40千克。这个商店原来有多少千克饺子粉?
想:原有的重量-每袋的重量X卖出的袋数=剩下的重量
X千克5千克7袋40千克
解:设原有X千克。
X-5X7=40
X-35=40
X=40+35
X=75
答:原来有75千克饺子粉。
教师:“用方程解答应用题也要检查答案对不对。检验时,要先检查方程是不是符合题意,然后再把解得的X的值代入原方程,看解得对不对。请你用上面的方法检验例1的答案对不对。”
教师出示例2:
小青买4节五号电池,付出8.5元,找回了0.1元。每节五号电池的价钱是多少元?
想:付出的钱数-4节电池的钱数=找回的钱数
8.5元4X0.1
解:设每节五号电池的价钱是X元。
8.5-4X=0.1
4X=8.5-0.1
4X=8.4
X=8.44
X=2.1
答:每节五号电池的价钱是2.1元。
想一想:这道题还可以怎样想?列出方程来。
教师:从上面的例题可以看出,列方程解应用题的特点是,用字母表示未知数,根据题目中数量之间的相等关系,列出一个含有未知数的等式(也就是方程),再解答出来。
(三)、小结。
教师:大家分组来总结列出方程解应用题的一般步骤。
1、弄清题意,找出未知数,并用X表示;
2、找出应用题中数量之间的相等关系,列方程;
3、解方程;
4、检验,再写出答案。
把例1中的前两个条件改写成“商店原来有15袋饺子粉,卖出35千克以后”,问题改成“每袋饺子粉重多少千克”,该怎样解?
(四)、练习。
1、下面两题,先找数量间的相等关系,再把每个方程补充完整。
(1)小明买4支铅笔,每支X元,付给营业员3.5元,找回0.1元。
—————————————=0.1
(2)建筑工地运来5车水泥,每车X吨,用去13吨以后还剩7吨。
—————————————=7
2、图书小组原来有一些故事书,借给3个班,每班18本,还剩35本。原来有故事书多少本?
五、布置作业。
解简易方程说课稿
今天我说课的内容是解简易方程。下面我从教材分析、教学方法、学法指导、过程分析等四个方面进行说课。
一、教材分析
1、教材的地位与作用
本节课是解简易方程的第一课时,是在学生学习的四则运算及四则运算各部分间的关系和等式的性质的基础上进行教学。而今天学习的内容又为后面学习解方程和列方程解应用题做准备。今后学习分数应用题、几何初步知识、比和比例等内容时都要直接运用。所以本节课起着一个承上启下的作用,是教材中必不可少的组成部分,是一个非常重要的基础知识,所以它又是本章的重点内容之一。
2、教学目标的确定
根据学生已有的认知基础和教材的地位与作用,参照课标确定本节课的目标:
(1)知道解方程的意义和基本思路。
(2)会运用数量关系式或等式的基本性质对解方程的过程进行语言表述。(3)会对具体方程的解法提出自己解答的方案,并能与同学交流。(4)会独立地解答一、二步方程。(5)能够验算方程的解的正确性。
3、教学重点、难点、关键点
根据教材内容和教学目标,我认为本节课的重难点是解方程的两种方法及检验,解决重难点的关键是帮助学生确立解方程的一般思路。
二、说教法 1.演示操作法
借助媒体,激发学生的学习兴趣 2.观察法
为了体现学生的主体性,培养学生的合作意识,通过四人合作、交流,自主探寻发现通过等量关系来列方程。
这些教学方法,为学生创设一个宽松的数学学习环境,使得他们能够积极自主地,充满自信地学习数学,三、说学法
1、合作学习法
采用小组合作学习的形式,让学生经历一个观察、比较、交流、分析等过程,鼓励学生把发现的规律都说出来,有利于学生口语交际和解决问题能力的发展,这样既培养学生的合作意识,又能使学生在发现规律的同时获得成功的体验。
2、自主学习法
以学生自主学习为主,注重探索过程的教学,充分发挥学生的主观能动性,变被动听为自主学,学生积极动脑去思考、动口去表达。通过交流、猜测、验证、总结归纳,体验探索规律的过程,突破难点,提高效率。
四、过程分析
本节课我准备按以下几个环节进行教学:
(一)复习铺垫
巩固方程及等式的性质,为下面的学习做好铺垫。
(二)走进新课 1汇集问题,寻找出路
用问题来提高学生的学习兴趣、探究的热情。2解决问题,形成方法(例1教学)
先通过学生仔细观察,回答下面的问题,把学生推向主体位置: ①你发现了哪些数学信息?
