第一篇:如何在数学教学中培养学生的思维能力1
如何在数学教学中培养学生的思维能力
思维活动的研究,是教学研究的基础,数学教学与思维的关系十分密切,它实质上就是学生在教师指导下,通过数学思维活动,学习数学家思维活动的成果,并发展数学思维,使学生的数学思维结构向数学家的思维结构转化的过程。对数学思维的研究,是数学教学研究的核心,数学思维的发展规律,对数学教学的实践活动具有根本性的指导意义。那么,在数学教学中如何培养学生的思维能力呢?我想,应该从以下几方面入手:
一、抽象概括能力
数学抽象概括能力是数学思维能力,也是数学能力的核心。它具体表现为对概括的独特的热情,发现在普遍现象中存在着差异的能力,在各类现象间建立联系的能力,分离出问题的核心和实质的能力,由特殊到一般的能力,从非本质的细节中使自己摆脱出来的能力,把本质的与非本质的东西区分开来的能力,善于把具体问题抽象为数学模型的能力等方面。
数学教学中如何培养学生的抽象概括能力呢?我们认为从以下几方面入手: 1.教学中将数学材料中反映的数与形的关系从具体的材料中抽象出来,概括为特定的一般关系和结构,做好抽象概括的示范工作,要特别注意重视“分析”和“综合”的教学。
2.在解题教学中要注意去发掘隐藏在各种特殊细节后面的普遍性,找出其内在本质,善于抓住主要的、基本的和一般的东西,即教会学生善于运用直觉抽象和上升型概括的方法。
3.培养学生概括的习惯,激发学生概括的欲望,使他们遇到一类新的题时,能够把这一类型的问题一般化,找出其本质,善于总结。
4.培养学生的抽象概括能力是长期艰苦的工作,在教学中要随时注意培养,有意识地根据不同情况严格训练和要求,逐步深入,提高要求。
二、推理能力
数学运算、证明以及数学发现活动都离不开推理,数学的知识体系实质上就是用逻辑推理的方法构成的命题系统,因此,推理与数学关系密切,教学中应注重推理能力的培养。
教学中如何培养学生的推理能力呢?我们认为重要的是要注意推理过程的教学,一开始就要逐步养成推理过程“步步有根据”,严密的推理,在熟练的基础上又要逐步训练学生简缩推理过程。
三、选择判断能力
选择、判断能力是数学创造能力的重要组成部分。选择、判断不仅表现为对数学推理的基础过程及结论正误的判定,还表现为对数学命题、事实、数学解题思路、方法合理性的估计以及在这个估计的基础上作出的选择,判断能力实际上是思维者对思维过程的自我反馈能力。
具有选择判断能力的学生,在判断选择中较少受表面非本质的因素的干扰,判断的准确率较高,判断迅速,对作出的判断具有清晰的认识,能区分逻辑判断和直觉猜测,他们具有明显的追求最合理的解法,探究最清晰、最简单,同时也是最“优美”的解法的心理倾向。在教学中教师如何培养学生的选择判断能力呢? 1.设置悬念,激发数学思维的积极性
教学过程的主要矛盾是学生的认识能力与认识任务之间的矛盾。教师在教学中根据学生已有的知识经验和智能水平,巧妙地设置悬念,有利于激发学生思维的积极性。
2.通过类比,培养学生数学思维能力
类比对青少年的思维是至关重要的,要搞清楚数学猜想,举一反三,常常靠这种能力。如在就讲解一次函数时y=kx+b的图象,教师通过列出y=x和y=x+1的函授值表,画出图象,在启发学生用类比的方法画出y=kx+b的图象。3.运用质疑,调动学生思维的积极性
在教学过程中,学生由不知到知,由知之不多到知之甚多,由不熟练到熟练,在这过程中,教师就要适时地,恰当地给予帮助和鼓励,质疑、释疑,使学生树立克服困难的信心和形成坚韧的良好的意志品质和持续的兴趣,这是学好数学的保证。学生在教师的帮助下,经过讨论争辩,个抒己见,加深理解,获得学习上的成功,自然产生喜悦感和满足感,这就成为激励进一步学习的动力,也调动了学生思维的积极性。
4.自主创新,提高学生数学思维能力
教学是一种知的过程,学生是认识的主体,他们内在具有巨大的发展潜能,作为教师要努力营造一种良好的创新的课堂气氛,使每个学生对自己的思想感到无拘无束、自由自在,那么,生动活泼的、自主的思维潜能才能充分发挥出来。教师在日常数学教学中要时时培养学生的自主意识,鼓励他们大胆质疑、提问,并适当点拨,让学生自己从思考、讨论中发现其中的道理。
