第一篇:小学1-6年级所学全部诗词及数学公式
江南
汉乐府
江南可采莲,莲叶何田田。
鱼戏莲叶东,鱼戏莲叶西,鱼戏莲叶南,鱼戏莲叶北。
咏鹅
骆宾王
鹅,鹅,鹅,曲项向天歌,白毛浮绿水,红掌拨清波。
咏柳
贺知章
碧玉妆成一树高,万条垂下绿丝绦。不知细叶谁裁出?二月春风似剪刀。登鹳雀楼
王之涣
白日依山尽,黄河入海流。
欲穷千里目,更上一层楼 凉州词
王翰
葡萄美酒夜光杯,欲饮琵琶马上催。醉卧沙场君莫笑,古来征战几人回?
芙蓉楼送辛渐
王昌龄
寒雨连江夜入吴,平明送客楚山孤。洛阳亲友如相问,一片冰心在玉壶。敕勒歌
北朝民歌
敕勒川,阴山下,天似穹庐,笼盖四野。
天苍苍,野茫茫,风吹草低见牛羊。
风
李峤
解落三秋叶,能开二月花。
过江千尺浪,入竹万竿斜。
凉州词
王之涣
黄河远上白云间,一片孤城万仞山。
羌笛何须怨杨柳,春风不度玉门关。春晓
孟浩然
春眠不觉晓,处处闻啼鸟。
夜来风雨声,花落知多少出塞
王昌龄
秦时明月汉时关,万里长征人未还。
但使龙城飞将在,不教胡马度阴山。
鹿柴
王维
空山不见人,但闻人语响。
返景入深林,复照青苔上。
送元二使安西
王维
渭城朝雨浥轻尘,客舍青青柳色新。
劝君更尽一杯酒,西出阳关无故人。九月九日忆山东兄弟
王维
独在异乡为异客,每逢佳节倍思亲。
遥知兄弟登高处,遍插茱萸少一人。
静夜思
李白
床前明月光,疑是地上霜。
举头望明月,低头思故乡。
古郎月行
李白
小时不识月,呼作白玉盘。
又疑瑶台镜,飞在碧云端。
望庐山瀑布
李白
日照香炉生紫烟,遥看瀑布挂前川。
飞流直下三千尺,疑是银河落九天。
赠汪伦
李白
李白乘舟将欲行,忽闻岸上踏歌声。
桃花潭水深千尺,不及汪伦送我情。
黄鹤楼送孟浩然之广陵
李白
故人西辞黄鹤楼,烟花三月下扬州。
孤帆远影碧空尽,唯见长江天际流。
早发白帝城
李白
朝辞白帝彩云间,千里江陵一日还。
两岸猿声啼不住,轻舟已过万重山。
望天门山
李白
天门中断楚江开,碧水东流至北回。
两岸青山相对出,孤帆一片日边来。
别董大
高适
千里黄云白日曛,北风吹雁雪纷纷。
莫愁前路无知己,天下谁人不识君?
绝句
杜甫
两个黄鹂鸣翠柳,一行白鹭上青天。
窗含西岭千秋雪,门泊东吴万里船。春夜喜雨
杜甫
好雨知时节,当春乃发生。
随风潜入夜,润物细无声。
野径云俱黑,江船火独明。
晓看红湿处,花重锦官城。
绝句
杜甫
迟日江山丽,春风花草香。
泥融飞燕子,沙暖睡鸳鸯 江畔独步寻花
杜甫
黄师塔前江水东,春光懒困倚微风。
桃花一簇开无主,可爱深红爱浅红。
枫桥夜泊
张继
月落乌啼霜满天,江枫渔火对愁眠。
姑苏城外寒山寺,夜半钟声到客船。
游子吟
孟郊
慈母手中线,游子身上衣。
临行密密缝,意恐迟迟归。
谁言寸草心,报得三春晖。江雪
柳宗元
千山鸟飞绝,万径人踪灭。
孤舟蓑笠翁,独钓寒江雪。
渔歌子
张志和
西塞山前白鹭飞,桃花流水鳜鱼肥。
青箬笠,绿蓑衣,斜风细雨不须归。塞下曲
卢纶
月黑雁飞高,单于夜遁逃。
欲将轻骑逐,大雪满弓刀。
望洞庭
刘禹锡
湖光秋月两相和,潭面无风镜未磨。
遥望洞庭山水翠,白银盘里一青螺。
浪淘沙
刘禹锡
九曲黄河万里沙,浪淘风簸自天涯。
如今直上银河去,同到牵牛织女家。赋得古远上寒山石径斜,白云生处有人家。
停车坐爱枫林晚,霜叶红于二月花清明
杜牧
清明时节雨纷纷,路上行人欲断魂。
借问酒家何处有?牧童遥指杏花村。
原草送别
白居易
离离原上草,一岁一枯荣。
野火烧不尽,春风吹又生。
远芳侵古道,晴翠接荒城。
又送王孙去,萋萋满别情。
池上
白居易
小娃撑小艇,偷采白莲回。
不解藏踪迹,浮萍一道开。
忆江南
白居易
江南好,风景旧曾谙。
日出江花红似火,春来江水绿如蓝。
能不忆江南?
小儿垂钓
胡令能
蓬头稚子学垂纶,侧坐莓台草映身。
路人借问遥招手,怕得鱼惊不应人。
悯农
李绅
锄禾日当午,汗滴禾下土。
谁知盘中餐,粒粒皆辛苦。
寻隐者不遇
贾岛
松下问童子,言师采药去。
只在此山中,云深不知处。山行
杜牧
江南春
杜牧
千里莺啼绿映红,水村山郭酒旗风;
南朝四百八十寺,多少楼台烟雨中。
乐游原
李商隐
向晚意不适,驱车登古原。
夕阳无限好,只是近黄昏。蜂
罗隐
不论平地与山尖,无限风光尽被占。
采得百花成蜜后,为谁辛苦为谁甜。
江上渔者
范仲淹
江上往来人,但爱鲈鱼美。
君看一叶舟,出没**里。
元日
王安石
爆竹声中一岁除,春风送暖入屠苏,千门万户曈曈日,总把新桃换旧符。
泊船瓜洲
王安石
京口瓜洲一水间,钟山只隔数重山。
春风又绿江南岸,明月何时照我还。
书湖阴先生壁
王安石
茅檐长扫净无苔,花木成畦手自裁。
一水护田将绿绕,两山排闼送青来。六月二十七日望湖楼醉书 苏轼
黑云翻墨未遮山,白雨跳珠乱入船。
卷地风来忽吹散,望湖楼下水如天。
饮湖上初晴后雨
苏轼
水光潋滟晴方好,山色空蒙雨亦奇。
欲把西湖比西子,淡妆浓抹总相宜。
惠崇春江晓景
苏轼
竹外桃花三两枝,春江水暖鸭先知。
芦蒿满地芦芽短,正是河豚欲上时。
题西林壁
苏轼
横看成岭侧成峰,远近高低各不同。
不识庐山真面目,只缘身在此山中。
夏日绝句
李清照
生当作人杰,死亦为鬼雄。
至今思项羽,不肯过江东。
示儿
陆游
死去元知万事空,但悲不见九州同。
王师北定中原日,家祭无忘告乃翁。秋夜将晓出篱门迎凉有感
陆游
三万里河东入海,五千仞岳上摩天。
遗民泪尽胡尘里,南望王师又一年。
四时田园杂兴
范成大
昼出耘田夜绩麻,村庄儿女各当家。
童孙未解供耕织,也傍桑阴学种瓜。
小池
杨万里
泉眼无声惜细流,树阴照水爱晴柔。
小荷才露尖尖角,早有蜻蜓立上头。
晓出净慈寺送林子方
杨万里
毕竟西湖六月中,风光不与四时同。
接天莲叶无穷碧,映日荷花别样红。春日
朱熹
胜日寻芳泗水滨,无边光景一时新。
等闲识得东风面,万紫千红总是春。
题临安邸
林升
山外青山楼外楼,西湖歌舞几时休?