②能根据数学信息说出等量关系吗? ③请大家根据等量关系列出方程。
④这个方程的解是多少?你是根据什么得到的? 然后组内交流,班内展示,统一方法与答案。
① 解方程的格式(先提行,写下一个“解”字;为了美观,尽量使等号对齐,两边写式子。);
② 解方程的依据(等式的性质或四则运算各部分间的关系); ③自觉检验。
尝试练习:写出求解的过程和验算的过程,不会的可以问问同学和老师。出示:20+x=30。
3类比推广,深化探究。教学例2 学生写完后,互相交流,老师一一展示各组的解方程过程
方法一: 解3y-8=13
方法二:解 3y-8=13 方法三:解3y-8=13 3y=13+8
3y-8-8=13-8
3y-8+8=13+8 3y=21
3y=5
3y=21 y=21÷3
3y×3=5×3
3y÷3=21÷3 y=7
y=15
y=7 验算3×7-8=21
验算3×7-8=21 通过学生的自主探究,在学习方法的同时辨析渗透检验的重要性,培养学生自觉检验的习惯。
(三)练习巩固
强化重点,巩固新知,培养学生良好的学习习惯。
(四)回顾总结
梳理知识形成完整知识体系
(五)课堂检测
对所学知识进行检测,查缺补漏。
(六)布置作业
解方程说课稿
一 教材分析: 1.课标要求
(1)知道用字母表示数和用方程表示数量关系的优越性,会用
字母和含未知数的式子表示数和常见的数量关系。
(2)认识等式和方程,理解等式的性质和方程的解法。初步学会根据字母的取值求含有字母的式子的值,比较熟练地解答含有一个或两个未知数的方程。(3)研究简单的情景关系和数形联系,明确含字母的式子、等量及等量关系的意义。建构含字母的式子、等式和方程的数学模型,探究等式的特性和方程的特点。
(4)感受用字母表示数和构建方程在生活中的应用价值,强化应用意识,培养分析能力和归纳概括能力。
(5)学会按时间发生的基本顺序进行数量关系的提取和思维模型的加工,将生活事理关系与数学逻辑思维有机地结合。(6)用方程的基本思想解决简单的实际问题。
(7)体会方程在数学史和人类发展史上的意义,进一步增强热爱数学的热情。2.编写意图
⑴突破方程的传统设计
方程在小学阶段的学习,由于小学生的认识范围有限,传统的教科书都采用的是用四则运算的基本关系和几种常见应用题的数量关系作为解题的基础和列方程的基础。这种处理方法,学生能够很好地掌握和运用。但是,把它放在整个数学领域,就有一些问题。主要是传统小学教科书中的方程从解答依据到列方程的思路,都与中学的教科书内容不一致,学生到初中还要重新学习解方程和列方程的知识和技能。本教科书采用新的理念,突破传统观念,既遵循四则计算的意义列、解方程,以便适应小学生的认知基础,又用方程核心思想——等量关系来构建数学模型,先学习等量与等式,讨论出等式的性质,再学习方程与方程的解法,为第三学段的方程学习打好基础。⑵突出方程的生活背景
方程思想在现实中是普遍的,但却难以直接与学生的生活联系起来,因为人们习
惯于运用已知条件构建数学模型。而方程思想不是从局部入手思考问题的,而是从宏观角度把整个事件的存在因素综合考虑的,找出各因素之间存在的等量关系,构建数学模型。
本教科书,首先从生活素材排演云南佤族的《木鼓舞》的直观现象引入等量与关系,再从已购回的若干物品问某一个物品重量的方式引入方程。同时,在后续的学习和练习的设计中,也是尽量采用现实生活素材,让学生真正把数学与生活联系起来,感受数学的价值。(3)突出方程的核心思想
