第一篇:关于单项式乘以单项式一课教学反思
关于《单项式乘以单项式》一课的教学反思
靓湖学校 李志
我上了一节《多项式乘以单项式》公开课,感觉上下来的效果比想像的要好。从学生非智力因素的激发,让学生从感兴趣的实例出发进入本节课的学习。
单项式式乘以单项式这一课时,课本上的内容是比较简单,但我深深地感到,要把它上好,尤其作为一节公开课,也是不那么容易的。为了上好这节课我课前做了充分的准备。从学生当堂的作业情况来看这节课的效果还是不错的。
这节课的设计现在来看是比较成功的,我没有完全按课本的内容去上,而是大胆作了思路的改变,我从复习幂的的运算性质开始,结合这些性质逆运算的关系引导学生自主探索、归纳单项式乘以以单项式的规律,然后用导学案上的二个问题来验证学生总结的规律,以期达到直接向学生渗透了数形结合的思想和渗透“发现—总结—验证”的数学思想。在法则的应用这一环节我增加了一个综合题,目的是发展学生智力、提高学生的综合运算能力的目的。课后通过本组教师的评课之后,我发现在引导学生发现、总结出单项式乘以以单项式法则这一过程中是非常成功的。通过评课我还找到了在课堂上出现的一些问题的答案,发现在教学过程中仍有很多有待改进的地方。
1、给学生练习的时间比较合适,但让学生纠错的时间不够多,中下等学生对解题方法与技巧没有得到及时的掌握与巩固。
2,在由幂的运算顺序直接得出单项式的乘法的运算的结果时没有指明或让学生说明这一过程的根据是乘法的结合律的运算,这一环节不该少。
3、学生练习的过程中如果能让他们进行板演可能更能激发学生的学习热情。
4、在时间的把握上做得不够好,从而在总结时没能让学生的小结,使学生少了一次锻炼的机会。
经过这一课时的教学与探讨,我深深感到,上好一节课,教师除了要仔细认真地钻研教材之外,还要全面分析了解学生,从学生的实际出发认真备好教学中的每一个环节,才能在我们的教学过程中巧妙地为学生铺路搭桥,帮助学生跨越重重障碍,体验学习成功的喜悦。
2014.9.15
第二篇:《单项式乘以单项式》 教学反思
《单项式乘以单项式》 教学反思姜学胜 的工作室单项式乘以教学反思
《单项式乘以单项式》 教学反思
1、本课设计将单项式与单项式乘法的法则由有理数相乘到数与字母相乘再到字母与字母相乘有利于学生在探索知识的过程当中从所掌握的技能当中解决新的问题,培养了学生自主解决问题的能力,《单项式乘以单项式》 教学反思,教学反思《《单项式乘以单项式》 教学反思》。
2、在例题的设计上与实际生活相联系让学生感觉到数学知识可以服务于实际生活,学有所用。
3、不足的地方,对于能力拓展的这一部分知识学生掌握的并不是很理想,课堂的习题量不足。
争鸣探索单项式乘以教学反思
第三篇:单项式乘以单项式的教学反思
单项式乘以单项式的教学反思
付 成 霞
本节利用乘法交换律、结合律和幂的运算性质研究单项式与单项式相乘的法则,在本节课教学中注重探讨单项式与单项式相乘的法则的形成过程,引导学生研究如何经过具体到抽象,特殊到一般,归纳概括得到性质。培养学生对知识的转化能力和学生对问题中所蕴藏的数学规律进行探索的兴趣。
本节课包含着许多的思想与方法,因此课堂上我有意识的向学生渗透于点明。在学习法则时告诉学生要多角度地思考问题,有意识地寻找一些定律与法则的生活背景或几何意义;在代数法探索法则时,引导学生体会一个新问题的解决,总是建立在旧知识的基础上的,这就是转化的思想方法,从而教给学生研究问题的普遍手段。在法则的探求过程及练习训练中,不断地引导学生着眼于系数、相同字母、不同字母三方面考虑,培养探求事物本源的习惯,为今后的工作学习奠定良好的习惯基础。
本节课学生的积极性很高,从自行探讨出法则到自己独立应用法则,学生的思维一直处于积极活动的状态。在探讨法则的过程中,学生出现了许多错误,这时提醒学生考虑自己每一步的算理,做到步步有理有据,培养学生严密的思维能力和解决问题的能力。利用法则提炼出解题步骤是很有必要的,使学生既理解了法则,又能灵活应用法则,找到学习的方法,提高了学生学习数学的积极性。
