五年级奥数题及答案:质数、合数和分解质因数问题3

时间:2019-05-15 02:10:54下载本文作者:会员上传
简介:写写帮文库小编为你整理了多篇相关的《五年级奥数题及答案:质数、合数和分解质因数问题3》,但愿对你工作学习有帮助,当然你在写写帮文库还可以找到更多《五年级奥数题及答案:质数、合数和分解质因数问题3》。

第一篇:五年级奥数题及答案:质数、合数和分解质因数问题3

五年级奥数题及答案:质数、合数和分解质因数

问题3

编者小语:奥数教学不能单纯是传授数学知识,更重要的是培养学生数学意识、数学思想、独立获得和运用数学知识的能力和良好的数学学习习惯的过程。让学生具备在未来的工作中科学地提出数学问题、探索数学问题、创造性地解决数学问题的能力。查字典数学网为大家准备了小学五年级奥数题,希望小编整理的五年级奥数题及参考答案:质数、合数和分解质因数问题3,可以帮助到你们,助您快速通往高分之路!

例4 连续九个自然数中至多有几个质数?为什么?

解:如果这连续的九个自然数在1与20之间,那么显然其中最多有4个质数(如:1~9中有4个质数2、3、5、7)。

如果这连续的九个自然中最小的不小于3,那么其中的偶数显然为合数,而其中奇数的个数最多有5个.这5个奇数中必只有一个个位数是5,因而5是这个奇数的一个因数,即这个奇数是合数.这样,至多另4个奇数都是质数。综上所述,连续九个自然数中至多有4个质数。

例5 把5、6、7、14、15这五个数分成两组,使每组数的乘积相等。

解:∵5=5,7=7,6=2×3,14=2×7,15=3×5,这些数中质因数2、3、5、7各共有2个,所以如把14

(=2×7)放在第一组,那么7和6(=2×3)只能放在第二组,继而15(=3×5)只能放在第一组,则5必须放在第二组。

这样14×15=210=5×6×7。

这五个数可以分为14和15,5、6和7两组。

第二篇:五年级质数与合数奥数教案

质数与合数

第一部分 知识梳理

1、自然数按照能被多少个不同的自然数整除可以分为三类:

第一类:只能被一个自然数整除的自然数,这类数只有一个,就是1。

第二类:只能被两个不同的自然数整除的自然数。因为任何自然数都能被1和它本身整除,所以这类自然数的特征是大于1,且只能被1和它本身整除。这类自然数叫质数(或素数)。例如,2,3,5,7,„

第三类:能被两个以上的自然数整除的自然数。这类自然数的特征是大于1,除了能被1和它本身整除外,还能被其它一些自然数整除。这类自然数叫合数。例如,4,6,8,9,15,„ 2、2的倍数的特征:_________

5的倍数的特征:_________

3的倍数的特征:_________

3、举例:7的倍数有:_________

11的倍数有:_________

13的倍数有:_________ 17的倍数有:_________

3.分解质因数:把一个合数用质数相乘的形式表示出来,就是分解质因数。

4.分解质因数的方法(将36分解质因数):

(1)“树枝”图式分解法

(2)短除法分解质因数

第二部分 例题讲解

例1.写出下面各数的所有约数:

1的约数:

2的约数:

3的约数:

4的约数:

5的约数:

6的约数:

7的约数:

8的约数:

9的约数:

10的约数:

11的约数:

12的约数: 其中质数有:__________;合数有:__________;

___既不是质数,也不是合数。

判断质数与合数的关键是___________________。

例2.最小的质数与最接近100的质数的乘积是_____.例3.两个自然数的和与差的积是41,那么这两个自然数的积是_____.例3.三个连续自然数的积是1716,这三个自然数是_____、_____、_____.例

4、两个质数的积是46,求这两个质数的和。

第三部分 课堂练习

1.判断下面各数,哪些是质数,哪些是合数。19 21 22 29 35 37 43 67 87

质数有:____________________;

合数有:____________________;

2、下面是2到50的数,下话画掉2的倍数,再依次画掉3、5、7的倍数(但2、3、5、7、本身不画掉),剩下的数都是什么数?