方程的核心思想就是构建等量关系的数学模型。这种数学模型的组合要素就是生成事件的基本要素。比如:第91页,小学生排演舞蹈,男生、女生与演员总数的关系是一个学生熟悉的而且又很好理解的等量关系模型。其基本思考的思路是:A=A1+A2。教科书在其它类似的问题和问题解决部分的题目呈现时,尽量突出这种思想。⑷突出方程的应用地位
本教科书通过生活实例引入方程,让学生从情景到数学模型更加体会到数学的应用价值。特别是文艺演出、西气东输、唐卡艺术、商品买卖、植树育林、退耕还草和野生动物保护等多层面、多角度、多行业的实例呈现,显示出方程运用的巨大空间,为学生学习方程起到明显的激励作用。3.采用体例
教科书中每节内容的编写结构大多数是:正文、课堂活动、练习。正文呈现教学内容,体现具体目标要求,课堂活动是师生互动,建立教与学的双边活动的有效途径。通过活动使学生完成对知识的自主建构和理解。练习是为学生巩固和应用知识而设立的。4.具体内容及逻辑线索 具体内容:
本单元的教学内容分为6个部分:① 用字母表示数 ②等式
③方程 ④解方程 ⑤解决问题整理和复习⑥整理和复习逻辑线索:
用字母表示数是本单元的起始课,通过学习,使学生体会用字母表示数的优越性,为下一节学习方程做好准备。接着学习了等式,用方程核的思想——等量关系来构建数学模式,再学习方程与方程的解法,为以后学习方程打好基础。解决问题是紧接着这些内容编排的,培养学生解决问题的能力。最后是整理复习,提高学生对本单元的掌握水平,教科书按照知识的逻辑顺序来编排,既有利于教师的教,有利于学生的学。
5.知识树
6.教材先后整合的内容
本单元是在学生对小学阶段整数、小数、分数的认识、四则运算,已全部学完,学生的数与代数的知识和经验已经积累到相当的程度,需要对更高一级的数学知识和数学思想进行学习的基础上进行教学的。
本单元因为其数学思想和解决问题的思维方式不同,它把学生习惯的由条件到问题建立数量关系的解决问题思路淡化,取而代之的是按事物发生发展的自然顺序构建数量关系,其核心思想是构建等量关系。方程作为数学领域的重要知识和重要思想,在解决数学问题方面占有重要作用,也是学生在中学学习数、理化和解决问题的重要思想和方法。
二、教学策略的运用 1.学情分析:
(1)学生已有知识基础:已经掌握了小学阶段整数、小数、分数的认识、四则运算
(2)学生已有知识经验与新知识的结合点:
学生对数与代数的知识和经验已经积累到相当的程度,需要对高一级的数学知识和数学思想进行学习。
(3)方程作为数学领域的重要知识和重要思想,也是学生在中学学习数理化的重要思想和方法。作为数学上具有特殊意义的方程,对小学生来说基本上是陌生的。
2、教法分析
数学是一门比较抽象的学科,要根据五年级学生的特点,在课堂上创设情景,调动学生的学习积极性,充分激发学生的求知欲,创设出一种轻松愉快的教学氛围。(1)
重视生活背景的呈现
本单元学生主要是通过生活事件构建等量关系,因此课堂上教学素材的呈现十分重要。比如:学习用字母表示数时,校园失物招领的生活原型的呈现,能够唤起学生对用字母表示数的理解。在这个情境中,他们深切地感到,生活中有时需要用到比数学更有用的符号-字母。在学习等式的意义时,出示学生排演云南佤族舞蹈《木鼓舞》时,舞蹈演员组成的舞蹈队是一个关键的认知背景。一个队的人数是他们首先关注的,这是多个元素的组合。教师依据教科书的信息提问后,学生才会去关注男演员、女演员人数以及与总数的关系。这样,在教师大力渲染霞,集合中部分元素与总数的关系被突显出来,使学生把生活问题提升为数学问题。“舞蹈队总人数”表示的因素有两个:“55”和“40+15”。这两个因素意义相同,大小相等。同理,表示“男演员人数”的两个因素是:“40”“55-15”,表示“女演员人数”的两个因素是“15”和“55-40”其它背景材料、教育因素和渲染程度要弱化,这样才是数学学习。(2)加强学习过程的指导