暖风熏得游人醉,直把杭州作卞州。游园不值
叶绍翁
应怜屐齿印苍苔,小扣柴扉久不开。
春色满园关不住,一枝红杏出墙来。
乡村四月
翁卷
绿遍山原白满川,子规声里雨如烟。
乡村四月闲人少,才了蚕桑又插田。
墨梅
王冕
我家洗砚池头树,朵朵花开淡墨痕。
不要人夸颜色好,只留清气满乾坤。
石灰吟
于谦
千锤万凿出深山,烈火焚烧若等闲,粉身碎骨浑不怕,要留青白在人间竹石
郑燮
咬定青山不放松,立根原在破岩中。
千磨万击还坚劲,任尔东西南北风。
所见
袁枚
牧童骑黄牛,歌声振林樾。
意欲捕鸣蝉,忽然闭口立。
村居
高鼎
草长莺飞二月天,拂堤扬柳醉青烟。
儿童放学归来早,忙趁东风放纸鸢每份数×份数=总数
总数÷每份数=份数
总数÷份数=每份数1倍数×倍数=几倍数
几倍数÷1倍数=倍数
几倍数÷倍数=1倍数速度×时间=路程
路程÷速度=时间
路程÷时间=速度单价×数量=总价
总价÷单价=数量
总价÷数量=单价 工作效率×工作时间=工作总量
工作总量÷工作效率=工作时间
工作总量÷工作时间=工作效率6 加数+加数=和
和-一个加数=另一个加数被减数-减数=差
被减数-差=减数
差+减数=被减数因数×因数=积
积÷一个因数=另一个因数被除数÷除数=商
被除数÷商=除数
商×除数=被除数
小学数学图形计算公式 正方形
C周长 S面积 a边长
周长=边长×4 C=4a
面积=边长×边长
S=a×a 2 正方体
V:体积 a:棱长
表面积=棱长×棱长×6 S表=a×a×6
体积=棱长×棱长×棱长
V=a×a×a 3 长方形
C周长 S面积 a边长
周长=(长+宽)×2 C=2(a+b)
面积=长×宽S=a×a 2 正方体
V:体积 a:棱长
表面积=棱长×棱长×6 S表=a×a×6
体积=棱长×棱长×棱长
V=a×a×a 3 长方形
C周长 S面积 a边长
周长=(长+宽)×2 C=2(a+b)面积=长×宽
S=ab 长方体V:体积 s:面积 a:长 b: 宽 h:高
(1)表面积(长×宽+长×高+宽×高)×2 S=2(ab+ah+bh)(2)体积=长×宽×高
V=abh 5 三角形
s面积 a底 h高
面积=底×高÷2 s=ah÷2
三角形高=面积 ×2÷底
三角形底=面积 ×2÷高平行四边形
s面积 a底 h高
面积=底×高
s=ah 7 梯形
s面积 a上底 b下底 h高
面积=(上底+下底)×高÷2 s=(a+b)× h÷28 圆形
S面积 C周长 ∏ d=直径 r=半径
(1)周长=直径×∏=2×∏×半径
C=∏d=2∏r
(2)面积=半径×半径×∏圆柱体
v:体积 h:高 s;底面积 r:底面半径 c:底面周长
(1)侧面积=底面周长×高
(2)表面积=侧面积+底面积×2(3)体积=底面积×高
(4)体积=侧面积÷2×半径圆锥体
v:体积 h:高 s;底面积 r:底面半径
体积=底面积×高÷3 总数÷总份数=平均数
和差问题的公式
(和+差)÷2=大数
(和-差)÷2=小数
和倍问题
和÷(倍数-1)=小数
小数×倍数=大数
(或者 和-小数=大数)差倍问题
差÷(倍数-1)=小数
小数×倍数=大数
(或 小数+差=大数)
植树问题 非封闭线路上的植树问题主要可分为以下三种情形:
⑴如果在非封闭线路的两端都要植树,那么: 株数=段数+1=全长÷株距-1 全长=株距×(株数-1)株距=全长÷(株数-1)
⑵如果在非封闭线路的一端要植树,另一端不要植树,那么:
株数=段数=全长÷株距
全长=株距×株数
株距=全长÷株数
⑶如果在非封闭线路的两端都不要植树,那么:
株数=段数-1=全长÷株距-1 全长=株距×(株数+1)株距=全长÷(株数+1)封闭线路上的植树问题的数量关系如下
株数=段数=全长÷株距
全长=株距×株数
株距=全长÷株数
盈亏问题
(盈+亏)÷两次分配量之差=参加分配的份数(大盈-小盈)÷两次分配量之差=参加分配的份数
(大亏-小亏)÷两次分配量之差=参加分配的份数
相遇问题
相遇路程=速度和×相遇时间
相遇时间=相遇路程÷速度和
速度和=相遇路程÷相遇时间
追及问题
追及距离=速度差×追及时间
追及时间=追及距离÷速度差
速度差=追及距离÷追及时间
流水问题
顺流速度=静水速度+水流速度
逆流速度=静水速度-水流速度
静水速度=(顺流速度+逆流速度)÷2 水流速度=(顺流速度-逆流速度)÷2 浓度问题
溶质的重量+溶剂的重量=溶液的重量
溶质的重量÷溶液的重量×100%=浓度
溶液的重量×浓度=溶质的重量
溶质的重量÷浓度=溶液的重量
利润与折扣问题
利润=售出价-成本利润率=利润÷成本×100%=(售出价÷成本-1)×100% 涨跌金额=本金×涨跌百分比
折扣=实际售价÷原售价×100%(折扣<1)利息=本金×利率×时间
税后利息=本金×利率×时间×(1-20%)
第二篇:小学诗词及数学公式
江南
汉乐府
江南可采莲,莲叶何田田。
鱼戏莲叶东,鱼戏莲叶西,鱼戏莲叶南,鱼戏莲叶北。
咏鹅
骆宾王
鹅,鹅,鹅,曲项向天歌,白毛浮绿水,红掌拨清波。
咏柳
贺知章
碧玉妆成一树高,万条垂下绿丝绦。
不知细叶谁裁出?二月春风似剪刀。
登鹳雀楼
王之涣
白日依山尽,黄河入海流。
欲穷千里目,更上一层楼。凉州词 王翰
葡萄美酒夜光杯,欲饮琵琶马上催。醉卧沙场君莫笑,古来征战几人回? 芙蓉楼送辛渐
王昌龄
寒雨连江夜入吴,平明送客楚山孤。洛阳亲友如相问,一片冰心在玉壶。
敕勒歌 北朝民歌 敕勒川,阴山下,天似穹庐,笼盖四野。天苍苍,野茫茫,风吹草低见牛羊。
风 李峤
解落三秋叶,能开二月花。过江千尺浪,入竹万竿斜。
凉州词 王之涣
黄河远上白云间,一片孤城万仞山。羌笛何须怨杨柳,春风不度玉门关。
春晓 孟浩然
春眠不觉晓,处处闻啼鸟。夜来风雨声,花落知多少? 出塞
王昌龄
秦时明月汉时关,万里长征人未还。
但使龙城飞将在,不教胡马度阴山。
鹿柴
王维
空山不见人,但闻人语响。
返景入深林,复照青苔上。
送元二使安西
王维
渭城朝雨浥轻尘,客舍青青柳色新。
劝君更尽一杯酒,西出阳关无故人。
九月九日忆山东兄弟
王维
独在异乡为异客,每逢佳节倍思亲。
遥知兄弟登高处,遍插茱萸少一人。
静夜思
李白
床前明月光,疑是地上霜。
举头望明月,低头思故乡。
古郎月行
李白
小时不识月,呼作白玉盘。又疑瑶台镜,飞在碧云端。
望庐山瀑布 李白
日照香炉生紫烟,遥看瀑布挂前川。飞流直下三千尺,疑是银河落九天。
赠汪伦 李白
李白乘舟将欲行,忽闻岸上踏歌声。桃花潭水深千尺,不及汪伦送我情。
黄鹤楼送孟浩然之广陵
李白
故人西辞黄鹤楼,烟花三月下扬州。孤帆远影碧空尽,唯见长江天际流。
早发白帝城 李白
朝辞白帝彩云间,千里江陵一日还。两岸猿声啼不住,轻舟已过万重山。望天门山
李白
天门中断楚江开,碧水东流至北回。
两岸青山相对出,孤帆一片日边来。
别董大
高适
千里黄云白日曛,北风吹雁雪纷纷。
莫愁前路无知己,天下谁人不识君?