培养学生的创新思维是实施素质教育的核心内容,是当前新课程教学的主要课题,教学实践证明,变更概念中的非本质特征,变换问题的条件或结论,转换问题的形式内容,配置实际应用的个种环境。在变化中求不变,万变不离其中,使学生从中获得概括的认知,并提高识别应变,概括的能力。对锻炼学生的思维是有重要作用的,具体到数学教学过程中,通过一问多答,一题多解、一题多变、一题多画等训练,有利于培养学生的创新思维。
第二篇:在教学中培养学生数学思维能力体会
在教学中培养学生数学思维能力体会
实验小学 张桂芳
“顺应天性”的核心,是顺应人类的成长规律,在不同的发展阶段用相应的方法培养学生。数学课堂教学的实施是数学思维活动的展开过程,教师在教学中不应以“传授”思维过程和结论为主,而应讲究思维方法的探索、思维品质的培养。下面,我结合自己的教学实践,谈谈在小学数学教学中如何培养学生的思维能力。
一、以“境”提“思”,让学生自主探索
教学情景是一种特殊的教学环境,是教师为了发展学生的心理机能,通过调动“情商”来增强教学效果,而有目的创设的教学环境。构建主义学习理论认为:学习是学生主动的构建活动,学习应与一定的情景相联系。在实际情景下进行学习,可以使学生利用原有的知识和经验同化当前要学习的新知识。这样获取的知识,不但便于保存,而且容易迁移到新的问题情景中去。因此,在教学中,如果让知识出现在贴近学生实际又逼进数学本质,而且更具一定思考性的情景中,更能激发学生“学”的兴趣和积极性,使学生发现生活中处处有数学,对数学产生亲切感,让学生积极、主动去探索。
例如:教学“体积和体积单位”一课时,某教师这样导入。师:听过乌鸦喝水的故事吗? 生:听过。
师:乌鸦为什么会喝到水呢?能通过实验说明吗?(学生动手实验,把石子放入瓶中)师:你发现了什么? 生:水面升高了。师:是瓶中的水增加了吗?
生:不是,是石子占了水的位置,把水挤上去了。
师:说得非常好!如果乌鸦口渴得厉害,想尽快喝到水,你有办法吗?
生:放大的石子。师:为什么要放大的石子?
生:大石子占的位置大,水上升得快。
这里教师巧妙地利用《乌鸦喝水》的故事,引导学生在故事情景中动手操作,初步体会物体占有空间。在课堂教学中,教师要能把握学生认识、探究事物的心理倾向,创设与学生年龄特征相和谐的教学情景,使学生对要探究的知识产生积极的心理倾向,激发学生自主探索。
二、以“旧”带“新”,让学生自主建构
学生的数学学习过程是一个以学生已有的知识和经验为基础的主动建构过程,只有学生主动参与到学习活动中,才是有效的教学。建构主义认为,所谓学习的过程不是一个由教师向学生单向输出、传递知识的过程,更不是一个学生机械、被动地接受信息的过程,而是一个学生积极主动地构建这些知识的意义和自我发展的过程。很显然,这个知识构建的过程是不可能由别人来完成的,它必须借助于自己已有的知识经验与新的知识经验之间发生交互作用来完成。
例如“除数是小数的除法”的教学不仅要让学生知道计算法则,关键要让学生明白为什么这样计算?本节课的知识点源于:“商不变的规律和除数是整数除法的计算方法”,这些知识学生都已掌握。教学时教师就应把研究新知识的权利交给学生,可以先让学生根据商不变的性质,在()里填上适当的数 0.12÷0.3=()÷3、3.72÷2.4=()÷24、1.36÷0.16=()÷16、0.672÷0.28=()÷28 然后引导学生观察等号两边的算式,右边的算式会算,左边的还不会,对照左右两边你会作出怎样的思考与推断?从而得出除数是小数的除法可以转化成除数是整数的除法。通过这样的教学,学生不仅仅掌握了本节课的知识,也使学生经历了获取知识的过程,掌握获取知识的方法,感受和体验学习成功的快乐。因此,数学教学不仅仅是
课上40分钟的教学,要激活学生进行有效的自主学习就要把课堂做大,把学生的课前、课后带动起来。
三、以“变”代“搬”,让学生发散思维
