如何在中学数学教学中渗透数学文化(大全)

时间:2019-05-15 03:43:46下载本文作者:会员上传
简介:写写帮文库小编为你整理了多篇相关的《如何在中学数学教学中渗透数学文化(大全)》,但愿对你工作学习有帮助,当然你在写写帮文库还可以找到更多《如何在中学数学教学中渗透数学文化(大全)》。

第一篇:如何在中学数学教学中渗透数学文化(大全)

当前,我国新一轮基础教育课程改革正在深入推进,数学的人文价值更明显地凸现出来,已普遍受到重视。数学文化观的理论逐渐引起了人们的重视,许多学者参与了有关数学文化的研究和讨论,从文化这个特殊的视角对数学作出分析,并发表了很多相关的论文与专著。但这些研究成果相对集中在理论领域,而对于数学文化在中学数学教学中如何渗透缺乏实践性的指导。本文即是对数学文化在中学数学教学中如何渗透所做的一些初步探究。一.在中学数学教学中渗透数学文化的意义

无论是从教育的价值方面考虑,还是从已有的理论成果以及一线数学教师的经验考虑,数学文化都是现实数学教学中不可或缺的内容。

追寻数学家成长的足迹,可以了解数学先辈们刻苦钻研的作风、富有启发性的治学经验和崇高的思想品德。它们是数学教学中激发学习兴趣、激励学习积极性、学习科学方法和弘扬民族精神的极其生动的思想养料。可以激励学生勇攀科学高峰,并养成尊重科学发展的规律以及求实、说理、批判、质疑等理性思维的习惯和锲而不舍地追求真理的科学精神。

展现数学知识的产生背景以及数学概念的形成、发展过程和数学定理的提出过程,引导学生了解数学科学与人类社会发展之间的相互作用,可以追根溯源,开阔眼界,有助于全面深刻地理解数学知识,体会数学的价值,提高学生的科学素养和文化素养。

介绍数学知识和数学思想方法的现代应用,展示数学与其他自然科学、交叉科学之间的联系,使学生感受到数学的应用价值和社会需要,体会到“生活处处有数学,处处用数学”,以纠正其观念中数学最主要的作用是为了计算,数学学习的最终目的是为了考试等错误的认识,激励学生的创造欲望,从而变被动学习为主动学习。

欣赏数学中的美,体味数学的统一美、简洁美、对称美、奇异美,可大大改变目前数学课枯燥乏味的现状,让学生学得情趣盎然,在得到美的享受、思维的启迪和素质的陶冶的同时提高他们的数学审美能力,促进他们人格个性、情感体验的全面和谐发展。

二.在中学数学教学中渗透数学文化的理论基础

荷兰数学教育理论家弗赖登塔尔的基本观点主要有:(1)、数学起源于现实。数学教育必须基于学生的“数学现实”。而且每个学生有各自不同的“数学现实”。数学教师的任务之一是帮助学生构造数学现实,并在此基础上发展他们的数学现实;(2)、数学教育的过程是学习“数学化”和“形式化”的过程。形式化是数学教育的特征。数学教学不能停留在直观和操作的水平,必须发展到“形式化”阶段,在抽象的层次上思维;(3)、学生学习数学是一个“再创造”的过程。学生不是被动地接受知识,而是在创造,把前人已经创造过的数学知识重新创造一遍。

在中学数学教学中渗透数学文化,能够熏陶学生思维从事物的数量和空间形式的层面去认识世界,分析各种现象和问题,用数学的语言去表述、交流,进行数学处理,即以“数学的头脑”看待问题,发现规律,解决问题,这与“数学化”的思想不谋而合。在中学数学教学中渗透数学文化,能吸引学生自主性地参与学习活动,促使他们通过动手实践、自主探索与合作交流,获得必需的数学,这与“再创造原理”有异曲同工之妙。三.当前中学数学教学中渗透数学文化的现状与问题分析

数学文化已逐步走进中学数学课堂,但我们看到,现在的教学实践仍然只过分地强调数学的工具作用,弱化数学的文化价值,忽视数学对其他学科的影响,使得数学长期以来成了一种看不见的文化。目前,学校渗透数学文化的方式一般只开展数学史的介绍,教师都以一俩句话来介绍某个数学发展阶段,相互之间没有挖掘任何联系,也没有与教材内容相结合。形式单

一、枯燥乏味、缺乏趣味性、系统性、实践性是当前中学数学教学中渗透数学文化的现状。试问,如此的教学怎能达到渗透数学文化的目的,进行数学的文化传承,激发学生的数学学习呢? 导致如此的原因笔者认为主要有以下几点:

首先,功利性的教学目标。在中考的指挥鞭下,学校数学教学仍以贯彻“数学双基”为教学目标,以提高升学率为主要任务,于是,数学课堂教学一般采用讲授法进行,教师更注重学生解题能力的培养,要争取在有限的时间灌输更多的数学结论,做更多的应用练习,自然,就忽略了数学文化的渗透。其实,中学数学教学应以培养有数学素养的人为目标,而不是机械计算的工具!这样,渗透数学文化所起的作用就不可忽视了。

其次,单一的评价体系。考试是当前中学教学唯一的评价体系,而书面考试只能从某种程度上考察学生对知识的掌握和运用,却无法全面地考察学生的学习过程、数学素养,也不能全面反映一个教师的教学水平。因此,数学教学的评价体系应当多样化,既重结果又重过程,更要重视影响教学过程和结果的各方面因素。正确的评价体系应包括四个方面:对课程教材的评价、对教学过程的评价、对学生学习表现(主要是指学生数学思维)的评价以及对学生在社会上适应度的评价。

再者,孤立的学科建设。中学各门课程都是相对孤立地进行教学,各门课程往往都只注重形成学科内的知识体系而忽略学科间的知识联系,比如科学记数法,在“科学”中几乎一开学就用上了,而“数学”的科学记数法却在七年级(下)才学习。我们在数学教学中要时刻注意体现数学与其他学科的联系,体现数学的应用价值,这亦需加强数学文化的渗透。四.中学数学教学渗透数学文化的途径 1营造数学文化氛围

(1)介绍数学家的故事,感受数学家的科学精神

数学家们废寝忘食、孜孜不倦的态度;屡遭失败、永不放弃的意志;身处逆境、矢志不渝的精神都将极大地鼓舞学生。我们在课堂教学中尤应利用这份精神食粮,结合教材向学生介绍数学家的故事,让学生感受数学家的科学精神,激励学习。譬如,介绍完全平方公式时可以介绍杨辉的事迹和成就;开始学习习近平面直角坐标系时向学生介绍法国数学家笛卡儿对解析几何所做的贡献;利用书本“读一读”的丰富资源……还可以要求学生利用课余时间从课外读物、因特网查找古今中外数学家的童年故事及他们严谨治学、勇攀科学高峰的事迹,然后将收集到的故事编印后分发给学生相互交流。

(2)查找数学符号来源,体会科学发明过程

学习数学,是从学习数学符号开始的。每一个数学符号,它的产生都有一段鲜为人知的经历。让学生通过查阅资料,对它们寻踪探源,可以让学生在了解数学发展史的同时,体会到数学符号并非枯燥乏味,而是充满着智慧灵光、闪烁着生命活力。如学生学习算术平方根的时候,查到平方根“ 七世纪法国数学家笛卡尔在他的《几何学》一书中第一次用“

”1220年意大利数学家菲波那契使用R作为平方根号.十

”表示根号。“

”是由拉丁文root(方根)的第一个字母“r”变来,上面的短线是括线,相当于括号。数学符号故事也将会引发学生对数学的强烈好奇心,增强学习数学的兴趣。

(3)探访历史数学名题,领略数学思想方法的魅力

在数学活动课上,根据学生掌握数学的程度,适当地安排介绍古今中外数学史上的一些名题。如向学生介绍中外数学家解决“幻方”的不同策略:杨辉法、罗伯法;介绍欧拉哥尼斯堡的“七桥问题”、牛顿的“牛吃草问题”等等。这些历史数学名题,因其精妙的解题思想与策略,向学生展现了数学的无穷魅力,将会深深地吸引着他们,启迪着他们的心智,激荡着他们的心灵。

案例1:勾股定理名证欣赏片段

如图1,△ABC 为一直角三角形,其中∠CAB为直角,在边 AB、BC 和 AC 上向外分別作正方形ABFG、BCED 和 ACKH,过点 A 作直线AL垂直于DE交DE于点L,交BC于点M,连接CF、AD。图1 欧几里得证明

这个证明巧妙地运用了全等三角形和三角形面积与长方形面积的关系来进行。不单如此,它更具体地解释了“两条直角边边长平方之和”的几何意义,这就是以ML将正方形分成BMLD与MCEL的两部分!这就是各种证明方法中最为著名的欧几里得证明法!