30

40

3.在一位的自然数中,既是奇数又是合数的有_____;既不是合数又不是质数的有_____;既是偶数又是质数的有_____.4.如果自然数有四个不同的质因数, 那么这样的自然数中最小的是_____.5.在1~100里最小的质数与最大的质数的和是_____.6、写出两个都是质数的连续自然数。

7、写出两个既是奇数,又是合数的数。

8.从一块正方形的木板上锯下宽为3分米的一个木条以后,剩下的面积是108平方分米.木条的面积是_____平方分米.9.小明写了四个小于10的自然数,它们的积是360.已知这四个数中只有一个是合数.这四个数是____、____、____和____.10.有三个学生,他们的年龄一个比一个大3岁,他们三个人年龄数的乘积是1620,这三个学生年龄的和是_____.两个数的和是107,它们的乘积是1992,这两个数分别是_____和_____.12.有3个连续自然数,它们的乘积是1320,这3个自然数分别是_____、_____和_____.13.如果两个数之和是64,两数的积可以整除4875,那么这两数之差是_____.14.有10个数:21、22、34、39、44、45、65、76、133和153.把它们编成两组,每组5个数,要求这组5个数的乘积等于那组5个数的乘积.第一组数____________;第二组数是_____.二、解答题

15.2,3,5,7,11,…都是质数,也就是说每个数只以1和它本身为约数.已知一个长方形的长和宽都是质数个单位,并且周长是36个单位.问这个长方形的面积至多是多少个平方单位?

16.把7、14、20、21、28、30分成两组,每三个数相乘,使两组数的乘积相等.17.学生1430人参加团体操,分成人数相等的若干队,每队人数在100至200之间,问哪几种分法?

18.甲、乙、丙三位同学讨论关于两个质数之和的问题。甲说:“两个质数之和一定是质数”.乙说:“两个质数之和一定不是质数”.丙说:“两个质数之和不一定是质数”.他们当中,谁说得对?

第四部分 课后作业

1、判断:

(1)任何一个自然数,不是质数就是合数。()(2)偶数都是合数,奇数都是质数。()(3)7的倍数都是合数。()

(4)20以内最大的质数乘以10以内最大的奇数,积是171。()(5)只有两个约数的数,一定是质数。()(6)两个质数的积,一定是质数。()(7)2是偶数也是合数。()

(8)1是最小的自然数,也是最小的质数。()(9)除2以外,所有的偶数都是合数。()

(10)最小的自然数,最小的质数,最小的合数的和是7。()

2、在()内填入适当的质数。

10=()+()10=()×()

20=()+()+()8=()×()×()

3、分解质因数。65= 135= 56= 105=

94=

76= 93=

87=

4、一个两位质数,交换个位与十位上的数字,所得的两位数仍是质数,这个数可以是()、()、()、()、()、()。

5、用10以内的质数组成一个三位数,使它能同时被3、5整除,这个数最小是(),最大是()。

6、两个质数的和是18,积是65,这两个质数分别是()和()。

7、三个连续自然数的乘积是120,求这三个数。

8、小明是个中学生,他说:“这次考试,我的名次乘以我的年龄再乘以我的考试分数,结果是2910。”你能算出小明的名次、年龄与他这次考试的分数吗?

9、学校举行跳绳比赛,取得前4名的同学恰好一个比一个大一岁,四人年龄的乘积是11880,这四个同学的年龄各是多少?

第三篇:质数和合数,分解质因数-教学教案

教学要求 ①使学生掌握质数和合数的概念,知道它们之间的联系和区别。②能正确判断一个常见数是质数还是合数。③培养学生判断、推理的能力。教学重点 质数和合数的概念。

教学难点 正确判断一个常见数是质数还是合数。教学过程

一、创设情境

1.谁能说说什么是约数?