发散思维是创造思维的重要组成部分。它不受一定的解题模式的束缚,从问题个性中探求共性,寻求变异,沿着不同方向,不同角度去猜想、延伸、开拓。在数学教学中,一般可采用一题多解的训练,培养和锻炼思维的发散性。
例如,李军家与学校之间的距离是1020米,李军3分钟走255米,照这样计算,李军到学校还需几分钟?启发学生用不同的思考方法探解。
解法1:求李军到学校还需几分钟,就是求余下的路程所需的时间。“从3分钟行255米”,可求出李军速度为(255÷3),而余下的路程是(1020-255),然后根据“路程÷速度=时间”得出:(1020-255)÷(255÷3)=9(分)。
解法2:求李军到学校还需几分钟,也可先求李军走完全程的时间,然后减去已行路程的时间,即得到余下路程的时间1020÷(255÷3)-3=9(分)。
解法3:用倍比法解,将已行的路程255米看作“1”倍数,全程1020米是已行的255米的4 倍,行255米用3分钟,那么行完全程1020米就得用12分钟,然后减去已行的时间,即得出:3×(1020÷255)-3=9(分)。
通过上述的练习,引导学生从多种角度,不同方向思考问题,这不仅能提高学生灵活运用知识的能力和解题技巧,而且可以发挥学生的独特见解,增强思维发散性的辐射力。此外,一题多变、一空多填等训练,同样也能培养和锻炼学生发散性思维品质。
总之,培养学生思维能力的方法是多种多样的,教师应根据学生的具体情况,善于挖掘学生的潜能,采取有效的教学方法。在教学时,把培养学生的思维能力贯穿于教学的全过程,这样就能优化学生的思维品质,发展学生的学习能力。
第三篇:在数学教学中如何培养学生的思维能力
在数学教学中如何培养学生的思维能力
【摘要】思维品质的优良与否是国民素质的重要决定因素。为了促进学生思维能力的发展,我们必须高度关注学生在数学学习过程中的思维活动,必须研究思维活动的发展规律,研究思维的有关类型和功能,结构内在联系及其在数学教学中所起的作用。数学是思维的体操,从这个角度讲,数学本身就是一种锻炼思维的手段,我们应充分利用数学的这种功能,把思维能力的培养贯穿于教学的全过程。在教学中我们尤其要注重培养学生良好的思维品质,使学生的思维既有明确的方向,又有自己的见解,既有广阔的思路,又能揭露问题的实质;既敢于创新,又能具体问题具体分析。
【关键词】全等培养能力
全等三角形的地位和作用。全等三角形是研究图形的重要工具,等腰三角形、直角三角形、线段的垂直平分线、角平分等等知识都是对特殊位置下两个三角形全等结论的提炼,在能力培养上无论是逻辑思维能力、推理论证能力,还是分析问题、解决问题的能力都可在全等三角形的教学中得以培养和提高。
学生学好全等三角形的内容,地有利于学好相似三角形四边形和圆等知识,从本课开始,将向学生重点渗透图形变换的数学思想,使学生掌握理论证的方法,有利于培养学生逻辑推理能力。因此,全等三角形的内容在教材中处于非常重要的地位起着承前启后的作用。
在介绍全等三角形的判定方法时,学生很快知道,对于一般的三角形,有“边边边”、“边角边”、“角边角”、“角角边”这么四种判定三角形全等的方法,而对于直角三角形除了上述四种方法外,还有“斜边、直角”这种判定方法。但是在学生自己独自解决问题时,若给出的条件不是很直接或给出的条件不明显,在解题过程中,他们往往不懂如何转换条件,比如:我在学生学完三角形全等的判定后,曾让学生做过这样一题:
已知:如图△ABC中,∠ABC=45°,CD⊥AB于D,BE平分∠ABC且BE⊥AC于E,与CD相交于点F,与BE相交于点G
(1)求证:△DFB≌△DAC
(2)求证:CE=1/2BF
学生在解决第一个问题时,很容易找出DB=DC,∠BDF=∠CDA=90°。