在这种证明方法中体现着一种很重要的思想方法(幻灯片演示:图2):

图2 动态演示欧几里得证明方法

本案例以勾股定理的证明为介绍内容,分面积法、拼拆法、剖分法、直接法四种典型的思考方法进行介绍。通过介绍历史上一些有名的证明方法,如:欧几里得证明方法及其动态演示、赵爽的弦图证法、伽菲尔德证明方法等等,引导学生在欣赏历史上的勾股名证时体味数学家思维的精妙,数学证明的灵活、优美与精巧,感叹数学的美!

在传统的勾股定理教学中,教师往往对证明方法一笔带过,而将重点放在定理的结论介绍与应用训练上,探究文化内涵也只是利用其“谁比谁早多少年”来对学生进行爱国主义教育。设计这样一堂“勾股定理名证欣赏课”,将多元文化引入数学课堂,我们就会发现“谁比谁早多少年”已经不是最重要的了,重要的是:数学是全人类共同的遗产,不同文化背景下的数学思想、数学创造都是根深叶茂的世界数学之树不可分割的一枝,从而消除民族中心主义的偏见,以更加宽阔的视野去认识古代文明的数学成就,同时,通过不同数学思想方法的对比,如介绍的各种方法中所涉及的进与退、分与合、动与静、变与不变、数与形、一与多等等的辨证思想,可提高学生数学创造性思维能力,并学会欣赏丰富多彩的数学文化。

在教学的过程中,可安排足够多的时间让学生在欣赏的基础上自己动手进行拼、补、凑的实践活动,亲自体验发现的过程,感受动手的乐趣。2.再现知识生产发展的过程

苏联数学教育家斯托利亚尔认为,数学发展史给我们提供了关于数学概念、方法、语言发展的历史道路的重要信息,它常常指示我们在学校教学中形成和发展的这些概念、方法、语言的途径。可见,数学教学应当充分利用数学史的知识,向学生展现数学知识的产生和发展过程。(1)揭示知识产生的背景

数学知识的产生与自然客观的需求是分不开的,它昭示着人类进步与发展的历程。向学生阐述知识产生的背景,能帮助学生更为深刻的认识与理解知识。如学习习近平方根时,让学生意识到人们对平方根进行计算时,往往不能正好得到整数的结果,这时就需要产生一种新的数——无理数。学生清楚地看到知识出台的原因,就能揭开数学神秘的面纱,消除学生对数学的畏惧感,使他们在内心深处亲近数学。(2)展示知识形成的过程

弗赖登塔尔认为:每一个学生都可能在一定的指导下,通过自己的实践来获得数学知识。教学中,教师要防止重结论轻过程现象的发生,要为学生提供一定的学习材料,鼓励学生通过自己的探索活动,对知识的形成过程建立清晰的表象,主动地完成知识的建构。如平行四边形面积计算的教学,教师可以为学生准备透明的方格纸和剪刀、直尺等学具,要求学生或者独立思考、或者小组合作,探讨面积计算的方法。有的学生通过数方格求出面积,有的通过剪、移、拼,将平行四边形转化成长方形求出面积。最后学生发现这两种方法其实质是相同的,都可以归结为底×高。(3)预示知识发展的前景

数学中前后知识间的联系十分紧密,先学的内容往往为后继学习作知识与方法上的准备。在教学中,教师要善于瞻前顾后,给知识的发展留有余地。如学习实数时,我们发现无论是有理数还是式或实数,加、减、乘、除运算是很重要的部分,而其学习方法在某种意义上讲存在着一定的规律,亦可加深学生的理解。

数学既是创造的,也是发现的,数学教学应当努力还原、再现这一发现过程,让学生经历知识产生、形成与发展的过程,对于充实他们的数学文化底蕴有着非常现实的意义。3.欣赏数学的美学价值

美学的价值不仅在于陶冶情操,提高素养,而且有助于开发智力,促进学生的全面发展。直线的刚劲平稳、曲线的对称柔和、波浪起伏的图象、黄金分割……正如数理哲学家罗素所说:“数学如果正确看待它,不但拥有真理,而且具有至高的美”。这种美正是数学家们将自己的劳动成果按他们的美学观以自己最满意的形式总结出来并献给人类的美,具有特殊的美学价值。4.渗透数学中的哲学理念

Bordas Demollin说:“没有数学,我们无法看穿哲学的深度;没有哲学,人们也无法看穿数学的深度;若没有两者,人们就什么也看不透。”相对而言,数学教材中的辨证因素比较隐蔽,这就需要教师首先要有“深挖”的意识,有意识地挖掘教材中的辨证因素,也就揭示了知识之间的本质联系。

第二篇:数学文化在小学数学教学中的渗透

数学文化在小学数学教学中的渗透

作者:毛玉华 发布时间:2008-10-31 08:28:50 来源:

翻开科学史我们不难看到,数学是从数数、测量等人类生活的实际需要中发展起来的,它一直融合在人们的日常生活与生产活动中。这可以说是数学文化发展的原始阶段。

数学发展至今,它已具有一般文化的三条准则,即:相关性、相容性和大众性。除此之外,更主要的方面是数学与一般人类文化比较所表现出来的特殊性,这也构成了数学文化的个性:即独一无二的语言系统、独特的价值判断标准、独特的发展模式以及对人类精神创造领域的影响。这又使数学自身构成了一种独立的文化体系,从而使得数学对象的人为性、数学活动的整体性以及数学发展的历史性充满了人文价值,也更能凸现数学的文化意义。尤其是科学高速发展的今天,知识的数学化愈加明显,越来越多的人意识到一门学科只有达到能够运用数学时才算是真正发展了,一项技术是否成熟的标志便是数学化的程度,现代高科技的核心便是数学,数学已成为人类理性文明高度的结晶。因此现代的人们时刻都能够、也应该感受到数学这一特殊的文化对我们社会发展的影响和贡献,这也必将影响到今天的数学教育。

在课程改革前的小学数学教学大纲和教材中,数学史主要起两方面作用:通过介绍中国古代数学成就进行爱国主义教育;通过提供少量“花絮”提高学生的学习兴趣。在新一轮小学数学教学改革中,《数学课程标准》中,数学发展史作为一种人类的文化传承,它的内容、思想、方法和语言是现代文明的重要组成部分。在中学及大专院校中,对数学文化研究十分广泛,尤其是中外数学史中一些理论性的研究,而在小学数学教学中的研究是个空缺。我校出了一个新课题,让数学文化从小学数学的教学中开始得到渗透,使学生了解数学知识的发现、发展、创新过程,并通过激励,鼓动学生树立“人人学习有价值的数学,人人都能获得必需的数学”,让数学不只作为计算的工具,而是作为每个人应有的素养,代代相传,一代