绝句
杜甫
两个黄鹂鸣翠柳,一行白鹭上青天。
窗含西岭千秋雪,门泊东吴万里船。
春夜喜雨
杜甫
好雨知时节,当春乃发生。
随风潜入夜,润物细无声。
野径云俱黑,江船火独明。
晓看红湿处,花重锦官城。
绝句
杜甫
迟日江山丽,春风花草香。
泥融飞燕子,沙暖睡鸳鸯。江畔独步寻花
杜甫
黄师塔前江水东,春光懒困倚微风。桃花一簇开无主,可爱深红爱浅红。
枫桥夜泊 张继
月落乌啼霜满天,江枫渔火对愁眠。姑苏城外寒山寺,夜半钟声到客船。
游子吟 孟郊
慈母手中线,游子身上衣。临行密密缝,意恐迟迟归。谁言寸草心,报得三春晖。
江雪 柳宗元
千山鸟飞绝,万径人踪灭。孤舟蓑笠翁,独钓寒江雪。
渔歌子 张志和
西塞山前白鹭飞,桃花流水鳜鱼肥。青箬笠,绿蓑衣,斜风细雨不须归。
塞下曲
卢纶
月黑雁飞高,单于夜遁逃。
欲将轻骑逐,大雪满弓刀。
望洞庭
刘禹锡
湖光秋月两相和,潭面无风镜未磨。
遥望洞庭山水翠,白银盘里一青螺。
浪淘沙
刘禹锡
九曲黄河万里沙,浪淘风簸自天涯。
如今直上银河去,同到牵牛织女家。
赋得古原草送别
白居易
离离原上草,一岁一枯荣。
野火烧不尽,春风吹又生。
远芳侵古道,晴翠接荒城。
又送王孙去,萋萋满别情。
池上
白居易
小娃撑小艇,偷采白莲回。
不解藏踪迹,浮萍一道开。
忆江南
白居易
江南好,风景旧曾谙。
日出江花红似火,春来江水绿如蓝。
能不忆江南?
小儿垂钓
胡令能
蓬头稚子学垂纶,侧坐莓台草映身。
路人借问遥招手,怕得鱼惊不应人。
悯农
李绅
锄禾日当午,汗滴禾下土。
谁知盘中餐,粒粒皆辛苦。
寻隐者不遇
贾岛
松下问童子,言师采药去。
只在此山中,云深不知处。
山行
杜牧
远上寒山石径斜,白云生处有人家。
停车坐爱枫林晚,霜叶红于二月花。
清明
杜牧
清明时节雨纷纷,路上行人欲断魂。
借问酒家何处有?牧童遥指杏花村。
江南春
杜牧
千里莺啼绿映红,水村山郭酒旗风;
南朝四百八十寺,多少楼台烟雨中。
乐游原
李商隐
向晚意不适,驱车登古原。
夕阳无限好,只是近黄昏。
蜂
罗隐
不论平地与山尖,无限风光尽被占。
采得百花成蜜后,为谁辛苦为谁甜。
江上渔者
范仲淹
江上往来人,但爱鲈鱼美。
君看一叶舟,出没**里。元日 王安石
爆竹声中一岁除,春风送暖入屠苏,千门万户曈曈日,总把新桃换旧符。
泊船瓜洲 王安石
京口瓜洲一水间,钟山只隔数重山。春风又绿江南岸,明月何时照我还。
书湖阴先生壁
王安石
茅檐长扫净无苔,花木成畦手自裁。一水护田将绿绕,两山排闼送青来。
六月二十七日望湖楼醉书
苏轼
黑云翻墨未遮山,白雨跳珠乱入船。卷地风来忽吹散,望湖楼下水如天。
饮湖上初晴后雨
苏轼
水光潋滟晴方好,山色空蒙雨亦奇。欲把西湖比西子,淡妆浓抹总相宜。
惠崇春江晓景
苏轼
竹外桃花三两枝,春江水暖鸭先知。
芦蒿满地芦芽短,正是河豚欲上时。
题西林壁
苏轼
横看成岭侧成峰,远近高低各不同。
不识庐山真面目,只缘身在此山中。
夏日绝句
李清照
生当作人杰,死亦为鬼雄。
至今思项羽,不肯过江东。
示儿
陆游
死去元知万事空,但悲不见九州同。
王师北定中原日,家祭无忘告乃翁。
秋夜将晓出篱门迎凉有感
陆游
三万里河东入海,五千仞岳上摩天。
遗民泪尽胡尘里,南望王师又一年。
四时田园杂兴
范成大
昼出耘田夜绩麻,村庄儿女各当家。
童孙未解供耕织,也傍桑阴学种瓜。
小池
杨万里
泉眼无声惜细流,树阴照水爱晴柔。
小荷才露尖尖角,早有蜻蜓立上头。
晓出净慈寺送林子方
杨万里
毕竟西湖六月中,风光不与四时同。
接天莲叶无穷碧,映日荷花别样红。
春日
朱熹
胜日寻芳泗水滨,无边光景一时新。
等闲识得东风面,万紫千红总是春。
题临安邸
林升
山外青山楼外楼,西湖歌舞几时休?