学生的学习过程中,既有方法和技能的习得,还有学习情感的体验和学习习惯的养成。比如:等式性质的探讨,必须由学生亲自动手探究。由于天平实验要求精度稿,教师先要在课前组织学生熟悉天平的构造,没有天平的学习一定准备好替代品,其次是要规划好实验措施和步骤。学生的操作是在教师指导下完成的。要告诉学生如何分组,先做什么再做什么?操作过程中观察什么现象?谁来做记录„„第三,必须交代实验的任务和观察中思考什么问题,避免盲目性。第四,要求学生把观察的结果互动交流,以得到统一的认识和互相的启发。(3)强调数学模型的构建
教师要非常重视每一个学生对所学习的数学模型知识的认识,在学生讨论交流的叙述形成以后,教师要视其情况给予归纳和小结,强调其关键意思和关键文辞。在学习用字母表示数时,要让学生时时叙述使用该字母的缘由和表示的意义,同时让学生清楚含字母的式子不仅表示几个数之间运算关系,也表示几个数的运算结果。在等式和等式性质的认识里,要加强等式的口头交流和书面活动。学生对方程一节的学习可能有些困难,特别是一两个例题和几个作业,对他们的理解和巩固达不到量上的需要,教师可以根据需要适当补充。问题解决,与过去的列方程解应用题相比,从量上和形式上做了大量的删减,只是程序了方程解决问题的
基本要素-构建等量,列出等式(方程)。对于类型方面是无法一一顾及的,只要方法上能够运用就行了。训练中突出抓等量,列方程。(4)尊重学生探究的差异和创造
方程的学习与其它知识的学习一样,一定会遇到两极分化或发展不平衡的现象。特别是在探究等式的性质时,教师要非常细心地观察各组学生的表现和他们获得的结论,只要他们基本获得需要的数学思想和结论,只要他们基本获得需要数学思想和结论,就应该给予充分的肯定。在问题解决的过程中,学生一定会提出不同的方案,包括错误的方案。教师应本着求同存异的思想,允许不同的想法存在,同时鼓励学生对多重方法进行比较,寻求大家都能理解的方法和自己独特的方法。在解决问题时既能用自己的方法,也能用别人都理解的方法,就达到融会贯通了。
3、案例分析
(1)创设情境,激发兴趣
在教学用字母表示数时,首先创设一个学生喜欢的猜谜语小游戏,在此基础上导入新课,揭示课题。到学生的生活中寻找素材,为学生学习数学创设生活情境。小学数学不是枯燥的帐本,而要来源于生活,应用于生活。学生每接触一个数学知识就必须知道这些数学知识是从哪里来的。“用字母表示数”相对于小学生来说,较抽象深奥,通过创设情境,从学生的生活实践中提出问题,让学生惊奇地发现:“用字母表示数”原来就在我们身边,小小字母的作用还真大:可以表示人名、地名,还可以表示数字。这就使得“用字母表示数”具体而现实,从而调动学生学习的积极性,帮助部分学生消除学习中的畏难情绪。(2)相互交流,深化理解
方程是从学生看得见、摸得着的天平到抽象的,是学生认识上的一大飞越,要让学生达到由具体到抽象的真正理解,就要在教学过程中把传授知识变为渗透思想,教给学生学习知识的方法。要把天平与方程中“相等”联系起来,让学生在不断调整天平平衡的过程中,对方程的意义有了较好的理解。数学学习需要学生有一个主动探索的心态,有一个敢干质疑的精神。在教学时要为学生创设了一个相互交流、相互学习、相互帮助解决的和谐的课堂学习环境,同时又让学生在相互交流中深化了新知,在交流中提高了准确表达能力,这样不仅使课堂有了活气,学生放得开,学得活,而且从思想上给了学生一个思维的台阶,使得教学难点得以分解.(3)实现从算术思维到代数思维的提升