更比一代新。我们将在平时的数学教学中作出一些尝试。

一、树立“让数学史体现它的教育价值”的理念

数学史对于揭示数学知识的现实来源和应用,对于引导学生体会真正的数学思维过程,创造一种探索与研究的数学学习气氛,对于激发学生对数学的兴趣,培养探索精神,对于揭示数学在文化史和科学进步史上的地位与影响进而揭示其人文价值,有重要意义。

历史不仅可以给出一种确定的数学知识,还可以给出相应知识的创造过程。对这种创造过程的了解,可以使学生体会到一种活的、真正的数学思维过程,而不仅仅是教科书中那些千锤百炼、天衣无缝,同时也相对地失去了生气与天然的、已经被标本化了的数学。从这个意义上说,历史可以引导我们创造一种探索与研究的课堂气氛,而不是单纯地传授知识。这既可以激发学生对数学的兴趣,培养他们的探索精神,历史上许多著名问题的提出与解决方法还十分有助于他们理解与掌握所学的内容。

要求教师树立数学史的教育价值理念,这也为教师提供了一次学习的机会和发表见解的道场。教师查阅资料后,结合个人的现实意见,融会贯通在分析教材、编写教案之中。这些课前的准备为数学文化在课堂中的渗透作好了铺垫。

例如,我们在教学圆周率的来历时,如果只是考虑到“教给学生计算的本领”,那么告诉他们P=3.14便行。然而那样的数学课堂失去了童真和趣味,失去了数学文化的韵意。因此我们想分四层次设计:(1)古人计算p,一般是用割圆法。即用圆的内接或外切正多边形来逼近圆的周长。对于内接与外切演示性的作一解释,让学生理解正多边形的边与圆周长有什么关系。(边越多,就越接近圆)这与信息时代学生获取知识的途径与速度相矛盾。(2)出示“Archimedes用正96边形得到p小数点后3位的精度;刘徽用正3072边形得到5位精度;Ludolph Van Ceulen用正2n边形得到了35位精度。”再请学生发表你对前辈们获取知识的看法。(3)再出示关于P的计算公式的发现及计算机运用后的P计算史。(包括祖冲之在内的几十位圆周率的研究者及他们所创造的小数点后的位数)。(4)信息时代的计算更是惊人,你也能成为圆周率的研究者吗?

以上的教学体现出教师对圆周率计算史的了解,展现了P在数学史上走过的艰辛历程,显示了P在生活中的应用价值,更为学生对未来圆周率的发展留下了畅想的空间。

二、创设课堂教学情境,让数学的共性与个性并存

通过我们的课题研究,想证明数学不只是一些演算的规则和变换的技巧,它的实质内容是能够让人们终身受益的是思想方法,以提高全体公民在推理能力、转换能力等文化修养。为人体现数学是一种大众文化,又有独特的思想方法,我们要多做一些开拓性的工作,让数学问题走出封闭的体系,增加综合发展性和思维开拓性,改变呆板的单一题型,减少机械模仿,淡化技巧形式,增加探索性、开放性的情景问题的研讨。

如我们在教学《比例的意义》时设计了这样一个片段:出示一名模特与她的身材标准数,如此美的身材中,我们找到了一个比例。让学生体验从现实生活能找到数学可以研究的问题,这是一种数学学习方法:观察。

教师讲述:著名塑像--爱神维纳斯与女神雅典娜的雕像,她们下半身与全身之比都接近0.618。在自然界中,0.618也是美的重要规律。譬如,人体天生有自然美,极其奇妙的是,它的比例也符合0.618律!如今设计大师与艺术家们已经利用这一规律创造出了许多令人心醉的建筑和无价的艺术珍品。无怪乎德国天文学家开普勒称黄金分割为“几何学的一大宝藏”!更令人惊异的是:经研究发现管弦乐器在黄金分割点上奏出的声音最悦耳。还可以证明,科学实验中求某目标取值的最优点时,采用0.618法来选择,就可以用最少的实验次数达到目的,此法被称为0.618法或优选法。在学生感叹数学的奇妙时,教师出示:比例来历,请先眼望东方。中国比例算法出现很早,它产生于远古时的物物交换,那时候称它为“比率”或简称“率”。在我国最古老的数学专著《九章算术》中,有“粟米”、“衰分”、“均输”三章专讲有关比率的各种算法,包括了现在称作正比例、反比例、复比例、连锁比例、分配比例等形形色色比例问题。《九章算术》这样早就系统地介绍各类比例方法,当然被推为世界之最!

也许这些内容对学生不能留下什么样的印象,但如果请学生对同桌或自己的身体作一番测量,那么不论自己的身体比例美与否,学生对“黄金分割”这个“比”还会淡忘吗?这也就达到了我们注重从身边问题着手,从观察、测量、试算中得出的结论。艺术家又能把数学知识运用于服饰、雕塑甚至于音乐的设计中,可见数学与其它门类间的转换、融合与应用。

三、立足数学文化活动,提高学生学习兴趣

《数学课程标准》中关于数学教学活动是这样要求的:教师要向学生提供充分从事数学活动的机会,帮助他们在自主探索和合作交流过程中真正理解和掌握基本的数学知识和技能、数学思想和方法,获得广泛的数学活动的经验。学生的学习活动从课内延伸到课外,形式多样,活动改变了学生学习的方式,使学生乐意并有更多的精力投入到有研究价值、现实意义和探索性的活动中。用各种各样的活动,充分展示数学的美妙和神奇,引领他们体验数学、理解数学、运用数学,激发他们的创新意识,培养他们科学探索精神,启迪科学思维,开拓知识视野。

(1)举行数学家的故事演讲比赛。数学家的成长和数学思想形成中的曲折与艰辛以及那些伟大的探索者的失败与成功还可以使学生体会到,数学不仅仅是训练思维的体操,也不仅仅是科学研究的工具,它有着丰富得多的人文内涵,从而起到榜样的激励作用。

(2)编制数学文化报,举行“数学史话”抢答活动,让学生从查资料、图形美化、摘抄数学知识等工作中,了解数学文化悠久历史。

(3)开展“追寻数学家的足迹”实践活动,进行数学建模初级比赛。

如:某种规格的钢筋原材料每根长10m,1>,现需要该种钢筋长为4m的28根,长为1.8m的33根,问至少需要原材料几根?如何切割?

2>,如果需要该种钢筋4m的28根,3.5m的50根,2.4m的46根,1.8m的33根,问至少需要原材料几根?如何切割?

让学生建立钢筋模型进行探研、证明,使数学家们的思想精髓等以发扬。

(4)进行数学小论文评比。对知识的看法,对教学的方法,对学习方式,对知识未来的前景等发表小学生的见解,这也一定是别有一番意味的。

在数学文化的背景下学习,能够熏陶学生思维从事物的数量和空间形式的层面去认识世界,分析各种现象和问题,用数学的语言去表述、交流。进行数学处理,即以“数学的头脑”看待问题,发现规律,解决问题。这与数学化的思想不谋而合。

在数学文化的背景下学习,能吸引学生自主性地参与学习活动,促使他们通过动手实践、自主探索与合作交流,获得必需的数学。

在数学文化的背景下学习,能使学生感受数学美,提高他们的数学审美能力,促进他们人格个性、情感体验的全面和谐发展,提高每个人的数学涵养。

第三篇:中学数学教学中数学建模思想的渗透

中学数学教学中数学建模思想的渗透

摘要:新课程标准明确提出中学数学要讲背景、讲应用。我们的教学中不仅要教会学生数学知识,更要教会学生今后如何运用数学。于是,在平时的教学中,教师应培养学生的数学建模意识,加强学生在数学建模中的主体作用。关键词:数学建模;数学建模思想;素质教育;数学建模意识