暖风熏得游人醉,直把杭州作卞州。
游园不值
叶绍翁
应怜屐齿印苍苔,小扣柴扉久不开。
春色满园关不住,一枝红杏出墙来。
乡村四月
翁卷
绿遍山原白满川,子规声里雨如烟。
乡村四月闲人少,才了蚕桑又插田。
墨梅
王冕
我家洗砚池头树,朵朵花开淡墨痕。
不要人夸颜色好,只留清气满乾坤。
石灰吟
于谦
千锤万凿出深山,烈火焚烧若等闲,粉身碎骨浑不怕,要留青白在人间。
竹石
郑燮
咬定青山不放松,立根原在破岩中。
千磨万击还坚劲,任尔东西南北风。
所见
袁枚
牧童骑黄牛,歌声振林樾。
意欲捕鸣蝉,忽然闭口立。
村居
高鼎
草长莺飞二月天,拂堤扬柳醉青烟。
儿童放学归来早,忙趁东风放纸鸢 每份数×份数=总数 总数÷每份数=份数 总数÷份数=每份数 2 1倍数×倍数=几倍数 几倍数÷1倍数=倍数 几倍数÷倍数=1倍数 3 速度×时间=路程 路程÷速度=时间 路程÷时间=速度 4 单价×数量=总价 总价÷单价=数量 总价÷数量=单价 工作效率×工作时间=工作总量 工作总量÷工作效率=工作时间 工作总量÷工作时间=工作效率 加数+加数=和 和-一个加数=另一个加数 7 被减数-减数=差 被减数-差=减数 差+减数=被减数 8 因数×因数=积
积÷一个因数=另一个因数 9 被除数÷除数=商 被除数÷商=除数 商×除数=被除数 小学数学图形计算公式 正方形
C周长 S面积 a边长
周长=边长×4
C=4a 面积=边长×边长
S=a×a 2 正方体
V:体积 a:棱长
表面积=棱长×棱长×6
S表=a×a×6 体积=棱长×棱长×棱长
V=a×a×a 3 长方形
C周长 S面积 a边长
周长=(长+宽)×2 C=2(a+b)面积=长×宽
S=ab 4 长方体
V:体积 s:面积 a:长 b: 宽 h:高
(1)表面积(长×宽+长×高+宽×高)×2
S=2(ab+ah+bh)(2)体积=长×宽×高
V=abh 5 三角形
s面积 a底 h高
面积=底×高÷2
s=ah÷2
三角形高=面积 ×2÷底
三角形底=面积 ×2÷高 平行四边形
s面积 a底 h高
面积=底×高
s=ah 7 梯形
s面积 a上底 b下底 h高
面积=(上底+下底)×高÷2
s=(a+b)× h÷2 8 圆形
S面积 C周长 ∏ d=直径 r=半径
(1)周长=直径×∏=2×∏×半径
C=∏d=2∏r(2)面积=半径×半径×∏ 圆柱体
v:体积 h:高 s;底面积 r:底面半径 c:底面周长
(1)侧面积=底面周长×高
(2)表面积=侧面积+底面积×2
(3)体积=底面积×高
(4)体积=侧面积÷2×半径 圆锥体
v:体积 h:高 s;底面积 r:底面半径
体积=底面积×高÷3 总数÷总份数=平均数
和差问题的公式
(和+差)÷2=大数
(和-差)÷2=小数
和倍问题
和÷(倍数-1)=小数
小数×倍数=大数
(或者 和-小数=大数)
差倍问题
差÷(倍数-1)=小数
小数×倍数=大数
(或 小数+差=大数)植树问题 非封闭线路上的植树问题主要可分为以下三种情形: ⑴如果在非封闭线路的两端都要植树,那么:
株数=段数+1=全长÷株距-1
全长=株距×(株数-1)株距=全长÷(株数-1)⑵如果在非封闭线路的一端要植树,另一端不要植树,那么:
株数=段数=全长÷株距 全长=株距×株数 株距=全长÷株数
⑶如果在非封闭线路的两端都不要植树,那么:
株数=段数-1=全长÷株距-1
全长=株距×(株数+1)株距=全长÷(株数+1)封闭线路上的植树问题的数量关系如下
株数=段数=全长÷株距 全长=株距×株数 株距=全长÷株数
盈亏问题
(盈+亏)÷两次分配量之差=参加分配的份数(大盈-小盈)÷两次分配量之差=参加分配的份数(大亏-小亏)÷两次分配量之差=参加分配的份数
相遇问题
相遇路程=速度和×相遇时间
相遇时间=相遇路程÷速度和
速度和=相遇路程÷相遇时间
追及问题
追及距离=速度差×追及时间
追及时间=追及距离÷速度差
速度差=追及距离÷追及时间
流水问题
顺流速度=静水速度+水流速度
逆流速度=静水速度-水流速度
静水速度=(顺流速度+逆流速度)÷2 水流速度=(顺流速度-逆流速度)÷2
浓度问题
溶质的重量+溶剂的重量=溶液的重量
溶质的重量÷溶液的重量×100%=浓度
溶液的重量×浓度=溶质的重量
溶质的重量÷浓度=溶液的重量
利润与折扣问题
利润=售出价-成本
利润率=利润÷成本×100%=(售出价÷成本-1)×100%
涨跌金额=本金×涨跌百分比
折扣=实际售价÷原售价×100%(折扣<1)
利息=本金×利率×时间
税后利息=本金×利率×时间×(1-20%)
第三篇:高中全部数学公式
高中全部数学公式
【 数学】【 高中,全部,公式 】搞到这么份资料,开心到疯..高中的数学公式定理大集合 三角函数公式表
同角三角函数的基本关系式
倒数关系: 商的关系:平方关系: tanα ²cotα=1 sinα ²cscα=1 cosα ²secα=1 sinα/cosα=tanα=secα/cscα cosα/sinα=cotα=cscα/secα sin2α+cos2α=1 1+tan2α=sec2α 1+cot2α=csc2α
(六边形记忆法:图形结构“上弦中切下割,左正右余中间1”;记忆方法“对角线上两个函数的积为1;阴影三角形上两顶点的三角函数值的平方和等于下顶点的三角函数值的平方;任意一顶点的三角函数值等于相邻两个顶点的三角函数值的乘积。”)
诱导公式(口诀:奇变偶不变,符号看象限。)sin(-α)=-sinα
cos(-α)=cosα tan(-α)=-tanα cot(-α)=-cotα
sin(π/2-α)=cosα cos(π/2-α)=sinα tan(π/2-α)=cotα cot(π/2-α)=tanα
sin(π/2+α)=cosα cos(π/2+α)=-sinα tan(π/2+α)=-cotα cot(π/2+α)=-tanα
sin(π-α)=sinα cos(π-α)=-cosα tan(π-α)=-tanα cot(π-α)=-cotα
sin(π+α)=-sinα cos(π+α)=-cosα tan(π+α)=tanα cot(π+α)=cotα
sin(3π/2-α)=-cosα cos(3π/2-α)=-sinα tan(3π/2-α)=cotα cot(3π/2-α)=tanα
sin(3π/2+α)=-cosα cos(3π/2+α)=sinα tan(3π/2+α)=-cotα cot(3π/2+α)=-tanα
sin(2π-α)=-sinα cos(2π-α)=cosα tan(2π-α)=-tanα cot(2π-α)=-cotα
sin(2kπ+α)=sinα cos(2kπ+α)=cosα tan(2kπ+α)=tanα cot(2kπ+α)=cotα(其中k∈Z)
两角和与差的三角函数公式 万能公式 sin(α+β)=sinαcosβ+cosαsinβ sin(α-β)=sinαcosβ-cosαsinβ cos(α+β)=cosαcosβ-sinαsinβ cos(α-β)=cosαcosβ+sinαsinβ
tanα+tanβ
tan(α+β)=—————— 1-tanα ²tanβ
tanα-tanβ
tan(α-β)=—————— 1+tanα ²tanβ 2tan(α/2)sinα=—————— 1+tan2(α/2)