从本节课看,学生对于应用单乘单法则问题不大,但是做错题的几率很大,原因是幂的三个运算法则及合并同类项在混合应用时学生特别容易出错,这方面还要利用以后单项式乘以多项式及多项式乘以多项式的教学让学生更加熟练应用各种法则,明确每一步的算理,解决好这个问题。
通过本节课的教学实践,我再次体会到:学生才是课堂的主人。教师是引导者,是参与者。本课中各知识点均是学生通过探索发现的,让学生充分经历探索与发现的过程,也是新课标所倡导的教学方法。通过练习训练又对法则进行了更深刻的理解,这也是学生学习能力的体现。在今后的教学中要继续注重引导学生自我探索与自我发现,注重挖掘教材的能力生长点,挖掘教材的内涵,着眼于学生的终身需要,为学生的终身发展奠定基础。
第四篇:单项式乘以单项式教学设计
单项式乘以单项式教学设计
【教学内容及内容分析】
在七年级上册的学习中,学生已经学习了数的运算、字母表示数、合并同类项、去括号等内容,具备了由数的运算转化为式的运算的知识基础,类比有理数运算学习整式的运算是本章的重点,是代数知识学习的重点内容,可以帮助学生认识到代数与现实世界、学生生活、相关学科联系十分密切,为数学本身和其他学科的研究提供了语言、方法和手段.本单元提前安排了同底数幂的乘法、幂的乘方、积的乘方等知识,然后通过实例引入了整式的乘法,使学生通过对乘法分配律等法则的运用探索整式乘法的运算法则以及一些重要的公式,所以,本节知识既是对前面所学知识的综合应用,也为下面学习乘法公式、整式除法以及学习因式分解打好基础.本单元共分5课时,由浅入深地学习单项式乘单项式、单项式除以单项式、单项式乘多项式、多项式除以单项式、多项式乘多项式,五节课的知识环环相扣,每节课新知识的学习既是对前一节所学知识的应用,也为后一一节学习奠定基础.所以在教学时要注意引导学生发现各知识点之间的联系,善于应用转化的思想,化未知为已知,形成较完整的知识结构.【教学目标】
1、通过探索单项式乘法法则的过程,在具体情境地中了解单项式乘法的意义,理解单项式乘法法则
2、会利用法则进行单项式的乘法运算。【教学重难点】
重点: 单项式乘法法则及其应用.难点:理解运算法则及其探索过程.一、旧知回顾
活动内容:教师提出问题,引导学生复习幂的运算性质 1:前面学习了哪三种幂的运算?运算方法分别是什么?)1)同底数幂相乘,底数不变,指数相加。aman=am+n(m,n是正整数)(2)幂的乘方,底数不变,指数相乘。
(3积的乘方等于各因数乘方的积。(ab)n=nbn
(n是正整数)2.口算
指名学生回答,并说出运用的相关法则。
二、讲授新知
出示问题1(多媒体)
让学生思考
学生思考后师引导学生完成以上计算。
引导学生继续探究:(多媒体出示)
提问:怎样计算?
引导学生完成计算,并总结法则: 单项式乘以单项式法则:单项式相乘,把系数、同底数幂分别相乘,作为积的因式;对于只在一个单项式里含有的字母,则连同它的指数一起作为积的一个因式。多媒体出示例题:
指名学生完成,师生共同小结计算过程。多媒体出示: 学生回答,并指出错误原因。
三、练习巩固 多媒体出示:
指名学生完成,师生共同订正。
四、小结:
1、求系数的积,应注意符号;
2、相同字母因式相乘,是同底数幂的乘法,底数不变,指数相加;
3、只在一个单项式里含有的字母,要连同它的指数写在积里,防止遗漏;
4、单项式乘以单项式的结果仍然是一个单项式,结果要把系数写在字母因式的前面;
5、单项式乘法的法则对于三个以上的单项式相乘同样适用.五、作业:
1.课本第65页习题8.2第1题; 2.课本第65页习题8.2第2题。
第五篇:单项式乘以多项式教学设计
单项式乘以多项式
教学目标
1.使学生探索并了解单项式与多项式相乘的法则;会运用法则进行简单计算.
2.使学生进一步理解数学中“转化”、“换元”的思想方法,即把单项式与多项式相乘转化为单项式与单项式相乘.
3.逐步形成独立思考、主动探索的习惯,培养思维的批评性、严密性和初步解决问题的愿望和能力.