作者简介:郑来兵,1977年生,任教于安徽省芜湖市第二中学,中学一级教师。

一、数学建模与数学建模意识

在实际工作中遇到的问题,完全纯粹的只用现成的数学知识就能解决的问题几乎是没有的。其中的数学奥妙不是明摆在那里等着你去解决,而是暗藏在深处等着你去发现。也就是说,你要对复杂的实际问题进行分析,发现其中可以用数学语言来描述的关系或规律,把这个实际问题化成一个数学问题,这就称为数学模型,建立数学模型的这个过程就称为数学建模。著名数学家怀特海曾说:“数学就是对于模式的研究”。所谓数学模型,是指对于现实世界的某一特定研究对象,为了某个特定的目的,在做了一些必要的简化假设,运用适当的数学工具,并通过数学语言表述出来的一个数学结构。数学中的各种基本概念,都以各自相应的现实原型作为背景而抽象出来的数学概念。各种数学公式、方程式、定理、理论体系等等,都是一些具体的数学模型。

举个简单的例子,二次函数就是一个数学模型,很多数学问题甚至实际问题(自由落体运动)都可以转化为二次函数来解决。而通过对问题数学化,模型构建,求解检验使问题获得解决的方法称之为数学模型方法。我们的数学教学说到底实际上就是教给学生前人给我们构建的一个个数学模型和怎样构建模型的思想方法,以使学生能运用数学模型解决数学问题和实际问题。由此,我们可以看到,培养学生运用数学建模解决实际问题的能力,关键是把实际问题抽象为数学问题,必须首先通过观察分析、提炼出实际问题的数学模型,然后再把数学模型纳入某知识系统去处理,这不但要求学生有一定的抽象能力,而且要有相当的观察、分析、综合、类比能力。学生这种能力的获得不是一朝一夕的事情,需要把数学建模意识贯穿在教学的始终,也就是要不断地引导学生用数学思维的观点去观察、分析和表示各种事物的关系、空间关系和数学信息,从纷繁复杂的具体问题中抽象出我们熟悉的数学模型,进而达到用数学模型来解决实际问题,使数学建模意识成为学生思考问题的方法和习惯。具体的讲,数学模型方法的操作程序大致上为:

??? 实际问题→分析抽象→建立模型→数学问题 ?↑↓ ???检验 ← 实际解 ← 释译 ← 数学解

二、在数学建模活动中要充分重视学生的主体性

提高学生的主体意识是新课程改革的基本要求。在课堂教学中真正落实学生的主体地位,让学生真正成为数学课堂的主人,促进学生自主地发展,是现代数学课堂的重要标志,是高中数学素质教育的核心思想,也是全面实施素质教育的关键。中学数学建模活动旨在培养学生的探究能力和独立解决问题的能力,学生是建模的主体,学生在进行建模活动过程中表现出的主体性表现为自主完成建模任务和在建模活动中的互相协作性。中学生具有好奇、好问、好动、好胜、好玩的心理特点,思维开始从经验型走向理论型,出现了思维的独立性和批判性,表现为喜欢独立思考、寻根究底和质疑争辩。因此,教师在课堂上应该让学生充分进行自主体验,在数学建模的实践中运用这些数学知识,感受和体验数学的应用价值。教师可作适当的点拨指导,但要重视学生的参与过程和主体意识,不能越俎代庖,目的是提高学生进行探究性学习的能力、提高学生学习数学的兴趣。

三、处理好数学建模的过程与结果的关系

我国的中学数学新课程改革已进入全面实施阶段。新的高中数学课程标准强调要拓宽学生的数学知识面,改善学生的学习方式,关注学生的学习情感和情绪体验,培养学生进行探究性学习的习惯和能力。数学建模活动是一种使学生在探究性活动中受到数学教育的学习方式,是运用已有的数学知识解决问题的教与学的双边活动,是学生围绕某个数学问题自主探究、学习的过程。新的高中数学课程标准要求把数学探究、数学建模的思想以不同的形式渗透在各模块和专题内容之中,突出强调建立科学探究的学习方式,让学生通过探究活动来学习数学知识和方法,增进对数学的理解,体验探究的乐趣。比如正方体截面切割的形状,用一个平面去截正方体,截面的形状是什么样的?

学习目标:通过想象和操作,探究正方体截面的形状。

问题串:

1.给出分类的原则(例如:按截面图形的边数分类)。按照你的分类原则,能得到多少种不同的截面?设计一种方案,找到截得这些形状截面的方法,并在正方体中画出示意图。

2.如果截面是三角形,你认为可以截出几种不同的三角形?

3.如果截面是四边形,你认为可以截出几种不同的四边形?

4.证明上面的结果。

5.截面多边形的边数最多有几条?请说明理由。

6.截面可能是正方形吗?可能有几种?画出示意图。

7.如果截面是三角形,其面积最大是多少?画出示意图。

8.你还能提出哪些相关的数学问题?

这个问题就可以根据不同的学生提出不同的要求,如:利用土豆、萝卜或橡皮泥通过切割实验进行研究;用透明材料制作一个中空的正方体,留出注水口,注入有色水,通过观察水面形状的方式进行实验研究;利用电脑或图形计算器。借助某些软件(如几何画板,Z+Z智能平台)进行模拟实验研究;空间想象;证明你的结论。

四、数学建模教学与素质教育

数学建模问题贴近实际生活,往往一个问题有很多种思路,有较强的趣味性、灵活性,能激发学生的学习兴趣,可以触发不同水平的学生在不同层次上的创造性,使他们有各自的收获和成功的体验。由于给了学生一个纵情创造的空间,就为学生提供了展示其创造才华的机会,从而促进学生素质能力的培养和提高,对中学素质教育起到积极推动作用。

1.构建建模意识,培养学生的转换能力

恩格斯曾说过:“由一种形式转化为另一种形式不是无聊的游戏而是数学的杠杆,如果没有它,就不能走很远。”由于数学建模就是把实际问题转换成数学问题,因此如果我们在数学教学中注重转化,用好这根有力的杠杆,对培养学生思维品质的灵活性、创造性及开发智力、培养能力、提高解题速度是十分有益的。学生对问题的研究过程,无疑会激发其学习数学的主动性,且能开拓学生的创造性思维能力,养成善于发现问题、独立思考的习惯。教材的每一章都由一个有关的实际问题引入,可直接告诉学生,学了本章的教学内容及方法后,这个实际问题就能用数学模型得到解决,这样,学生就会产生创新意识。

如新教材“三角函数”章前提出:有一块以O点为圆心的半圆形空地,要在这块空地上划出一个内接矩形ABCD辟为绿册,使其册边AD落在半圆的直径上,另两点BC落在半圆的圆周上,已知半圆的半径长为a,如何选择关于点O对称的点A、D的位置,可以使矩形面积最大?

这是培养创新意识及实践能力的好时机,要注意引导,对所考察的实际问题进行抽象分析,建立相应的数学模型,并通过新旧两种思路方法提出新知识,激发学生的求知欲,但不可挫伤学生的积极性,失去“亮点”。

这样通过章前问题教学,学生明白了数学就是学习、研究和应用数学模型,同时培养学生追求新方法的意识及参与实践的意识。因此,要重视章前问题的教学,还可据实际需要及学生实践活动中发现的问题,补充一些实例,强化这方面的教学,使学生在日常生活及学习中重视数学,培养学生的数学建模意识。

2.注重直觉思维,培养学生的想象能力

众所周知,数学史上不少的数学发现都来源于直觉思维,如笛卡尔坐标系、歌德巴赫猜想等,应该说它们不是任何逻辑思维的产物,而是数学家通过观察、比较、领悟、突发灵感发现的。通过数学建模教学,使学生有独到的见解和与众不同的思考方法,如善于发现问题,沟通各类知识之间的内在联系等是培养学生创新思维的核心。七年级的教材里,以游戏的方式编排了简单而有趣的概率知识,如转盘游戏,扔硬币来验证出现正面或反面的概率等等。通过有趣的游戏,激起了学生学习的兴趣,并了解到概率统计知识在社会中应用的广泛性和重要性。