1-tan2(α/2)cosα=—————— 1+tan2(α/2)
2tan(α/2)tanα=—————— 1-tan2(α/2)
半角的正弦、余弦和正切公式 三角函数的降幂公式
二倍角的正弦、余弦和正切公式 三倍角的正弦、余弦和正切公式 sin2α=2sinαcosα
cos2α=cos2α-sin2α=2cos2α-1=1-2sin2α
2tanα
tan2α=————— 1-tan2α
sin3α=3sinα-4sin3α
cos3α=4cos3α-3cosα
3tanα-tan3α
tan3α=—————— 1-3tan2α
三角函数的和差化积公式 三角函数的积化和差公式 α+β α-β
sinα+sinβ=2sin———²cos——— 2 2 α+β α-β
sinα-sinβ=2cos———²sin——— 2 2 α+β α-β
cosα+cosβ=2cos———²cos——— 2 2 α+β α-β
cosα-cosβ=-2sin———²sin——— 2 2 1 sinα ²cosβ=-[sin(α+β)+sin(α-β)] 2 1 cosα ²sinβ=-[sin(α+β)-sin(α-β)] 2 1 cosα ²cosβ=-[cos(α+β)+cos(α-β)] 2 1 sinα ²sinβ=—-[cos(α+β)-cos(α-β)] 2
化asinα ±bcosα为一个角的一个三角函数的形式(辅助角的三角函数的公式
集合、函数
集合 简单逻辑
任一x∈A x∈B,记作A B A B,B A A=B A B={x|x∈A,且x∈B} A B={x|x∈A,或x∈B}
card(A B)=card(A)+card(B)-card(A B)(1)命题
原命题 若p则q 逆命题 若q则p 否命题 若 p则 q 逆否命题 若 q,则 p(2)四种命题的关系
(3)A B,A是B成立的充分条件 B A,A是B成立的必要条件 A B,A是B成立的充要条件
函数的性质 指数和对数
(1)定义域、值域、对应法则(2)单调性
对于任意x1,x2∈D 若x1<x2 f(x1)<f(x2),称f(x)在D上是增函数 若x1<x2 f(x1)>f(x2),称f(x)在D上是减函数(3)奇偶性
对于函数f(x)的定义域内的任一x,若f(-x)=f(x),称f(x)是偶函数
若f(-x)=-f(x),称f(x)是奇函数(4)周期性
对于函数f(x)的定义域内的任一x,若存在常数T,使得f(x+T)=f(x),则称f(x)是周期函数(1)分数指数幂 正分数指数幂的意义是
负分数指数幂的意义是
(2)对数的性质和运算法则
loga(MN)=logaM+logaN
logaMn=nlogaM(n∈R)
指数函数 对数函数
(1)y=ax(a>0,a≠1)叫指数函数(2)x∈R,y>0 图象经过(0,1)
a>1时,x>0,y>1;x<0,0<y<1 0<a<1时,x>0,0<y<1;x<0,y>1 a> 1时,y=ax是增函数
0<a<1时,y=ax是减函数(1)y=logax(a>0,a≠1)叫对数函数(2)x>0,y∈R 图象经过(1,0)
a>1时,x>1,y>0;0<x<1,y<0 0<a<1时,x>1,y<0;0<x<1,y>0 a>1时,y=logax是增函数 0<a<1时,y=logax是减函数 指数方程和对数方程 基本型
logaf(x)=b f(x)=ab(a>0,a≠1)同底型
logaf(x)=logag(x)f(x)=g(x)>0(a>0,a≠1)换元型 f(ax)=0或f(logax)=0
数列
数列的基本概念 等差数列
(1)数列的通项公式an=f(n)(2)数列的递推公式
(3)数列的通项公式与前n项和的关系 an+1-an=d an=a1+(n-1)d a,A,b成等差 2A=a+b m+n=k+l am+an=ak+al
等比数列 常用求和公式 an=a1qn_1 a,G,b成等比 G2=ab m+n=k+l aman=akal
不等式
不等式的基本性质 重要不等式 a>b b<a a>b,b>c a>c a>b a+c>b+c a+b>c a>c-b a>b,c>d a+c>b+d a>b,c>0 ac>bc a>b,c<0 ac<bc a>b>0,c>d>0 ac<bd a>b>0 dn>bn(n∈Z,n>1)a>b>0 >(n∈Z,n>1)(a-b)2≥0 a,b∈R a2+b2≥2ab
|a|-|b|≤|a±b|≤|a|+|b| 证明不等式的基本方法 比较法
(1)要证明不等式a>b(或a<b),只需证明 a-b>0(或a-b<0=即可
(2)若b>0,要证a>b,只需证明,要证a<b,只需证明
综合法 综合法就是从已知或已证明过的不等式出发,根据不等式的性质推导出欲证的不等式(由因导果)的方法。
分析法 分析法是从寻求结论成立的充分条件入手,逐步寻求所需条件成立的充分条件,直至所需的条件已知正确时为止,明显地表现出“持果索因”
复数
代数形式 三角形式 a+bi=c+di a=c,b=d
(a+bi)+(c+di)=(a+c)+(b+d)i(a+bi)-(c+di)=(a-c)+(b-d)i(a+bi)(c+di)=(ac-bd)+(bc+ad)i
a+bi=r(cosθ+isinθ)
r1=(cosθ1+isinθ1)•r2(cosθ2+isinθ2)=r1•r2〔cos(θ1+θ2)+isin(θ1+θ2)〕 〔r(cosθ+sinθ)〕n=rn(cosnθ+isinnθ)
k=0,1,„„,n-1
解析几何
1、直线
两点距离、定比分点 直线方程 |AB|=| | |P1P2|=
y-y1=k(x-x1)y=kx+b
两直线的位置关系 夹角和距离
或k1=k2,且b1≠b2 l1与l2重合
或k1=k2且b1=b2 l1与l2相交 或k1≠k2 l2⊥l2 或k1k2=-1 l1到l2的角
l1与l2的夹角
点到直线的距离
2.圆锥曲线 圆 椭 圆
标准方程(x-a)2+(y-b)2=r2 圆心为(a,b),半径为R 一般方程x2+y2+Dx+Ey+F=0 其中圆心为(), 半径r(1)用圆心到直线的距离d和圆的半径r判断或用判别式判断直线与圆的位置关系
(2)两圆的位置关系用圆心距d与半径和与差判断 椭圆 焦点F1(-c,0),F2(c,0)(b2=a2-c2)离心率 准线方程
焦半径|MF1|=a+ex0,|MF2|=a-ex0 双曲线 抛物线 双曲线
焦点F1(-c,0),F2(c,0)(a,b>0,b2=c2-a2)离心率 准线方程
焦半径|MF1|=ex0+a,|MF2|=ex0-a 抛物线y2=2px(p>0)焦点F 准线方程
坐标轴的平移
这里(h,k)是新坐标系的原点在原坐标系中的坐标。
1.集合元素具有①确定性②互异性③无序性 2.集合表示方法①列举法 ②描述法 ③韦恩图 ④数轴法 3.集合的运算
⑴ A∩(B∪C)=(A∩B)∪(A∩C)⑵ Cu(A∩B)=CuA∪CuB Cu(A∪B)=CuA∩CuB 4.集合的性质
⑴n元集合的子集数:2n 真子集数:2n-1;非空真子集数:2n-2 高中数学概念总结
一、函数
1、若集合A中有n 个元素,则集合A的所有不同的子集个数为,所有非空真子集的个数是。