重点:单项式与多项式相乘的法则及其运用. 难点:单项式与多项式相乘去括号法则的应用. 教学过程(师生活动)复习引新 一知识回顾:
1.回忆幂的运算性质:
am·an=am+n(m,n都是正整数)底数幂相乘,底数不变,指数相加.(am)n=amn(m,n都是正整数)幂的乘方,底数不变,指数相乘.(ab)n=anbn(n为正整数)积的乘方,等于把积的每一个因式分别乘方,再把所得的幂相乘.
2.单项式与单项式相乘法则:单项式与单项式相乘,把它们的系数、相同字母分别相乘,对于只在一个单项式里含有的字母,则连同它的指数作为积的一个因式。
3.判断正误(如果不对应如何改正?)(1)4a2·2a3=8a6()
(2)(ab)2(ab3)=a3b5()
(3)(-2x2)3xy2=8x7y2()
点拨:(1)错误,应该为8a5(2)正确(3)错误,应该为-8x7y2 创设情境引入新课
问题: b c d
a
如果把它看成三个小长方形,那么它们的面积可分别表示为_____、_____、_____.a
b+c+d 如果把它看成一个大长方形,那么它的面积可表示为_________.则得:ab+ac+ad=a(b+c+d)想一想:你能由此总结出单项式与多项式相乘的乘法法则吗? 教师总结如下:单项式与多项式相乘,就是用单项式去乘多项式的每一项,再把所得的积相加.2.例题分析:(-3a)·(-2a2-3a-2)
(在学习过程中重点提醒学生注意符号问题,多项式的每一项都包括它前面的符号)解:(-3a)·(-2a2-3a-2)=(-3a)·(-2a2)+(-3a)·(-3a)+(-3a)·(-2)
=6a3+9a2+6a
深入 探究
一、根据例题分析,启发学生总结单项式与多项式相乘的实质和一般步骤:
1、单项式与多项式相乘的实质是利用分配律把单项式乘以多项式转化为单项式乘法
2.单项式与多项式相乘时,分三个阶段:
①按分配律把乘积写成单项式与单项式乘积的代数和的形式; ②按照单项式的乘法法则运算。③再把所得的积相加.二、强调计算时的注意事项:
1.计算时,要注意符号问题,多项式中每一项都包括它前面的符号,单项式分别与多项式的每一项相乘时,同号相乘得正,异号相乘得负。2.不要出现漏乘现象。
3.运算要有顺序:先乘方,再乘除,最后加减。4.对于混合运算,注意最后应合并同类项。课内巩固 练一练:
⑴ a(2a-3)⑵ a2(1-3a)⑶ 3x(x2-2x-1)⑷-2x2y(3x2-2x-3)(5)(2x2-3xy+4y2)(-2xy)给学生足够的时间进行基础练习,安排2-3个同学在黑板上演示解题过程,及时观察学生知识的掌握状况,及时纠错以便加深印象,使学生深刻理解单项式与多项式相乘的解题思路及基本方法。课外研究 试一试:
通过以下三道题目加深对单项式与多项式相乘的理解,能够灵活的应用计算方法解出除了例题这样常规题型以外的几类经典题型,拓宽学习思路。
⑴ 3x(x2-2x-1)-2x2(x-3)
⑵-6xy(x2-2xy-y2)+3xy(2x2-4xy+y2)⑶ x2-2x[2x2-3(x2-2x-3)] 设计思想
单项式的乘法用到了有理数的乘法、幂的运算性质,而后续的多项式与多项式的乘法,都要转化为单项式乘法.因此,单项式乘法将起到承前启后的作用,在整式乘法中占有独特地位.所以在教学中先对所学知识进行回顾,再从实际问题导入,让学生自己动手试一试,主动探索;在教学过程中引导学生参照引例解决方法,教师先不给出单项式与多项式相乘的运算法则,而是让学生先独立思考,然后由学生自己小结出如何进行单项式与多项式相乘的乘法,在探索新知的过程中让学生体会从特殊到一般,从具体到抽象的认识过程.在这一过程中,要注意留给学生探索与交流的空间,让学生在自己的实践中获得单项式与单项式相乘的运算法则,从而构建新的知识体系.在此基础上要求学生用语言叙述这个性质,这有利于提高学生数学语言的表述能力.因为整式是在数的运算的基础上发展起来的,所以在学习单项式与多项式的乘法时,让学生类比数的运算律,将单项式乘以多项式转化为单项式的乘法,将新知识转化为已经学过的知识.无论是单项式乘以单项式还是单项式乘以多项式“转化”为单项式的乘法,学生都从中体会到学习新知识的方法,即学习一种新的知识、方法;通常的做法是把它归结为已知的数学知识、方法,从而使学习能够进行。