以前,我们是根据四则运算的互逆关系来解方程,属于算术领域的思考方法;而用等式的基本性质解方程属于代数领域的思考方法,两者有联系,但后者是前者的发展与提高,运用等式性质解方程具有更广泛的适用性。在现阶段,解简单的方程也许无法清楚明了地显现出“等式的基本性质”的优越性,但随着数学知识的深化,一些较复杂的问题(例如:把一些图书分给某班学生阅读,如果每人分3本,则剩20本;如果每人分4本,还缺25本,这个班有多少学生?解答此题时,学生容易根据等量关系列出如下方程:3X+20=4X-25)用算术思维解方程,解法如下:3X+20=4X-25,4X=3X+20+25,4X=3X+45,4X-3X=45,X=45会显繁难、费力,学生也较难理解与接受;而用等式的基本性质解答:3X+20=4X-25,3X+20-3X=4X-25-3X,X-25+25=20+25,X=45,就能明显地显示出简洁、方便的优越性。可见,运用代数的思考方法解决问题,使学生的思维水平得到了有效提高。
三、教学训练和反馈
教师的教学效果和学生的学习情况大都是通过学生的练习反馈出来的,因此做好练习环节的反馈设计是每一节教学课教学设计的一个重点。我注重从以下几方面做起:
1、反馈形式要多样。最常用的反馈方法有同桌交换,小组轮换,实物投影展示作业,面批面改等,可以根据自己的需要来安排调整。
2、反馈要有针对性。比如一节课的重点是让学生掌握利用公式解决问题,在练习当中如果仅仅是计算错,可不必放大,提醒学生下次细心一点。如果学生在关键步骤上有了错误----不会列式解决问题,那么教师应引起重视。
3、反馈要有一定的层次性。通过层次反馈将错误类型相同的集中起来一起纠错,既节省了教学时间又提高有效性。
对于所学知识的反馈情况重在落实,每一节课抽出10分钟时间进行检测,老师很快批阅结束,发现问题,有针对性的辅导,直到弄懂会为止。
第三篇:五年级数学上册列方程解应用题练习题
五年级数学上册应用题练习题[人教版]
列方程解应用题
1、育新小学共有108人参加学校科技小组,其中男生人数是女生人数的1.4倍。参加科技小组的男、女生各有多少人?
解:设女生有x人,则男生有1.4x人,根据题意列方程是: x+1.4x=108 x=45 1.4x=1.4×45=63
2、体育比赛中参加跳绳的人数是踢毽子人数的3倍,已知踢毽子的人数比跳绳的人数少20人,跳绳、踢毽子各有多少人?
解:设踢毽子有x人,则跳绳有3x人,根据题意列方程是: 3x-x=20 x=10 3x=3×10=30
3、某校五年级两个班共植树385棵,5(1)班植树棵树是5(2)班的1.5倍。两班各植树多少棵?
解:设5(2)班植树x人,则5(1)班植树1.5x人,根据题意列方程是: x+1.5x=385 x=154 1.5x=1.5×154=231
4、一支钢笔比一支圆珠笔贵6.8元。钢笔的价钱是圆珠笔价钱的4.4倍。钢笔和圆珠笔的价钱各是多少元?
解:设圆珠笔是x人,则钢笔是4.4x人,根据题意列方程是: 4.4x-x=6.8
5、学校数学小组的人数是写作小组人数的1.4倍,如果从数学小组调4人到写作小组,两个小组的人数就相等了。写作小组和数学小组各有多少人?