二次函数 的图象的对称轴方程是,顶点坐标是。用待定系数法求二次函数的解析式时,解析式的设法有三种形式,即,和(顶点式)。
2、幂函数,当n为正奇数,m为正偶数,m 3、函数 的大致图象是 由图象知,函数的值域是,单调递增区间是,单调递减区间是。 二、三角函数 1、以角 的顶点为坐标原点,始边为x轴正半轴建立直角坐标系,在角 的终边上任取一个异于原点的点,点P到原点的距离记为,则sin =,cos =,tg =,ctg =,sec =,csc =。 2、同角三角函数的关系中,平方关系是:,; 倒数关系是:,; 相除关系是:。 3、诱导公式可用十个字概括为:奇变偶不变,符号看象限。如:,=。 4、函数 的最大值是,最小值是,周期是,频率是,相位是,初相是 ;其图象的对称轴是直线,凡是该图象与直线 的交点都是该图象的对称中心。 5、三角函数的单调区间: 的递增区间是,递减区间是 ; 的递增区间是,递减区间是,的递增区间是,的递减区间是。6、7、二倍角公式是:sin2 = cos2 = = = tg2 =。 8、三倍角公式是:sin3 = cos3 = 9、半角公式是:sin = cos = tg = = =。 10、升幂公式是:。 11、降幂公式是:。 12、万能公式:sin = cos = tg = 13、sin()sin()=,cos()cos()= =。 14、= ; = ; =。 15、=。 16、sin180=。 17、特殊角的三角函数值: 0 sin 0 1 0 cos 1 0 0 tg 0 1 不存在 0 不存在 ctg 不存在 1 0 不存在 0 18、正弦定理是(其中R表示三角形的外接圆半径): 19、由余弦定理第一形式,= 由余弦定理第二形式,cosB= 20、△ABC的面积用S表示,外接圆半径用R表示,内切圆半径用r表示,半周长用p表示则: ① ;② ; ③ ;④ ; ⑤ ;⑥ 21、三角学中的射影定理:在△ABC 中,„ 22、在△ABC 中,„ 23、在△ABC 中: 24、积化和差公式: ①,②,③,④。 25、和差化积公式: ①,②,③,④。 三、反三角函数 1、的定义域是[-1,1],值域是,奇函数,增函数;的定义域是[-1,1],值域是,非奇非偶,减函数;的定义域是R,值域是,奇函数,增函数;的定义域是R,值域是,非奇非偶,减函数。 2、当 ; 对任意的,有: 当。 3、最简三角方程的解集: 四、不等式 1、若n为正奇数,由 可推出 吗?(能)若n为正偶数呢?(均为非负数时才能) 2、同向不等式能相减,相除吗(不能)能相加吗?(能) 能相乘吗?(能,但有条件) 3、两个正数的均值不等式是: 三个正数的均值不等式是: n个正数的均值不等式是: 4、两个正数 的调和平均数、几何平均数、算术平均数、均方根之间的关系是 6、双向不等式是: 左边在 时取得等号,右边在 时取得等号。 五、数列 1、等差数列的通项公式是,前n项和公式是: =。 2、等比数列的通项公式是,前n项和公式是: 3、当等比数列 的公比q满足 <1时,=S=。一般地,如果无穷数列 的前n项和的极限 存在,就把这个极限称为这个数列的各项和(或所有项的和),用S表示,即S=。 4、若m、n、p、q∈N,且,那么:当数列 是等差数列时,有 ;当数列 是等比数列时,有。 5、等差数列 中,若Sn=10,S2n=30,则S3n=60; 6、等比数列 中,若Sn=10,S2n=30,则S3n=70; 六、复数 1、怎样计算?(先求n被4除所得的余数,) 2、是1的两个虚立方根,并且: 3、复数集内的三角形不等式是:,其中左边在复数z1、z2对应的向量共线且反向(同向)时取等号,右边在复数z1、z2对应的向量共线且同向(反向)时取等号。 4、棣莫佛定理是: 5、若非零复数,则z的n次方根有n个,即: 它们在复平面内对应的点在分布上有什么特殊关系? 都位于圆心在原点,半径为 的圆上,并且把这个圆n等分。 6、若,复数z1、z2对应的点分别是A、B,则△AOB(O为坐标原点)的面积是。 7、=。 8、复平面内复数z对应的点的几个基本轨迹: ① 轨迹为一条射线。 ② 轨迹为一条射线。 ③ 轨迹是一个圆。 ④ 轨迹是一条直线。⑤ 轨迹有三种可能情形:a)当 时,轨迹为椭圆;b)当 时,轨迹为一条线段;c)当 时,轨迹不存在。 ⑥ 轨迹有三种可能情形:a)当 时,轨迹为双曲线;b)当 时,轨迹为两条射线;c)当 时,轨迹不存在。 七、排列组合、二项式定理 1、加法原理、乘法原理各适用于什么情形?有什么特点? 加法分类,类类独立;乘法分步,步步相关。 2、排列数公式是: = = ; 排列数与组合数的关系是: 组合数公式是: = = ; 组合数性质: = + = = = 3、二项式定理: 二项展开式的通项公式: 八、解析几何 1、沙尔公式: 2、数轴上两点间距离公式: 3、直角坐标平面内的两点间距离公式: 4、若点P分有向线段 成定比λ,则λ= 5、若点,点P分有向线段 成定比λ,则:λ= = ; = = 若,则△ABC的重心G的坐标是。 6、求直线斜率的定义式为k=,两点式为k=。 7、直线方程的几种形式: 点斜式:,斜截式: 两点式:,截距式: 一般式: 经过两条直线 的交点的直线系方程是: 8、直线,则从直线 到直线 的角θ满足: 直线 与 的夹角θ满足: 直线,则从直线 到直线 的角θ满足: 直线 与 的夹角θ满足: 9、点 到直线 的距离: 10、两条平行直线 距离是 11、圆的标准方程是: 圆的一般方程是: 其中,半径是,圆心坐标是 思考:方程 在 和 时各表示怎样的图形? 12、若,则以线段AB为直径的圆的方程是 经过两个圆,的交点的圆系方程是: 经过直线 与圆 的交点的圆系方程是: 13、圆 为切点的切线方程是 一般地,曲线 为切点的切线方程是:。例如,抛物线 的以点 为切点的切线方程是:,即:。 注意:这个结论只能用来做选择题或者填空题,若是做解答题,只能按照求切线方程的常规过程去做。 14、研究圆与直线的位置关系最常用的方法有两种,即: ①判别式法:Δ>0,=0,<0,等价于直线与圆相交、相切、相离; ②考查圆心到直线的距离与半径的大小关系:距离大于半径、等于半径、小于半径,等价于直线与圆相离、相切、相交。 15、抛物线标准方程的四种形式是: 16、抛物线 的焦点坐标是:,准线方程是:。 若点 是抛物线 上一点,则该点到抛物线的焦点的距离(称为焦半径)是:,过该抛物线的焦点且垂直于抛物线对称轴的弦(称为通径)的长是:。 17、椭圆标准方程的两种形式是: 和。 18、椭圆 的焦点坐标是,准线方程是,离心率是,通径的长是。其中。 19、若点 是椭圆 上一点,是其左、右焦点,则点P的焦半径的长是 和。20、双曲线标准方程的两种形式是: 和。 21、双曲线 的焦点坐标是,准线方程是,离心率是,通径的长是,渐近线方程是。其中。 22、与双曲线 共渐近线的双曲线系方程是。与双曲线 共焦点的双曲线系方程是。 23、若直线 与圆锥曲线交于两点A(x1,y1),B(x2,y2),则弦长为 ; 若直线 与圆锥曲线交于两点A(x1,y1),B(x2,y2),则弦长为。 24、圆锥曲线的焦参数p的几何意义是焦点到准线的距离,对于椭圆和双曲线都有:。 25、平移坐标轴,使新坐标系的原点 在原坐标系下的坐标是(h,k),若点P在原坐标系下的坐标是 在新坐标系下的坐标是,则 =,=。 