2.请写出自己学号的所有约数。

二、揭示课题

我们学过求一个数的约数,那么每个数的约数的个数又有什么规律?下面我们一起来观察。

三、探索研究

1.学习质数和合数。

(1)请同学报出你们学号的所有约数?(根据学生的回答板书)(2)观察:①每个约数的个数是否完全相同?②按照每个数的约数的多少,可以分几种情况?(学生讨论后归纳)(3)可分为三种情况:(让学生填)

①有一个约数的数是:。

这些数中 ②有两个约数的数是:。

③有两个以上约数的数是:。(4)再观察。

①有两个约数的如:2、3、5、7、11、13、17、19等。这几个数的约数有什么特征? 讲:一个数,如果只有1和它本身两个约数,我们把这样的数叫做质数(或素数)。②4、6、8、9、10、12、14、15„„这些数的约数与上面的数的约数相比有什么不同? 讲:一个数,如果除了1和它本身两个约数外还有别的约数,我们把这样的数叫做合数。(板书“合数”)

请学号是合数的同学举手,点两名同学板演学号,大家检查。

③请学号既不是合数也不是质数的同学举手并报出学号,大家检查。④学生看书第59页,读书上的小结语。

2、质数、合数的判断方法。

(1)根据什么判断一个数是质数还是合数?(2)教学例2。

让学生独立写出后讲所写的数为什么是质数(或合数)。

四、课堂实践

1.做教材第60页的“做一做”。2.做练习十三的第1题。

(1)按要求去做后看剩下的数都是什么数?

(2)讲:判断一个数是不是质数,除了用质数的定义进行判断外,还可以查质数表,如第59页的100以内的质数表。(或者看6的倍数的左右)

3、做练习十三的2、4题。

五、课堂小结

学生小结今天学习的内容。

质数——只有两个约数。

自然数(按约数的个数分为)合数——两个以上的约数 1——只有1个约数

六、课堂作业

1、做练习十三的第3题。

2、“你知道吗?”

课题二:分解质因数

教学要求 ①使学生理解质因数和分解质因数的概念。②初步学会分解质因数的方法。③培养学生分析和推理的能力。

教学重点 ①质因数和分解质因数的概念。②分解质因数的方法。教学难点 分清因数和质因数,质因数和分解质因数的联系和区别。教学用具 投影仪。教学过程

一、创设情境

1.回答:什么叫做质数?什么叫做合数? 2.填空:1~12的质数有,合数有。

3.观察:2、3、5、7、11„„等质数,能写成比它本身小的两个数相乘的形式吗?为什么?4、6、8、9、10、12„„合数,能写成比它本身小的两个数相乘的形式吗?为什么?

二、揭示课题

下面我们学习每个合数能否用几个质数相乘的形式表示出来。(板书课题)

三、探索研究 1.小组合作学习

(1)把6、28、60写成比它本身小的两个数相乘的形式。6=2×3 28=4×7 60=6×10 60=2×30 60=4×15 „

(2)写出的两个数中如果还是合数的,再用上面的方法继续写下去。6=2×3 28=2×2×7 60=2×2×3×5(3)从上面的例子可以看出什么来?

师生归纳:每个合数都可以写成几个质数相乘的形式。其中每个质数都是这个合数的因数,叫做这个合数的质因数。

做练习十三的第7题,学生口答。

⊙把一个合数用质因数相乘的形式表示出来,叫做分解质因数。(板书课题:分解质因数)如把6、28、60分解质因数右以写成: 6=2×3 28=2×2×7 60=2×2×3×5 书写格式说明:要分解的合数写在等号左边,把它的质因数相乘的形式写在等号的右边。质因数按从小往大的顺序排列。2.学习用短除法分解质因数。(1)介绍短除法。

它是笔算除法的简化“ ”叫做短除号。

除数„2 6 „被除数 3 „商

(2)用短除法分解质因数。2 28 2 60 2 14 2 30 7 3 15 5 28=2×2×7 60=2×2×3×5(3)学生小结用短除法分解质因数的方法后看教材第62页的结语。(4)再让学生讨论一下:分解质因数应注意什么?