解:设写作小组有x人,则数学小组有1.4x人,列方程是: 1.4x-x=4×2 x=20
6、过年了,妈妈给姐姐和弟弟同样多的压岁钱。姐姐花了290元买了一套《百科全书》,弟弟花了170元买了一辆滑板车,这时,弟弟的钱数是姐姐的3倍,姐姐和弟弟各得到多少压岁钱?
解:设姐姐剩下x元,则弟弟剩下3x元,根据题意列方程是: 290+x=3x+170 x=60 姐姐=弟弟=290+x=290+60=350
7、食堂买来一些黄瓜和西红柿,黄瓜的质量是西红柿的1.2倍,黄瓜比西红柿多6.4千克。买来西红柿多少千克?
解:设西红柿有x千克,则黄瓜有1.2x,根据题意列方程是: 1.2x-x=6.4
8、今有鸡、兔共居一笼,已知鸡头和兔头共35个,鸡腿和兔腿共94只。问:鸡、兔各有多少只?
解:设鸡有x 只,则兔有(35-x)只,根据题意列方程是: 2×x+4×(35-x)=94
9、妈妈今年46岁,小倩今年12岁,再过多少年妈妈的年龄是小倩的3倍?
解:设再过x年。根据题意列方程是: 46+x=﹙12+x﹚×3 x=5
10、用一根长54厘米的铁丝围成一个长方形,要使长是宽的2倍,围成的长方形的长和宽各是多少?面积是多少?
解:设宽是x厘米,则长是2x厘米,根据题意列方程是:
(x+2x)×2=54 x=9 2x=2×9=18 面积=9×18=162(平方厘米)
11、一只麻雀的体重是81克,恰好是蜂鸟的40倍。一只蜂鸟重多少克? 解:设蜂鸟重x千克,根据题意列方程是: 40x=81
12、一块长方形菜地的面积是180平方米,它的宽是12米,长是多少米? x×12=180
13、食堂有一批大米,每袋25千克,用去6袋以后,还剩50千克,这个食堂原来有大米多少千克?
解:设食堂原来有大米x千克,根据题意列方程是: x-25×6=50
14、食堂有200千克大米,每袋25千克,用去一些后,还剩50千克,用去多少袋?
15、小明做了28道习题,小红再做多少道就是小明做的2倍?
16、幼儿园大班有10个小朋友,现在有60个苹果平均分给大班和小班的小朋友,每个小朋友可分得2个,小班有多少个小朋友?
17、小华买了相同数量的2元和8角的邮票,共用去了42元,两种邮票各有多少张?
18、学校分配学生宿舍,如果每个房间住6人,那么有20人没有床位,如果每个房间住8人,则正好住满,学校有多少间学生宿舍?
19、甲、乙两车从相距280千米的两地同时出发,相向而行,经过4小时两车相遇。甲车每小时行30千米,乙车每小时行多少千米? 20、商店购进120台数码摄象机,比购进的数码照相机的2倍少40台,数码照相机有多少台?
21、一根铁丝长54厘米,用它围成一个长方形,使长是宽 的2倍,长和宽各是多少厘米?
22、强强和丽丽共有奶糖40粒,强强比丽丽少6粒,强强有奶糖多少粒?
23、奶奶买4袋牛奶和2个面包,付给售货员20元,找回5.2元,每个面包5.4元,每袋牛奶多少元?