3.灌输“构造”思想,培养学生的创新能力

“一个好的数学家与一个蹩脚的数学家之间的差别,就在于前者有许多具体的例子,而后者则只有抽象的理论。”我们前面讲到,“建模”就是构造模型,但模型的构造并不是一件容易的事,又需要有足够强的构造能力,而学生构造能力的提高则是学生创造性思维和创造能力的基础:创造性地使用已知条件,创造性地应用数学知识。

当然,数学建模在现在的中学数学教育中的地位和作用更加重要。但究竟如何在中学搞好数学建模活动,更好地发挥数学建模的作用,仍将是一个漫长而曲折的过程,是我们广大中学教师和教育工作者所思考和探索的问题。

参考文献:

[1]张思明.中学数学建模教学的实践与探索[M].北京:北京教育出版社,1998.[2]冯永明.中学数学建模的教学构想与实践[J].数学通讯,2000(4).[3]苏筱丽,杨首中,张述孟,高维宗.高中学生数学应用与建模能力的培养与探索[J].数学教学研究,2004(8)。

On the Penetration of Mathematics Modeling Ideas in Middle School Mathematics Teaching Zhang Laibing Abstract: New curriculum standards of mathematics in secondary schools has explicitly put forward that we should focus on the background and application while teaching maths.Now that mathematics is playing an increasingly important role,?our teaching?should not only teach students the mathematical knowledge, but also?teach students how to use mathematics.Thus, in the normal teaching, teachers should cultivate students’ mathematical modeling awareness and strengthen students’ subjective role in mathematical modeling.? Key words: mathematical modeling;mathematical modeling?ideas;quality education;mathematical modeling awareness?

第四篇:在中学数学教学中渗透数学史的教育

在中学数学教学中渗透数学史的教育

刘峰

摘要:数学史在中学数学教学中的作用是非常重要的。教师在教学过程中融入数学史的内容,可以帮助学生认识数学、形成正确的数学观;有利于培养学生正确的数学思维方式;有利于开阔学生视野,培养学生对数学的兴趣。传授数学史的一些知识也为德育教育提供了舞台。为了提高教学质量,加深学生对数学理论的认识。本文从历史和人文等角度分析了数学史在这方面的作用。通过数学名人轶事、千古名题激发学生求知欲。有助于学生更全面、深入地理解数学知识。

关键词:数学史 数学兴趣 知识框架 教育功能 数学史融入中学教学的提出 1.1 数学史融入教学的背景

数学是人类最久远的知识领域之一。从结绳记数到电子计算机的发明;从量地测天到抽象严密的公理化体系的建立,五千余年的数学历史长河中,重大数学思想方法的诞生与发展是数学史中最具魅力的题材。“数学史研究数学概念、数学方法和数学思想的起源与发展,及其与社会政治、经济和一般文化的联系”。丹皮尔(W.C.Dampier)曾经说过:“再没有什么故事能比科学思想发展的故事更有魅力了。”

《普通高中数学课程标准(实验)》全面规划了新时期高中数学的课程框架,明确提出:高中数学课程对于认识数学与自然、数学与人类社会的关系,认识数学的科学价值、文化价值,提高提出问题、分析问题和解决问题的能力,形成理性思维,发展智力和创新意识具有基础性的作用。那么,高中数学的课堂教学如何适应这些新的要求,使得学生能够更充分地认识到数学的科学价值以及人文价值呢? 法国数学家庞加莱(H.Poincare)曾经提出,数学课程内容应按照数学史内容的发展顺序展现给读者。我国著名的数学家徐利治也认为,数学哲学、数学史与数学教育的结合是教育改革的一个重要方向。数学教育家华东师范大学张奠宇教授也积极倡导,让数学史成为数学教育的有机部分。既然数学史走进中学数学课堂已经成 1

为一种共识,那么,数学史又应该以怎样的面貌出现在数学课堂之上,成为教学的一个有机成分呢? 1.2 数学史对数学教育的意义

《普通高中数学课程标准(实验)》提出,高中数学课程目标应该使得学生“了解概念、结论等产生的背景、应用,体会其中所蕴含的数学思想和方法,以及它们在后续学习中的作用。通过不同形式的自主学习、探究活动,体验数学发现和创造的历程;具有一定的数学视野,逐步认识数学的科学价值、应用价值和文化价值,形成批判性的思维习惯,崇尚数学的理性精神,体会数学的美学意义,从而进一步树立辨证唯物主义和历史唯物主义世界观。”而这些课程目标的达成单纯地依靠数学知识的传授学习及数学技巧的机械训练几乎难以实现,在数学课堂教学中,如果能穿插些相关的数学史,有证据表明,这对上述数学课程目标的实现具有积极的影响作用。

全面性数学课程目标的达成离不开数学史。数学课堂的教学也离不开数学史。本研究着眼于数学史走进中学课堂,力求探索其实现的具体途径。所要研究的基本问题就是,数学史应该以怎样的面貌出现在中学数学的课堂教学之中? 在本文中,所谓数学史走进中学课堂主要是指一种教学的具体途径,使得在数学课堂教学中适当地、恰如其分地渗透一些数学史的知识。比如:①在教学设计中融合一些数学史的知识;②充分利用数学教科书中有关插图、阅读自学、注释等内容,借题发挥“评述”相关的数学史知识;③开展与数学史相关的课题学习等三个方面。希望借此以提高学生数学学习的兴趣,丰富学生的数学视野,进而为学生更好地理解数学概念及结论逐步形成的过程,体验数学发现与创造的历史过程,体会蕴含其中的思想方法,提供一种“催化剂”。

1.2.1 数学教学的现实需要一些数学史

2003年对数学骨干教师作的问卷调查显示:①缺乏对数学史教育意义的深入理解。虽有教师曾经有意识的将数学史引进数学课堂,但并未充分认识到数学史深刻的数学教育价值,所写出的数学史在数学教学中的作用包括内容新颖、进行德育、有愉悦性、使课堂气氛活跃、引发学习兴趣等。②教师对数学史知识只有一些粗浅的了解;缺乏与课程内容相对应的数学史参考资料;对中国的数学家较为熟悉,对 2

国外的数学家知之甚少。③教师自觉运用数学史的意识不强。有一部分教师从未自觉地在教学中运用数学史,对教材中的阅读材料或不予理睬或安排学生自己阅读。④不知道如何运用数学史。教师普遍有使用数学史的愿望,但对数学史如何恰当的引入到数学教学中缺乏必要的认识,担心用不好会浪费时间。

1.2.2 有意义的数学教学需要一些数学史

当前数学教育还是“应试教育”主导着高中数学教学,无论是教材的编写还是具体的课堂教学,过于偏重演绎论证训练,课堂上讲的是逻辑论证,学生关注的是逻辑推理,忽视了定理发现发展过程,“掐头去尾烧中段”的教学方式依然盛行,这对培养学生的创新意识是极为不利的。

学校评价老师的标准是学生的考分,社会评价学校的标准是升学率的高低,导致教师的教学针对的是考试而不是学生数学素养的提升,针对评分标准过分强调得分细节,在教学中常常是只见树木不见森林;细节多,思想少,见不到本质;重视知识的学习和技能的培养,忽视情感态度方面的发展。

偶然的背后有着必然的联系,中国数学教育在优异成绩的背后存在着不和谐的一面,改变这种情形,除了要改革现行的教育评价体制外,教材的编写和教师教学观念的转变也是关键因素,而在教材编写和课堂教学中渗透数学史,引导学生关注数学概念、数学思想的发生发展过程,重视双基的同时关注学生情感态度的发展是改变当前数学教学现状的有效途径之一。

1.2.3 数学史走进中学课堂的价值

数学史的研究有三重目的:一是为历史而历史,即恢复历史的本来面目;二为数学而历史,既古为今用,洋为中用,为现实数学研究的自主创新服务;三是为教育而历史,既将数学史用于数学教育,发挥数学史在培养现代化人才方面的作用。

数学史对数学教学的作用主要在四个方面:①有利于帮助学生加深对数学概念、方法和思想的理解;②有利于帮助学生体会活的数学创造过程,培养学生的创造性思维能力;③有利于帮助学生了解数学的应用价值和文化价值,明确学习数学的目的,增强学习数学的动力:④有利于帮助学生树立科学品质,培养良好的精神。

1.3数学史融入中学数学教学的条件

数学史融入中学数学课堂教学必须做到以下条件:

第一,经常与一线教师接触,经常听课,了解一线教师、教学的现状; 第二,对中学的教材、教法、考试非常熟悉: 第三,对教育、教学的理论比一线教师要认识深刻; 第四,数学史理论研究人员接触很多,取得合作相对较易; 第五,经常进行教学研究活动,有利于不同学校教师之间的交流; 第六,进行教师培训,经常出去讲学,研究的成果有利于推广.