四、课堂实践

做练习十三的第8题,让学生说后集体订正。

五、课堂小结

学生小结今天学习的内容。

六、课堂作业

1、做练习十三的第8题。

2、学有余力的同学做练习十三的第17*题。

第四篇:五年级上册数学《质数与合数、分解质因数》教案

教研内容:

质数与合数、分解质因数

教学目标:

1、能够理解质数与合数的意义。能正确判断一个数是质数还是合数。了解100以内的质数,熟悉20以内的质数。理解质因数、分解质因数的意义。会把一个合数分解质因数,掌握用短除式分解质因数。

2、培养学生观察、比较、概括和判断的能力,以及自主探索、独立思考、合作交流的能力。

3、在研究过程中体验成功带来的学习乐趣,感受数学文化的魅力,同时在教学中渗透对立统一的辩证唯物主义的观点。

教学重点:

1、理解质数和合数的意义,质因数和分解质因数的意义。

2、分解质因数的方法。

教学难点:

1、如何判断一个数是质数还是合数。

2、分清因数和质因数,质因数和分解质因数的联系与区别。用短除法分解质因数。

重难点突破:

1、从研究团体操表演中各方阵人数的特点这一情境入手,抓住学生日常生活中喜闻乐见的事物,把抽象的数学概念与学生的生活实际紧密相连。通过把每个数的因数罗列出来,思考:有两个以上因数的,都能排成方阵吗?进一步研究,验证,概况出质数和合数的定义。再出示几个数,让学生学会判断是质数还是合数,也可让学生自己写出几个质数和合数。给学生充分的时间交流、评判,以达到辨析概念的目的。

2、在认识质因数、分解质因数时,可让学生用自己的方法对合数进行分解,然后从学生中选择用塔式分解式的方法,进行交流,归纳质因数,分解质因数的意义;然后学会用塔式分解式分解质因数。学习短除法分解质因数时,教师可先让学生了解格式,然后学生自己试算,然后归纳步骤。

教学要点:

1、认识质数和合数。围绕排成各个方阵的人数,分别是24、25、40、35、32,这些数有什么特点呢这一问题,放手让学生寻找这些数的特点。教师在学生思考后可适当引导,看组成方阵的人数与它们的因数有关系吗,让学生观察因数的个数,初步得出这些数因数的个数都在两个以上的结论。再利用学具摆一摆,在感知的基础上,对列举的个数按因数的个数进行分类,得出非零自然数按照因数的个数分类可分成质数、合数和1。

2、分解质因数。先安排学生列塔式分解式对具体数进行分解,让学生清楚地认识的到质因数时一个合数的因数,同时还必须是质数的双层含义。在学习用短除法分解质因数时,让学生按照:了解格式,试算,对分解步骤进行归纳这三步完成的。

第五篇:青岛版数学5年级上册《质数和合数+分解质因数》教案

质数和合数、分解质因数

教学目标:

1.在解决实际问题中,经历“猜测━实验━验证”的研究过程,借助棋子模拟排队,用列举的方法探求质数、合数的特征。学会分解质因数。

2.在探索活动中,初步了解概念学习的基本方法。加深理解知识和提高学习能力。

3.培养同学们分析问题、解决问题的能力。教具准备:电脑课件、计数器、数字卡片

教学重点、难点:质数、合数的特征。会分解质因数。教学过程: 活动一

师:同学们曾经参加过团体操表演吗?看大屏幕:这是团体操表演的场景,仔细观察五个方队人数的特点。它们有什么共同特点?

师:这几个数有的有因数2,有的有因数5,那么这些数的共同点与它们的因数有关系吗?

学生通过仔细观察发现了排成各个方队的人数分别是24、25、40、35、32。

生1:这些数有的是奇数,有的是偶数。

生2:24、40、32是2的倍数,25、35、40是5的倍数。

生1:我发现这几个数中最小的是1,最大的是这个数

生2:我发现25有3个因数,40有8个因数,35有4个因数,32有6个因数,24有8个因数。

生1:能。

生2:不一定。

师:有两个以上因数的,都能排成方阵吗? 师:到底谁的说法正确呢? 活动二

我们用摆棋子的的方法来验证一下吧!你们想怎样来验证呢?