九、极坐标、参数方程 1、经过点 的直线参数方程的一般形式是:。 2、若直线 经过点,则直线参数方程的标准形式是:。其中点P对应的参数t的几何意义是:有向线段 的数量。若点P1、P2、P是直线 上的点,它们在上述参数方程中对应的参数分别是 则: ;当点P分有向线段 时,;当点P是线段P1P2的中点时。 3、圆心在点,半径为 的圆的参数方程是:。 3、若以直角坐标系的原点为极点,x轴正半轴为极轴建立极坐标系,点P的极坐标为 直角坐标为,则。 4、经过极点,倾斜角为 的直线的极坐标方程是:,经过点,且垂直于极轴的直线的极坐标方程是:,经过点 且平行于极轴的直线的极坐标方程是:,经过点 且倾斜角为 的直线的极坐标方程是:。 5、圆心在极点,半径为r的圆的极坐标方程是 ; 圆心在点 的圆的极坐标方程是 ; 圆心在点 的圆的极坐标方程是 ; 圆心在点,半径为 的圆的极坐标方程是。 6、若点M、N,则。 十、立体几何 1、求二面角的射影公式是,其中各个符号的含义是: 是二面角的一个面内图形F的面积,是图形F在二面角的另一个面内的射影,是二面角的大小。 2、若直线 在平面 内的射影是直线,直线m是平面 内经过 的斜足的一条直线,与 所成的角为,与m所成的角为 , 与m所成的角为θ,则这三个角之间的关系是。 3、体积公式: 柱体:,圆柱体:。 斜棱柱体积:(其中,是直截面面积,是侧棱长); 锥体:,圆锥体:。 台体:,圆台体: 球体:。 4、侧面积: 直棱柱侧面积:,斜棱柱侧面积: ; 正棱锥侧面积:,正棱台侧面积: ; 圆柱侧面积:,圆锥侧面积:,圆台侧面积:,球的表面积:。 5、几个基本公式: 弧长公式:(是圆心角的弧度数,>0); 扇形面积公式: ; 圆锥侧面展开图(扇形)的圆心角公式: ; 圆台侧面展开图(扇环)的圆心角公式:。 经过圆锥顶点的最大截面的面积为(圆锥的母线长为,轴截面顶角是θ): 十一、比例的几个性质 1、比例基本性质: 2、反比定理: 3、更比定理: 5、合比定理; 6、分比定理: 7、合分比定理: 8、分合比定理: 9、等比定理:若,则。 十二、复合二次根式的化简 当 是一个完全平方数时,对形如 的根式使用上述公式化简比较方便。 ⑵并集元素个数: n(A∪B)=nA+nB-n(A∩B)5.N 自然数集或非负整数集 Z 整数集 Q有理数集 R实数集 6.简易逻辑中符合命题的真值表 p 非p 真 假 假 真 二.函数 1.二次函数的极点坐标: 函数 的顶点坐标为 2.函数 的单调性: 在 处取极值 3.函数的奇偶性: 在定义域内,若,则为偶函数;若 则为奇函数。过两点有且只有一条直线 2 两点之间线段最短 3 同角或等角的补角相等 4 同角或等角的余角相等 过一点有且只有一条直线和已知直线垂直 直线外一点与直线上各点连接的所有线段中,垂线段最短平行公理 经过直线外一点,有且只有一条直线与这条直线平行 8 如果两条直线都和第三条直线平行,这两条直线也互相平行 9 同位角相等,两直线平行 10 内错角相等,两直线平行 11 同旁内角互补,两直线平行 12两直线平行,同位角相等 13 两直线平行,内错角相等 14 两直线平行,同旁内角互补 定理 三角形两边的和大于第三边 16 推论 三角形两边的差小于第三边 三角形内角和定理 三角形三个内角的和等于180° 18 推论1 直角三角形的两个锐角互余 推论2 三角形的一个外角等于和它不相邻的两个内角的和 20 推论3 三角形的一个外角大于任何一个和它不相邻的内角 21 全等三角形的对应边、对应角相等 22边角边公理(SAS)有两边和它们的夹角对应相等的两个三角形全等 23 角边角公理(ASA)有两角和它们的夹边对应相等的两个三角形全等 24 推论(AAS)有两角和其中一角的对边对应相等的两个三角形全等 25 边边边公理(SSS)有三边对应相等的两个三角形全等 26 斜边、直角边公理(HL)有斜边和一条直角边对应相等的两个直角三角形全等 27 定理1 在角的平分线上的点到这个角的两边的距离相等 定理2 到一个角的两边的距离相同的点,在这个角的平分线上 29 角的平分线是到角的两边距离相等的所有点的集合 等腰三角形的性质定理 等腰三角形的两个底角相等(即等边对等角)31 推论1 等腰三角形顶角的平分线平分底边并且垂直于底边 等腰三角形的顶角平分线、底边上的中线和底边上的高互相重合 33 推论3 等边三角形的各角都相等,并且每一个角都等于60° 34 等腰三角形的判定定理 如果一个三角形有两个角相等,那么这两个角所对的边也相等(等角对等边) 推论1 三个角都相等的三角形是等边三角形 推论 2 有一个角等于60°的等腰三角形是等边三角形 在直角三角形中,如果一个锐角等于30°那么它所对的直角边等于斜边的一半 直角三角形斜边上的中线等于斜边上的一半 定理 线段垂直平分线上的点和这条线段两个端点的距离相等 乘法与因式分解 a^2-b^2=(a+b)(a-b) a^3+b^3=(a+b)(a^2-ab+b^2)• a^3-b^3=(a-b(a^2+ab+b^2) 三角不等式 |a+b|≤|a|+|b| |a-b|≤|a|+|b| |a|≤b<=>-b≤a≤b |a-b|≥|a|-|b|-|a|≤a≤|a| 一元二次方程的解-b+√(b^2-4ac)/2a-b-√(b^2-4ac)/2a根与系数的关系 X1+X2=-b/a X1*X2=c/a 注:韦达定理 判别式 b^2-4ac=0 注:方程有两个相等的实根 b^2-4ac>0 注:方程有两个不等的实根 b^2-4ac<0 注:方程没有实根,有共轭复数根 三角函数公式 两角和公式 sin(A+B)=sinAcosB+cosAsinB sin(A-B)=sinAcosB-sinBcosA cos(A+B)=cosAcosB-sinAsinB cos(A-B)=cosAcosB+sinAsinB tan(A+B)=(tanA+tanB)/(1-tanAtanB) tan(A-B)=(tanA-tanB)/(1+tanAtanB) cot(A+B)=(cotAcotB-1)/(cotB+cotA) cot(A-B)=(cotAcotB+1)/(cotB-cotA) 倍角公式 tan2A=2tanA/[1-(tanA)^2] cos2a=(cosa)^2-(sina)^2=2(cosa)^2-1=1-2(sina)^ 2半角公式 sin(A/2)=√((1-cosA)/2)sin(A/2)=-√((1-cosA)/2) cos(A/2)=√((1+cosA)/2)cos(A/2)=-√((1+cosA)/2) tan(A/2)=√((1-cosA)/((1+cosA))tan(A/2)=-√((1-cosA)/((1+cosA))cot(A/2)=√((1+cosA)/((1-cosA))cot(A/2)=-√((1+cosA)/((1-cosA))和差化积 2sinAcosB=sin(A+B)+sin(A-B) 2cosAsinB=sin(A+B)-sin(A-B)) 2cosAcosB=cos(A+B)-sin(A-B) -2sinAsinB=cos(A+B)-cos(A-B) sinA+sinB=2sin((A+B)/2)cos((A-B)/2 cosA+cosB=2cos((A+B)/2)sin((A-B)/2) tanA+tanB=sin(A+B)/cosAcosB 