以上的条件可以看出应该以教研员为核心,组成数学史专家、数学教育家、数学教师的一个团队,合作解决数学史如何融入中学数学课堂教学. 数学史融入数学教学的重要性 2.1 数学史在数学教学中的地位

数学史是学习数学、认识数学的一门学科。人们要认识数学概念、数学思想和方法的发展过程,增加对数学学科的了解,建立数学的整体意识,就必须运用数学史作为补充和指导。数学史与数学哲学=科学哲学,与社会史、文化史的各个方面都有密切的联系。它们之间的内容涉及什么是数学、数学与人类思想的革新、数学与其他科学技术的关系、数学和社会进步等方面。数学与其他学科的联系不仅具有沟通文、理的性质,而且有助于深刻理解数学的文化内涵,对于培养文、理兼通,“学、才、识”兼备的数学专业人才有重要意义。“学、才、识”,即知识、能力以及见识和思想,其中“识”是引导知识和能力走向何方的根本性问题。如果数学教学只是停留在数学理论本身的学习上。甚至对数学理论的实质也没有深入探究,学生就不可能理解依托于数学知识体系之上的数学思想和信仰,不可能理解贯穿于数学研究活动中的科学精神(包括科学的实证精神、理性精神、批判精神)与数学的美感及鉴赏能力,不可能理解与数学的社会功能密切相关的伦理准则等数学文化底蕴,更不会形成“才”与“识”。因此,学习数学史是以“素质教育”为目标的数学教学的内在要求,它对于培养学生的人文主义精神以及数学观念、数学能力、数学整体意识有特殊意义。

2.2 数学史在数学教学中的作用

在数学教学中,结合教学内容,适时、适度、适量地运用一些数学史料,可以 4

激发学生的学习兴趣,启迪思维,帮助学生更好地理解数学。因此融数学史于数学教育之中是数学教育改革的一个重要方向。

2.2.1加深对数学理论的理解

数学史可以让学生认识数学发展的规律,从前人的经验教训中获取鼓舞和启示。一般说来,数学史不仅可以给出一种确定的数学知识,还可以给出相应知识的创造过程。对这种创造过程的了解,可以使学生体会到一种活的、真正的数学思维过程。历史可以引导我们创造一种探索与研究的课堂气氛.而不是单纯地传授知识。历史上许多著名问题的提出与解决方法还有助于学生理解与掌握所学的内容。

对于那些需要通过重复训练才能达到的目标,数学历史名题又可以使这种枯燥乏味的过程变得富有趣味和探索意义,从而极大地调动学生的积极性,提高他们的兴趣。对于学生来说,历史上的问题是真实的,因而更为有趣;历史名题的提出一般来说都是非常自然的,它或者直接提供相应数学内容的现实背景,或者揭示了实质性的数学思想方法,这对于学生理解数学内容和方法都是重要的;许多历史名题的提出及解决与大数学家有关,让学生感到他本人正在探索一个曾经被大数学家探索过的问题。或许这个问题曾难住过许多有名的人物,学生会感到一种智力的挑战。也会从学习中获得成功的享受。这对于学生建立良好的情感体验无疑是十分重要的。数学并不是一个静止的和已经完成的领域.而是一个开放性的系统.认识到数学正是在猜想、证明、犯误、修正错误中发展进化的。数学进步是对传统观念的革新,可以激发学生的非常规思维。

2.2.2 培养正确的数学思维方式

现行的数学教材都是经过了反复推敲,语言十分精练简洁。为了保持知识的系统性,把教学内容按定义、定理、证明、推论、例题的顺序编排,对数学知识的内涵,以及相应知识的创造过程介绍也偏少。这样虽然有利于学生接受知识,但容易使学生产生数学知识就是先有定义,接着总结出性质、定理,然后用来解决问题的错误观点。所以,在教学的过程中存在着这样一个矛盾:一方面,教育者为了让学生能够更快更好地掌握数学知识,将知识系统化;另一方面,系统化的知识无法让学生了解到数学理论的真实建立过程。影响了学生正确数学思维方式的形成。数学史的学习,可以让学生在学习系统的数学知识的同时,对数学知识的产生过程.有 5

一个比较清晰的认识,从而陪养学生正确的教学思维方式。譬如,传统的欧式几何的演绎体系是产生不了微积分的,它是牛顿、莱布尼兹在古希腊的“穷竭法”、“求抛物线弓形面积”等思想的启发下,经过创造得到的。而且在数学家们的不断补充、完善下.经过几十年才逐步成熟起来的。通过对这种创造过程的了解,使学生体会到一种活的、真正的数学思维过程.而不是单纯地接受教师传授的知识。在这种不断学习.不断探索,不断研究的过程中逐步形成正确的数学思维方式。

2.2.3 激发学生学习数学的动机

心理学理论认为.动机可分为两个部分:人的好奇心、求知欲、兴趣、爱好构成有利于创造的内部动机;社会责任感构成有利于创造的外部动机。兴趣是最好的动机。数学史中有很多能够培养学生学习兴趣的内容。主要有这几个方面:一是与数学有关的小游戏,例如巧拿火柴棒、幻方、商人过河问题等.它们都有很强的可操作性.作为课堂活动或是课后研究都可以达到很好的效果。二是一些历史上的数学名题,七桥问题、哥德巴赫猜想等,它们往往有生动的文化背景,也容易引起学生的兴趣。还有一些著名数学家的生平、轶事.比如说一些年轻的数学家成材的故事,《新课程标准》中提到的“从阿贝尔到伽罗瓦”,阿贝尔22岁证明一般五次以上代数方程不存在求根公式,伽罗瓦创建群论的时候只有18岁。还有的是许多出生贫穷卑微的数学家通过自己的艰苦努力,最终在数学研究上取得骄人成绩的例子。如19世纪的大几何学家施泰纳出身农家自幼务农,直到14岁还没有学过写字,18岁才正式开始读书,后来靠做私人教师谋生,经过艰苦努力。终于在30岁时在数学上做出重要工作,一举成名。如果在教学中加入这些学生感兴趣又有知识性的内容.定能消除学生对数学的恐惧感,增加数学的吸引力。

2.2.4 建立德育教育平台

首先,可以对学生进行爱国主义教育。现行的教材讲的大都是外国的数学成就.对我国在数学史上的贡献提得很少,其实中国数学有着光辉的传统,有刘徽、祖冲之等一批优秀的数学家.有中国剩余定理、祖瞩公理、“割圆术”等具有世界影响的数学成就,对其中很多问题的研究也比国外早很多年。当然,现阶段爱国主义教育又不能只停留在感叹我国古代数学的辉煌上。从明代以后中国数学逐渐落后于西方,20世纪初,中国数学家踏上了学习并赶超西方先进数学的艰巨历程。在新 6

时代的要求下.除了增强学生的民族自豪感之外,还应该培养学生的“国际意识”,让学生认识到爱国主义不是体现在“以己之长,说人之短”上,在科学发现上全人类应该相互学习、互相借鉴、共同提高,我们要尊重外国的数学成就.虚心的学习,“洋为中用”。