第四篇:《列方程解应用题》说课稿
《列方程解应用题》说课稿
一、说教材
1、教材内容:
今天我说课的内容是人教版新课标教材五年级上册第60页例3,内容是——列方程解应用题。
2、教材及一般学情分析:
从内容安排上来看,这一课时是本册第四单元——简易方程的第8课时,在这个课时以前,学生已经认识了用字母表示数的意义和作用,并初步了解了方程的意义和等式的基本性质,并能运用它解简易方程。这一课时是对前期知识的进一步深化,也是列方程、解方程内容的深化,更是后面学习列方程解决稍复杂的应用题的基础。由此可见,这个内容是本单元的一个重点。
新课程标准对于方程这部分内容在教学上有明确的学习要求,要求“能用方程表示简单的数量关系,能解简单的方程。”本学段有这么几个具体目标:1.在具体情境中会用字母表示数。2.结合简单的实际情境,了解等量关系。3.了解方程的作用,能用方程表示简单情境中的等量关系。4.能解简单的方程。具体到本套人教版教材上,这一单元也是第一次完整、全面地出现方程的内容,但其实在以前的教学中这部分内容已经有所渗透,比如一年级的填未知数、四年级的用字母表示运算定律等,都是代数知识的启蒙和渗透。而这部分内容与以前的老教材相比,也有所区别,一是呈现时间上的延迟,这与新课标对于数与代数内容要求的变化有关;二是呈现方式的不同;三是解方程方法上的变化,由过去的根据四则运算的互逆关系解方程变化为根据等式基本性质进行。
二、说教学目标:
据此,我为本课设计了这样三个教学目标:
(1)认知目标:通过分析数量关系,自主探究,初步掌握列方程解决问题的一般步骤和方法。
(2)学能目标:通过算术方法和方程的比较,体会方程的优越性,培养了灵活选择算法的意识和能力,会列形如x±b=c的方程,并会正确地解答。
(3)情感目标:感受数学与现实生活的联系,培养学生的数学应用意识,培养学生初步的代数思想和良好的学习习惯。
三、说教法学法
在教学中,学生往往更习惯运用算术方法解题,这是因为他们之前长期用算术的思路思考问题,再学列方程时,往往会受到干扰。因此在教学中要注意过渡和对比,克服干扰,多让学生体会列方程解题的优越性。而在整节课的设计上,我想着重突出这么几点:
1、通过比赛解简单的方程激发学生兴趣,调动学生积极性,接着出示一组信息引导学生分析数量关系,既培养了学生思维能力,又为新知学习作好了铺垫。最后在新知学习中通过导读引导学生根据题目中信息的叙述方式,通过顺向思考列出数量关系,帮助学生突破重点、难点。由于是刚接触方程,列出文字性的数量关系对于学生正确地列出方程是很重要的。
2、学生对于例子中出现的警戒水位等词并不是很熟悉,所以在思考前我作了一定的点拨,又通过用算术方法解决问题这一步骤,学生很快理解了三者之间的关系,这为后面进一步思考如何列方程解决问题打下了基础。
3、突出了学生数学学习的主体地位,教师作为学习的组织者、引导者与合作者参与其中,在活动中注重培养学生良好的数学学习习惯,及掌握有效的数学学习方法。因为解方程学生已经会了,已不是本课的重点,我就放手让学生自己去解决。教学方法上,我重点以启发式教学为主,因势利导、适时调控,以实现预设的教学目标。
四、说教学程序及设计意图
在具体的教学过程中,我将本课分为以下几个模块: ㈠复述回顾
1、列出两个不同样式的简易方程让学生竞赛求解,并把解方程的过程讲给同桌听。
(对学生已掌握的知识通过竞赛的形式能调动学生的积极性,另一方面培养学生计算的能力。针对学生的快速解答给予适当评价,以此激励学生,使学生很快进入学习状态。)
2、根据所给信息写出数量关系式,既培养了学生思维能力,又为新知学习作好铺垫。(我想通过这样的设计,让学生进一步感觉等式的含义,理解解决问题实际上就是找数量的等量关系,抓好了这块,就为下一步解方程奠定了基础。)
㈡探究新知