但是再找一个条件时,一个班就有将近一半的学生不懂如何转换得出∠DFB=∠A,从而得出△DFB≌△DAC,看到这种情形,我便这样引导学生对照三角形全等的判定方法。当知道了一个三角形的一个角和一条边与另一个三角形的一个角和一条边对应相等时,可以再找一个角或再找一组边,但是若找边,根据“边角边”只能找DF=AD。但根据题目的条件,显然不能得出DF=AD,所以只能再找一组角,通过这样的分析,学生知道了解题思路后,很快就由在△BDF中,有∠1+∠BDF=90°。而在△ABE中,有∠1+∠A=90°,所以便可得出∠BDF=∠A。于是第一个问题证△DFB≌△DAC便可迎刃而解,同样对于第(2)问,即使有些同学已经解决了第一个问题,但同样不懂从第一个问题的结论中得出BF=AC,故只需证得CE=1/2AC,便可得出CE=1/2BF。
通过这题的练习,我发现学生在学习数学的过程中思维的灵活度还不够,转换的数学思想也没有培养起来。于是在往后的教学过程中,我很注意培养他们思维的灵活性,每评讲一个题,都注意举一反三,还常常作变式训练。比如:
已知:△ABC≌△DEF,AG和DH分别是BC,EF边上的高。
求证:AG=DH
对于这样的题,大部分学生很快都能从已知全等三角形中找得一组角和一组边对应相等再加上一个直角,然后利用“角角边”来证△ABG≌△PEH或证△ABG≌△DFH,从而得出AG=DH,在做完这一题后,我会让学生思考:其它条件不变,若AG和DH换成BC和EF边上的中线,或者AG和DH分别是∠BAC和∠EDF的角平分线,结论还成立吗?
又比如在学习一次函数时碰到这样一题,已知:在平面直角坐标系中,点A(5,5)、B(2,4)在X轴上是否存在一点M,使MA+MB的值最小?若存在求出M点的坐标。
这题考查了学生的以下几个知识点:(1)在直线L外的同一侧有两个点A、B,如何在L上找一点,使得A、B的距离和是最小的。(2)一个点关于X轴对称点的坐标的求法。(3)已知两点,求一次函数的解析式。(4)直线与X辆交点坐标的求法。
在引导学生思考、分析得出解题过程中,让学生作变式训练:已知条件不变,如果换作问在y轴上是否存在一点M,使MA+MB的值最小,若存在,求出M点的坐标。
在教学过程中,凡是遇到类似的题,我都让学生反复做这样的训练一般时间后,我发现学生的思维变灵活了,解题的思路和方法都比以前更完善了,学习的兴趣也浓了。
总之,作为数学教师,除了引导学生如何主动学习之外,还要注意培养学生的各种数学能力,尤其要注重学生思维能力的培养。
参考文献
[1]《创新能力培育》
[2]《中学数学教学参考》
第四篇:在小学数学教学中培养学生的思维能力
在小学数学教学中培养学生的思维能力
培养学生的思维能力是现代学校教学的一项基本任务。我们要培养社会主义现代化建设所需要的人才,其基本条件之一就是要具有独立思考的能力,勇于创新的精神。小学数学教学从一年级起就担负着培养学生思维能力的重要任务。下面就如何培养学生思维能力谈几点看法。
一、培养学生的逻辑思维能力是小学数学教学中一项重要任务
思维具有很广泛的内容。根据心理学的研究,有各种各样的思维。在小学数学教学中应该培养什么样的思维能力呢?《小学数学教学大纲》中明确规定,要“使学生具有初步的逻辑思维能力。”这一条规定是很正确的。下面试从两方面进行一些分析。首先从数学的特点看。数学本身是由许多判断组成的确定的体系,这些判断是用数学术语和逻辑术语以及相应的符号所表示的数学语句来表达的。并且借助逻辑推理由一些判断形成一些新的判断。而这些判断的总和就组成了数学这门科学。小学数学虽然内容简单,没有严格的推理论证,但却离不开判断推理,这就为培养学生的逻辑思维能力提供了十分有利的条件。再从小学生的思维特点来看。他们正处在从具体形象思维向抽象逻辑思维过渡的阶段。这里所说的抽象逻辑思维,主要是指形式逻辑思维。因此可以说,在小学特别是中、高年级,正是发展学生抽象逻辑思维的有利时期。由此可以看出,《小学数学教学大纲》中把培养初步的逻辑思维能力作为一项数学教学目的,既符合数学的学科特点,又符合小学生的思维特点。