其次,可以引导学生学习数学家的优秀品质。任何一门科学的前进和发展的道路都不是平坦的.无理数的发现,非欧几何的创立,微积分的发现等等这些例子都说明了这一点。欧拉3l岁右眼失明.晚年视力极差最终双目失明。但他仍以坚强的毅力继续研究,他的论文多而且长。以致在他去世之后的lO年内,他的论文仍在科学院的院刊上持续发表。对那些在平时学习中遇到稍微繁琐的计算和稍微复杂的证明就打退堂鼓的学生来说,介绍这样一些大数学家在遭遇挫折时是如何执著追求的故事。对于他们正确看待学习过程中遇到的困难、树立学习数学的信心会产生重要的作用。

第三,可以提高学生的美学修养。能欣赏美的事物是人的一个基本素质.数学史的学习可以引导学生领悟数学美。很多著名的数学定理、原理都闪现着美学的光辉。例如毕达哥拉斯定理是初等数学中大家都十分熟悉的一个非常简洁而深刻的定理。有着极为广泛的应用。两千多年来,它激起了无数人对数学的兴趣,意大利著名画家达芬奇给出过它的证明。1940年,美国数学家卢米斯在所著《毕达哥拉斯命题艺术》的第二版中收集了它的370种证明,充分展现了这个定理的无穷魅力。另外,在感叹和欣赏几何图形的对称美、尺规作图的简单美、i角公式的统一美、非欧几何的奇异美等,可以形成对数学良好的情感体验,数学素养和审美素质也得到了提高,这是德育教育一个新的突破口。

2.2.5 鉴过去而知未来,感悟数学与社会

在过去的数学课程中很少涉及数学与社会的内容,除了数学书上一些数学应该题外,似乎看不到数学与社会有什么密切联系。新课标教材试图使学生对数学与社会的关系的认识方面做出努力。数学的发展与社会的进步息息相关,互相促进。一方面,数学的发展依赖于社会环境,受社会经济、政治和文化等诸多因素的影响;两一方面,数学的发展又反过来对人类社会的进步起推动作用,不管是物质文明还是精神文明。

对物质文明的影响:数学对人类物质文明的影响,突出的反映在它与能够改变人类生活方式的产业革命上。人类历史上有三次重大的产业革命,这三次产业革命的主体技术都与数学的新理论、新法方法的应用有直接或间接的联系。牛顿和莱布尼茨发明的微积分作为一种强有力的新工具,推动了以机械运动为主题的17、18世纪整个科学技术的高涨,成为18世纪下半叶开始的第一次产业革命的重要先导。19世纪60年代,第二次产业革命开始,这次产业革命发电机、电动机以及电气通信为标志,这些技术当然依靠了电磁理论的发展,而电磁理论的研究是与数学分析的应用分不开的。第三次产业革命发生在上世纪40年代,主要以电子计算机的发明使用、原子能的利用以及空间技术、生产自动化等为标志。这这些技术发展的每一个关头都记载着数学家的不可磨灭的功勋。

对精神文明的影响:作为教授数学的教师,学生或者你自己是否提出过这样的问题:我们为什么学数学?对于这个问题你是怎样思考和回答的?有些教师会回答,我们所学习的数学是有用的,小到我们个人生活中有些问题需要用到数学知识,大到计算机技术、自动化技术、航空航天,军事等等领域都要应用数学。这样的回答无疑是正确的,但却并不全面,它只提到了数学的两个作用的一个作用。

数学有两大作用,一个是工具作用,像现实问题到应用数学这是它的工具作用,也就是上述的对物质文明所起的作用;另一个作用就是人文作用,也就是对人类的精神文明所起的作用,数学对人类精神文明的影响极为深刻。某种程度上,对于大多数人来说数学的人文作用比其工具作用更具意义。想一想,绝大多数的学生未来都不会从事与数学有关的工作,对这些学生来说小学的四则运算几乎就足够他们应付日常的生活问题了,甚至连开方都用不到,如果仅从学以致用的角度来看,他们从小学到高中要学习12年的数学,不是浪费生命吗?事实上并非如此。数学本身就是一种精神,一种探索精神。这种精神包含的两个要素,即对真理和完美的追求,千百年来对人们的思维方式、教育方式以及世界观、艺术观都有着毋庸质疑的影响。数学对人类精神文明的意义,也突出地表现在历次重大思想革命的关系上。由于其不可抗拒的逻辑说服力和无可争辩的计算精确性,数学往往成为解放思想的决定性武器,尤其在文艺复兴之后科学与神学的斗争中表现的更为突出。

中学数学课程中,对数学知识本身的学习还不足以使学生感受到数学与社会之 8

间的深刻的关系,为此要在数学课程中加入一些数学史的内容,当然,教材中的这些内容仅仅是冰山一角,教师应该应该提高自己对数学发展历程的了解,只有这样才能更好地促进数学教学。

总之数学史对于揭示数学知识的现实来源和应用.对于引导学体会真正的数学思维过程,创造一种探索与研究的数学学习气氛.对于激发学生对数学的兴趣,培养探索精神.对于揭示数学在文化史和科学进步史上的地位与影响进而揭示其人文价值,都有重要意义。国内外在教学中融入数学史的成果 3.1 国外的研究成果

国际上对数学史在数学教育中的应用的相关研究和实践操作已经有了相当程度的发展.1998年4月20日至26日,在法国马赛附近luminy镇,举行了由国际数学教育委员(ICMI)发起的“数学史在数学教育中的作用”国际研讨会.此次会议的主题是数学文化,要求数学教学充分反映数学的文化底蕴,从课程内容、概念形成、证明方法、习题配置等各个方面,全方位地使数学史融入、丰富和促进数学教学.

3.1.1 数学史融入数学教学行动研究的成果

融入的层次

对于将数学史融入数学教学有很多片面的理解,最普遍的是将其理解为在数学课堂中讲点数学史以提高学生的兴趣,显然这只是数学史应用的较低层次.教师应用数学史至少可以分为三个层次:

(1)说故事;

(2)在历史的脉络中比较数学家所提供的不同方法,拓宽学生的视野,培养全方位的认知能力和思考弹性:

(3)从历史的角度注入数学活动的文化意义,在数学教育过程中实践多元文化关怀的理想.

融入的过程

将数学史融入数学教学并不是在教学中插入几个历史故事那么简单,融入过程一般包括以下几个阶段:

(1)学习历史资料;

(2)选出适合课堂教学的话题;(3)分析课堂需要:(4)制定课堂活动计划;(5)完成方案;(6)对活动的评价.

教学不一定完全遵循发明者的历史足迹,而是要经过一定的改良,符合学生的认知,这样才能更好突出历史过程,引导学生思维.

融入的形式

数学史融入数学教学有隐性和显性两种形式.隐性融入是指根据历史对教学内容重新设计和加工,制作适用于教学的“历史套装”,在隐性融入过程中,数学史扮演的角色是担当教学设计的指南,因为“数学史并非最终目的,而是通过数学史的途径以达到教学目的”.

显性地融入数学史旨在“描述数学发展的进程”.它的两种错误倾向,首先是如果教师只提供给学生有限的历史片段,就可能造成学生对数学发展过程的错误或片面理解.当前的不少数学教材,表面上看起来注重数学史的应用,但大多数只局限于在每一章节的后面增加几个历史注解,如数学家小传、个别概念的发展历史等,这实际上势必导致教师将数学史与数学课程割裂开来,甚至认为将数学史融入数学教学与日常课堂教学背道而驰.另一个错误倾向是“脱离数学史融入数学教学的目的,将融入数学史转化为数学史教学”.这种做法的直接结果是让学生感到数学史只不过是新增加的考试内容而已,如此以来,恐怕连“激发学生的兴趣”这一作用也会消失殆尽.