某些数列前n项和 1+2+3+4+5+6+7+8+9+…+n=n(n+1)/2 1+3+5+7+9+11+13+15+…+(2n-1)=n2- 2+4+6+8+10+12+14+…+(2n)=n(n+1) 51^2+2^2+3^2+4^2+5^2+6^2+7^2+8^2+…+n^2=n(n+1)(2n+1)/6 1^3+2^3+3^3+4^3+5^3+6^3+…n^3=n2(n+1)2/ 41*2+2*3+3*4+4*5+5*6+6*7+…+n(n+1)=n(n+1)(n+2)/ 3正弦定理 a/sinA=b/sinB=c/sinC=2R 注:其中 R 表示三角形的外接圆半径 余弦定理 b^2=a^2+c^2-2accosB 注:角B是边a和边c的夹角 圆的标准方程(x-a)^2+(y-b)^2=^r2 注:(a,b)是圆心坐标 圆的一般方程 x^2+y^2+Dx+Ey+F=0 注:D^2+E^2-4F>0 抛物线标准方程 y^2=2px y^2=-2px x^2=2py x^2=-2py 直棱柱侧面积 S=c*h 斜棱柱侧面积 S=c'*h 正棱锥侧面积 S=1/2c*h' 正棱台侧面积 S=1/2(c+c')h' 圆台侧面积 S=1/2(c+c')l=pi(R+r)l 球的表面积 S=4pi*r2 圆柱侧面积 S=c*h=2pi*h 圆锥侧面积 S=1/2*c*l=pi*r*l 弧长公式 l=a*r a是圆心角的弧度数r >0 扇形面积公式 s=1/2*l*r 锥体体积公式 V=1/3*S*H 圆锥体体积公式 V=1/3*pi*r2h 斜棱柱体积 V=S'L 注:其中,S'是直截面面积,L是侧棱长 柱体体积公式 V=s*h 圆柱体 V=pi*r2h 定理 平行线分线段成比例定理 三条平行线截两条直线,所得的对应 线段成比例87 推论平行于三角形一边的直线截其他两边(或两边的延长线),所得的对应线段成比例 定理 如果一条直线截三角形的两边(或两边的延长线)所得的对应线段成比例,那么这条直线平行于三角形的第三边 平行于三角形的一边,并且和其他两边相交的直线,所截得的三角形的三边与原三角形三边对应成比例 定理平行于三角形一边的直线和其他两边(或两边的延长线)相交,所构成的三角形与原三角形相似 相似三角形判定定理1 两角对应相等,两三角形相似(ASA) 直角三角形被斜边上的高分成的两个直角三角形和原三角形相似 判定定理2 两边对应成比例且夹角相等,两三角形相似(SAS) 判定定理3 三边对应成比例,两三角形相似(SSS) 定理 如果一个直角三角形的斜边和一条直角边与另一个直角三 角形的斜边和一条直角边对应成比例,那么这两个直角三角形相似 性质定理1 相似三角形对应高的比,对应中线的比与对应角平分线的比都等于相似比 性质定理2 相似三角形周长的比等于相似比 性质定理3 相似三角形面积的比等于相似比的平方 任意锐角的正弦值等于它的余角的余弦值,任意锐角的余弦值等 于它的余角的正弦值 100任意锐角的正切值等于它的余角的余切值,任意锐角的余切值等 于它的余角的正切值 101圆是定点的距离等于定长的点的** 102圆的内部可以看作是圆心的距离小于半径的点的** 103圆的外部可以看作是圆心的距离大于半径的点的** 104同圆或等圆的半径相等 105到定点的距离等于定长的点的轨迹,是以定点为圆心,定长为半 径的圆 106和已知线段两个端点的距离相等的点的轨迹,是着条线段的垂直平分线107到已知角的两边距离相等的点的轨迹,是这个角的平分线 108到两条平行线距离相等的点的轨迹,是和这两条平行线平行且距 离相等的一条直线 109定理 不在同一直线上的三点确定一个圆。 110垂径定理垂直于弦的直径平分这条弦并且平分弦所对的两条弧 111推论1 ①平分弦(不是直径)的直径垂直于弦,并且平分弦所对的两条弧②弦的垂直平分线经过圆心,并且平分弦所对的两条弧 ③平分弦所对的一条弧的直径,垂直平分弦,并且平分弦所对的另一条弧112推论2 圆的两条平行弦所夹的弧相等 113圆是以圆心为对称中心的中心对称图形 114定理 在同圆或等圆中,相等的圆心角所对的弧相等,所对的弦 相等,所对的弦的弦心距相等 115推论 在同圆或等圆中,如果两个圆心角、两条弧、两条弦或两 弦的弦心距中有一组量相等那么它们所对应的其余各组量都相等 116定理 一条弧所对的圆周角等于它所对的圆心角的一半 117推论1 同弧或等弧所对的圆周角相等;同圆或等圆中,相等的圆周角所对的弧也相等 118推论2 半圆(或直径)所对的圆周角是直角;90°的圆周角所 对的弦是直径 119推论3 如果三角形一边上的中线等于这边的一半,那么这个三角形是直角三角形 120定理 圆的内接四边形的对角互补,并且任何一个外角都等于它 的内对角121①直线L和⊙O相交 d<r ②直线L和⊙O相切 d=r ③直线L和⊙O相离 d>r 中国古典诗词具有美的全部特征,丰富的人生阅历,深刻的生命体验;完善的艺术形式;开阔的想象空间。 因为古典诗词中的意象非常多致谢意象寄托了诗人的情感, 博大精深 古代诗词的常见意象 1.月——思乡,怀人 怀乡:例:举头望明月,低头思故乡。 露从今夜白,月是故乡明。 怀人:例:但愿人长久,千里共婵娟。 此时相望不相闻,愿逐月华流照君。 2.菊花——清高人格的写照 例:朝饮木兰之坠露兮,夕餐秋菊之落英。 秋丛绕舍似陶家,遍绕篱边日渐斜。不是花中偏爱菊,此花开尽更无花。 宁可枝头抱香死,何曾吹落北风中。 3.梅花——高洁人格的写照 例:零落成泥碾作尘,只有香如故。 不要人夸颜色好,只留清气满乾坤。 4.松——孤直傲岸,岁寒三友之一 例:岂不罹严寒,松柏有本性。 岁寒,然后知松柏之后凋也。 后来富贵已凋落,岁寒松柏犹依然。 5.莲——爱的象征 莲与怜谐音,所以可借以表达爱情。 例:采莲南塘秋,莲花过人头。低头弄莲子,莲子青如水。 6.梧桐——凄凉悲伤 例:梧桐更兼细雨,到黄昏,点点滴滴。 一声梧叶一声秋,一点芭蕉一点愁,三更泪梦三更后。 7.杜鹃鸟——凄怨哀伤,乡愁乡思 相传,蜀王让杜宇即望帝,因被迫让位给他的臣子,自己隐居山林,死后灵魂化为杜鹃,到春天,杜鹃会一直啼叫到满口是血。另外,杜鹃的啼叫好象在叫:“不如归去,不如归去。”也叫子规,常唤起游子思乡之情。 例:梨花雪,不胜凄断,杜鹃啼血。 又闻子规啼夜月,愁空山。 从今别却江南路,化作啼鹃带血归。 8.秋蝉——高洁,悲凉 秋后的蝉是活不久的,一番秋雨后,蝉只剩下几声若断若续的哀鸣了。 例:寒蝉凄切,对长亭晚,骤雨初歇。 西路蝉声唱,南冠客思深。9.鸿雁——思乡怀亲,羁旅之悲 (也是古代诗歌中传书的信使) 例:雁字归时,月满西楼。 红笺小字,说尽平生意。鸿雁在云鱼在水,惆怅此情难寄。 10.柳——离情依依 例:今宵酒醒何处?杨柳岸,晓风残月。 渭城朝雨浥轻尘,客舍青青柳色新。 11.南浦,长亭——送别之所 例:何处是归程?长亭更短亭。 长亭外,古道边,芳草碧连天。 12.芳草——离恨 例:青青河边草,绵绵思道远。 13.芭蕉——孤独与忧愁 例:何处合成愁?离人心上秋。纵芭蕉,不雨也飕飕。 14.羌笛——凄切之声 例:羌笛何须怨杨柳,春风不度玉门关。 15.乌鸦——衰败荒凉之兆 例:斜阳外,寒鸦数点,流水绕孤村。第四篇:高中数学公式及定理总结
第五篇:中国古典诗词具有美的全部特征