值得注意的是,《大纲》中的规定还没有得到应有的和足够的重视。一个时期内,大家谈创造思维很多,而谈逻辑思维很少。殊不知在一定意义上说,逻辑思维是创造思维的基础,创造思维往往是逻辑思维的简缩。就多数学生说,如果没有良好的逻辑思维训练,很难发展创造思维。因此如何贯彻《小学数学教学大纲》的目的要求,在教学中有计划有步骤地培养学生逻辑思维能力,还是值得重视和认真研究的问题。
二、培养学生思维能力要贯穿在小学数学教学的全过程
现代教学论认为,教学过程不是单纯的传授和学习知识的过程,而是促进学生全面发展(包括思维能力的发展)的过程。从小学数学教学过程来说,数学知识和技能的掌握与思维能力的发展也是密不可分的。一方面,学生在理解和掌握数学知识的过程中,不断地运用着各种思维方法和形式,如比较、分析、综合、抽象、概括、判断、推理;另一方面,在学习数学知识时,为运用思维方法和形式提供了具体的内容和材料。这样说,绝不能认为教学数学知识、技能的同时,会自然而然地培养了学生的思维能力。数学知识和技能的教学只是为培养学生思维能力提供有利的条件,还需要在教学时有意识地充分利用这些条件,并且根据学生年龄特点有计划地加以培养,才能达到预期的目的。如果不注意这一点,教材没有有意识地加以编排,教法违背激发学生思考的原则,不仅不能促进学生思维能力的发展,相反地还有可能逐步养成学生死记硬背的不良习惯。
怎样体现培养学生思维能力贯穿在小学数学教学的全过程?是否可以从以下几方面加以考虑。
(一)培养学生思维能力要贯穿在小学阶段各个年级的数学教学中。要明确各年级都担负着培养学生思维能力的任务。从一年级一开始就要注意有意识地加以培养。例如,开始认识大小、长短、多少,就有初步培养学生比较能力的问题。开始教学10以内的数和加、减计算,就有初步培养学生抽象、概括能力的问题。开始教学数的组成就有初步培养学生分析、综合能力的问题。这就需要教师引导学生通过实际操作、观察,逐步进行比较、分析、综合、抽象、概括,形成10以内数的概念,理解加、减法的含义,学会10以内加、减法的计算方法。如果不注意引导学生去思考,从一开始就有可能不自觉地把学生引向死记数的组成,机械地背诵加、减法得数的道路上去。而在一年级养成了死记硬背的习惯,以后就很难纠正。
(二)培养学生思维能力要贯穿在每一节课的各个环节中。不论是开始的复习,教学新知识,组织学生练习,都要注意结合具体的内容有意识地进行培养。例如复习20以内的进位加法时,有经验的教师给出式题以后,不仅让学生说出得数,还要说一说是怎样想的,特别是当学生出现计算错误时,说一说计算过程有助于加深理解“凑十”的计算方法,学会类推,而且有效地消灭错误。经过一段训练后,引导学生简缩思维过程,想一想怎样能很快地算出得数,培养学生思维的敏捷性和灵活性。在教学新知识时,不是简单地告知结论或计算法则,而是引导学生去分析、推理,最后归纳出正确的结论或计算法则。例如,教学两位数乘法,关键是通过直观引导学生把它分解为用一位数乘和用整十数乘,重点要引导学生弄清整十数乘所得的部分积写在什么位置,最后概括出用两位数乘的步骤。学生懂得算理,自己从直观的例子中抽象、概括出计算方法,不仅印象深刻,同时发展了思维能力。在教学中看到,有的老师也注意发展学生思维能力,但不是贯穿在一节课的始终,而是在一节课最后出一两道稍难的题目来作为训练思维的活动,或者专上一节思维训练课。这种把培养思维能力只局限在某一节课内或者一节课的某个环节内,是值得研究的。当然,在教学全过程始终注意培养思维能力的前提下,为了掌握某一特殊内容或特殊方法进行这种特殊的思维训练是可以的,但是不能以此来代替教学全过程发展思维的任务。