1、由欣赏图片引入新知,通过阅读思考警戒水位、今日水位、超出部分这三个量之间的数量关系,由于有了第一个环节做铺垫,学生对于等量关系的分析问题应该不大,通过写出的数量关系顺势过渡到利用数量关系列方程解决问题,在学习中注意引导学生发现不同的数量关系所写出的方程也不同。
2、注意让学生发现方程的书写方法,教学中引导学生发现数量关系式中有的数量已经知道了,有的未知,如果用x代表未知量,那这个等式就变成了方程,教师在引导学生回答时可以提示x代表什么,怎么让别人也知道你的x表示什么?从而引出方程的写法。
3、自己解方程并检验,对于这样的方程学生已会解决了,在此环节我放手让学生自己去解决,同时也培养学生自我检验的习惯。
4、汇报学习成果,在汇报中了解学生学习情况并做适时点拨,特别强调①等量关系与方程的关系②方程的书写方法③自己解方程并检验,以加强学生对重点和难点内容的理解,从而很好得达到教学目标。
5、小结用方程解决问题的方法
你能归纳总结出方程解决问题的步骤吗?请同桌交流。
①弄清题意,找出未知数,用X表示
②分析数量之间的关系,找出等量关系,列出方程。
③解方程
④检验并答。
(通过这样的梳理加深学生对于用方程解决问题的印象)
㈢、巩固练习
㈣、课堂总结
第五篇:五年级上册“列方程解应用题”教学反思
五年级上册“列方程解应用题”教学反思
北张联校 文俊
现在的小学数学教材十分注意将数学知识与生活实际紧密联系。内容的呈现注意体现儿童的已有经验和兴趣特点,提供丰富的与儿童生活背景有关的素材。如人教版小学数学五年级上册60页,关于警戒水位的问题。
本节课的教学目的是能让学生运用所学知识解决简单的实际问题,感受解简易方程与实际生活的密切联系,使学生初步掌握用列方程的方法解决实际问题的解题思路和方法;会把未知数的值代入已知条件看是否符合;在解方程解决问题的过程中培养学生初步的分析、综合、比较的能力;在解题过程中进一步培养初步的类推和迁移的能力及养成独立思考的良好习惯。本节课是学生初次利用列方程解决实际问题,对学生来说有一定的难度,上完后,感觉有不少问题存在。
教学例3时,我首先从例题上引导学生读题观察,理解题意,然后指导学生分析题中的数量关系。这时问题产生了,由于这里学生的认知局限性,学生对于什么是湖、大坝,甚至水库,堤坝都不知道是什么,给审题带来比较大的困难,又要重新向学生介绍有关湖泊、水库、堤坝等知识,最后为了让学生更好地理解,我还结合学生常见的鱼塘、塘堤等学生熟悉的情境进行说明,学生才恍然大悟,(教学反思 www.xiexiebang.com)由此可见,我们提供给学生的情境必须是学生真正熟悉的生活情境,要结合当地学生的认识水平,这才是有效的情境。其次备课一定要深入,不仅要熟悉教材内容、教法、学法,还要深入分析学生已有的知识情况,这样才能备好一节课,要吸取教训。
在交流汇报时,学生说出了如下数量关系:
警戒水位+超出部分=今日水位
今日水位—警戒水位=超出部分
今日水位—超出部分=警戒水位
然后让学生依据数量关系列出相应的方程,这时学生发现例题与之前所学的方程有所不同,之前列方程时题目中未知数已经有了,直接看出x表示那个量,而例题中并没有x,从而引导学生了解到:要列方程必须把其中的未知量假设为x,从实际中让学生发现列方程解决问题时有“设……为x”的必要性,不至于出现在列方程时不写“解:设……”的情况。
但是,在列方程的时候却出现了这样的问题,因为教材只要求掌握“未知数不是减数和除数的方程”解法,在例题教学中,有的学生列出了这样的方程:14.4—x=0.64,从意义上来说,这样的方程肯定是没有问题的,但是应该怎样解呢?是否该向学生讲解方法?如果讲解方法,又该用什么方法来解?或是让学生把此方程改成教材要求的那样的方程?如果要改成教材要求的方程,那就是在向学生传达这样的信息:这样的列法是不被认可的,那么以后在学习“未知数是减数和除数的方程”时,学生的思维不就和现在冲突了吗?迷惑!