生1:我们用一个棋子代表一个人,找几个含有两个因数以上的数,看看是不是所有的都能排成方阵。/ 2

生2:我们来找几个含有两个因数的数,看是不是都能排成方阵。

生3:我们从1开始,分别排。

人数是1、2、3、4、5„„的队伍,看看能排成方阵的数是不是都含有两个以上的因数„„

师:像2、3、5„„这样只有1和它本身两个因数的数,叫做质数(素数);像4、6、8„„这样只有1和它本身两个因数的数,还有其他因数的数,叫做合数。

自主练习:p100 1、2、3、4

师:你能把30写成几个质数相乘的形式吗? 生1:30=5×6 6=2×3„„ 生2:30

∕\ 5 × 6 /\

× 3 师:还可以用短除法

师:30可以写成质数2、3、5相乘的形式,2、3、5叫做30的质因数。

师:把一个合数用质因数相乘的形式表示出来,叫做分解质因数。

自主练习:7,8,9 教师要及时进行讲解。师:这节课你有哪些收获? 生交流/ 2

下载五年级奥数题及答案:质数、合数和分解质因数问题3word格式文档
下载五年级奥数题及答案:质数、合数和分解质因数问题3.doc
将本文档下载到自己电脑,方便修改和收藏,请勿使用迅雷等下载。
点此处下载文档

文档为doc格式


声明:本文内容由互联网用户自发贡献自行上传,本网站不拥有所有权,未作人工编辑处理,也不承担相关法律责任。如果您发现有涉嫌版权的内容,欢迎发送邮件至:645879355@qq.com 进行举报,并提供相关证据,工作人员会在5个工作日内联系你,一经查实,本站将立刻删除涉嫌侵权内容。

相关范文推荐

    五年级奥数教程与训练 02分解质因数

    五年级奥数教程与训练 第2讲 分解质因数 【知识要点和基本方法】 1.质因数和分解质因数 (1)如果一个质数是某个数的约数,那么就说这个质数是这个数的质因数 (2)把一个合数用质因数......

    五年级奥数题及答案百分数问题(精选5篇)

    五年级奥数题及答案:百分数问题 将某商品涨价25%,如果涨价后的销售金额与涨价前的销售金额相同,则销售量减少了________%。 答案与解析:因为销售总额相等,故商品单价与销售量成......

    五年级奥数题及答案:抽屉原理问题2

    五年级奥数题及答案:抽屉原理问题2 编者小语:奥数题往往从结构到解法都充满着神奇的魅力,易于小学生尝到探索的乐趣,而在探索解题方法的过程中,小学生又亲身体验到数学思想的博大......

    五年级数学奥数应用题题及答案

    1.某果园向市场运一批水果,原计划每车装1.6吨,实际每车装2吨,结果少了4吨,一共有多少辆车? 列式:_______________________(答案) 答:一共有(答案)辆车。 2.五年级一班有42个同学参加植......

    2016小学五年级奥数题及答案

    2016小学五年级奥数试题 班级 姓名 等级 1.1997+1996-1995—1994+1993+1992—1991—1990+…+9+8—7—6+5+4—3—2+1=______. 3.在图中的七个圆圈内各填一个数,要求每一条直线上的......

    四年级奥数题及答案

    四年级奥数题及答案:人数问题 1、 乒乓球练习馆里,有20名乒乓球运动员在练球,第一个女运动员和七个男运动员练过球;第二个女运动员和八个男运动员练过球;第三个女运动员和九个男......

    小学奥数题及答案

    小学奥数题及答案工程问题1.甲乙两个水管单独开,注满一池水,分别需要20小时,16小时.丙水管单独开,排一池水要10小时,若水池没水,同时打开甲乙两水管,5小时后,再打开排水管丙,问水池注......

    小学二年级奥数题及答案

    小学二年级奥数题及答案 1. 妹妹今年6岁,哥哥今年11岁,当哥哥16岁时,妹妹几岁? 2. 小明从学校步行到少年宫要25分钟,如果每人的步行速度相同,那么小明、小丽、小刚、小红4个人一起从......