(三)培养思维能力要贯穿在各部分内容的教学中。这就是说,在教学数学概念、计算法则、解答应用题或操作技能(如测量、画图等)时,都要注意培养思维能力。任何一个数学概念,都是对客观事物的数量关系或空间形式进行抽象、概括的结果。因此教学每一个概念时,要注意通过多种实物或事例引导学生分析、比较、找出它们的共同点,揭示其本质特征,做出正确的判断,从而形成正确的概念。例如,教学长方形概念时,不宜直接画一个长方形,告诉学生这就叫做长方形。而应先让学生观察具有长方形的各种实物,引导学生找出它们的边和角各有什么共同特点,然后抽象出图形,并对长方形的特征作出概括。教学计算法则和规律性知识更要注意培养学生判断、推理能力。例如,教学加法结合律,不宜简单地举一个例子,就作出结论。最好举两三个例子,每举一个例子,引导学生作出个别判断〔如(2+3)+5=2+(3+5),先把2和3加在一起再同5相加,与先把3和5加在一起再同2相加,结果相同〕。然后引导学生对几个例子进行分析、比较,找出它们的共同点,即等号左端都是先把前两个数相加,再同第三个数相加,而等号右端都是先把后两个数相加,再同第一个数相加,结果不变。最后作出一般的结论。这样不仅使学生对加法结合律理解得更清楚,而且学到不完全归纳推理的方法。然后再把得到的一般结论应用到具体的计算(如57+28+12)中去并能说出根据什么可以使计算简便。这样又学到演绎的推理方法至于解应用题引导学生分析数量关系,这里不再赘述。
三、设计好练习题对于培养学生思维能力起着重要的促进作用
培养学生的思维能力同学习计算方法、掌握解题方法一样,也必须通过练习。而且思维与解题过程是密切联系着的。培养思维能力的最有效办法是通过解题的练习来实现。因此设计好练习题就成为能否促进学生思维能力发展的重要一环。一般地说,课本中都安排了一定数量的有助于发展学生思维能力的练习题。但是不一定都能满足教学的需要,而且由于班级的情况不同,课本中的练习题也很难做到完全适应各种情况的需要。因此教学时往往要根据具体情况做一些调整或补充。为此提出以下几点建议供参考。
(一)设计练习题要有针对性,要根据培养目标来进行设计。例如,为了了解学生对数学概念是否清楚,同时也为了培养学生运用概念进行判断的能力,可以出一些判断对错或选择正确答案的练习题。举个具体例子:“所有的质数都是奇数。()”如要作出正确判断,学生就要分析偶数里面有没有质数。而要弄清这一点,要明确什么叫做偶数,什么叫做质数,然后应用这两个概念的定义去分析能被2整除的数里面有没有一个数,它的约数只1和它自身。想到了2是偶数又是质数,这样就可以断定上面的判断是错误的。
第五篇:在数学教学中如何培养学生的思维能力
在数学教学中如何培养学生的思维能力
《数学新课标》对数学中渗透的数学思想、方法划分为三个层次,即“了解”、“理解”和“会应用”。在教学中,要求学生“了解”数学思想有:数形结合的思想、分类的思想、化归的思想、类比的思想和函数的思想等。教师在整个教学过程中,不仅应该使学生能够领悟到这些数学思想的应用,而且要激发学生学习数学思想的好奇心和求知欲,通过独立思考,不断追求新知,发现、提出、分析并创造性地解决问题。
为了促进学生思维能力的发展,我们必须高度关注学生在数学学习过程中的思维活动,必须研究思维活动的发展规律,研究思维的有关类型和功能、结构、内在联系及其在数学教学中所起的作用。
数学是思维的体操,从这个角度讲,数学本身就是一种锻炼思维的手段。我们应充分利用数学的这种功能,把思维能力的培养贯穿于教学的全过程。在教学中,我们尤其要注重培养学生良好的思维品质,使学生的思维既有明确的目的方向,又有自己的见解;即有广阔的思路,又能揭露问题的实质;既敢于创新,又能具体问题具体分析。在这一方面,可以根据学生个体差异,在情景问题设置、例题设置、作业设置这三个方面,要层层铺垫、循序渐进,逐步提高思维的合理性、严密性、完整性,使每个学生都有所获。遵循认识规律,把握教学原则,实施创新教育。
要达到《数学新课标》的基本要求,教学中必须渗透“方法”,了解“思想”。由于小学生数学知识比较贫乏,抽象思维能力也较为薄弱,把数学思想、方法作为一门独立的课程还缺乏应有的基础。因而只能将数学知识作为载体,把数学思想和方法的教学渗透到数学知识的教学中。教师要把握好渗透的契机,重视数学概念、公式、的提出过程,知识的形成、发展过程,解决问题和规律的概括过程,使学生在这些过程中展开思维,从而发展他们的科学精神和创新意识,形成获取、发展新知识,运用新知识解决问题。忽视或压缩这些过程,一味灌输知识的结论,就必然失去渗透数学思想、方法的一次次良机。