融入的途径

在具体的教学过程中,将数学史融入数学教学有很多做法,这取决于教师的信念、教学观、课程内容、历史资源等诸多因素,已有的文献也提供了很多成功的经验,包括使用传记、游戏、历史调查、本地历史考察、历史家庭作业、历史命题、参观、观看影视作品甚至戏剧表演.

John Fauvel在《数学学习》上编辑了一期教学中如何应用数学史的专刊,其中 10

列举了应用数学史的12种不同的具体做法.本文对各种做法进行了概括,提出了应用数学史的8种具体方法和途径:

(1)在教学中穿插数学家的故事和言行;

(2)在讲授某个数学概念时,先介绍它的历史发展;

(3)应用数学历史名题讲授数学概念,根据数学史上典型的错误帮助学生克服学习困难;

(4)指导学生制作富有数学史趣味的壁报、专题研究、剧本、录像等;(5)应用数学历史文献设计课堂教学:(6)在课堂内容里渗透历史发展的观点;(7)以数学史做指引设计整体课程;(8)讲授数学史的课.

3.2 国内的研究成果

虽然国内外对数学史所具有的教育价值能够在理论上达到共识,但如何将数学史融入数学教学中,我国在这方面研究处于探索阶段.张奠宙教授认为应用数学史于数学教学有助于将数学的“学术形态”转化为“教育形态”,并且提出了应用数学史将数学的“学术形念”转化为“教育形态”的三个途径:

(1)揭示数学发展的规律,形成正确的数学观:

(2)反朴归真,揭示数学发展的过程,并使之适合今天的课堂教学;

(3)提供真实的历史材料,包括原始问题、原始数据、原始过程、增强真实感、体现数学的人文精神.

这三点不仅指出了数学史融入数学教学的任务,也为数学史的具体运用指明了方向.

罗腾根在《谈中学数学中的数学史教学》对数学史的教学原则和数学史的教学方法进行了论述,数学史的教学原则有: 准确性原则、交融性原则、可接受性原则.数学史的教学方法有以下四点:

(1)在新授课进行知识探求时,作简短的数学史料的插话;(2)在解题教学中贯穿数学史料;(3)举办数学史讲座或报告会;

(4)组织兴趣小组,课外搜集、阅读、研究数学史料.

上海师范大学数学系陈跃老师在《中学数学应用数学史实教学的一些建议》一文中给出了关于三角恒等式的入门教学和用简化乘除的问题引入对数的概念的具体建议.

华东师范大学数学系汪晓勤老师在数学史如何融入数学教学方面做了不少的研究,在《数学通报》发表了“数学史如何融入中学数学教材”,在《中学教研》上发表了“HPM视角下的等比数列教学”,《中学数学杂志》发表了“几何视角下的和角公式”等.

浙江师范大学数理学院朱哲老师在数学史如何融入数学教学方面也有自己深刻的看法,他在《中学数学》发表了“数学教育目的的深化和拓展:数学史的视角”,在《中学教研》发表了“从理论到实践:数学史融入数学教学”,在《中学数学教学参考上》发表了“一节基于数学史的教学课例:正四棱台的体积公式”,在《中学教研》上发表了“等比数列前n项和的教学设计及其分析”等.

从以上文献本研究者可以看到,国外对于数学史如何融入数学教学的研究,不论从理念上还是从实践上都达到了很高的程度,我国香港和台湾地区的有关学者在HPM领域的活动相当活跃,做了很多出色的工作,但大陆HPM研究起步很晚,虽然有很多学者大声呼吁“应该讲点数学史”,但探讨如何做的研究明显偏少. 数学史融入教学的一些策略

数学史的确值得引进数学课堂之中.结合数学史到数学教育中的问题, 也一直是国际数学教育界备受关注的研究课题.20 世纪70 年代, 数学史与数学教育关系(HPM)就已成为西方的一个学术研究新领域,美国学者的有关研究、论述和大力提倡是该领域创立与深入发展的重要推动力量.长期以来,虽然人们已认识到数学教学中融入数学史的许多重要意义, 并在教学实践中有所行动,但其困难和问题的存在也是显然的.其中一个显著的困难和问题就是, 数学教学中需要采取哪些教学策略来融入数学史呢?可以说,这个问题目前还不为大多数的教师所充分认识和理解.在数学史融入数学教学的过程中,一般来说,最常遇见的困难就是如何对材料适 12

当地剪裁, 使其与课程主题融合,以达到数学史的利用能自然、协调,不至于过分突兀,这应是我们追求的最佳效果.要达到这个目的, 那就要求教师在教学活动中,必须注意结合教学实际和学生的经验与体验,依据一定的目的,对数学史资源进行有效的选择、组合、改造与创造性加工, 使学生容易接受、乐于接受, 并能从中得到有益的启迪.尽管数学教学中,数学史的利用随着施教者的不同和材料的不同,所采取的形式各异,总结出以下几种策略。

4.1 故事策略

虽说数学史不等于数学故事,但是,数学家或数学界的遗闻佚事, 不仅能大大激发学生的学习兴趣,而且对学生的人格成长还富有启发作用.譬如,我国著名数学家陈景润, 就是在上中学时, 听了他的数学老师沈元向学生介绍了, 哥德巴赫猜想这一难倒无数数学家的难题后, 其心灵受到了震撼,点燃起了他攀登高峰、摘取桂冠的热情, 从而他一生醉心于数学, 并取得了令世人瞩目的成绩.再如, 十八世纪法国女数学家苏菲姬曼, 就是受到阿基米德故事的“煽动”, 迷上数学而终生无怨无悔.据说, 苏菲童年时正值法国大革命发生,为了排遣难耐的孤独和寂寞, 遂被数学史家莫度西亚的《数学史》所记载的阿基米德传奇所吸引.相传,阿基米德正沉醉在一道几何问题时,对已经陷城的罗马士兵浑然未觉, 就莫名其妙地被杀死了.这个悲剧让百无聊赖的苏菲神醉心痴,她想几何学若真有这种魅力,那真的值得探索一番了.于是,她终于走上了数学研究的不归路了.说故事的目的就是要设计一个教学情景,这个教学情景主要是能引起学生的学习动机与兴趣.同时,也可利用故事情景引出学生已有的数学概念,或是借故事情节引入要教的数学概念,也可以利用故事情节的铺设, 呈现给学生想要解决的问题等.4.2 方法比较策略

著名科学家巴甫洛夫指出:方法是最主要和最基本的东西.一切都在于良好的方法,有了良好的方法,即使是没有多大才干的人也能作出许多成就.如果方法不好,即便是有天才的人也将一事无成.数学教学必须要使学生明白,任何方法仅仅是许许多多的方法之中的一个, 其中有许多你可能联想都未曾想过.那种始终认为自己是最正确的、肯定自己的思维都比别人的要高明,肯定没有其他更好的选择的行为,这些都是自负的表现.而自负是思维的重大过失,它会扼杀真正的思维.13

事实上,数学教学中涉及的许多问题,从它的历史到现在,经过数代数学家们的不懈努力,大都产生过不少令人拍案叫绝的各种解法.如勾股定理,就有面积证法、弦图证法、比例证法等300 余种;求解一元二次方程, 历史上就有几何方法、特殊值代入法、逐次逼近法、试位法、反演法、十字相乘法和公式法等;求不规则图形的面积,历史上也有德漠克利法、穷竭法、割圆法、平衡法、开普勒法和沃利斯法以及现代的微积分方法.通过搜集比较历史上的各种不同方法之后, 不仅能使学生更好地领会每种方法的内在本质,而且能启发学生,这对培养知识面宽、有能力、有信心、灵活多变的人大有帮助.4.3追踪历史起源策略

数学固然起源于人类对日常生活现象的观察,但它决不简单, 有一定的难度, 需要时间去体验、把玩并体会它的意蕴.譬如无限的概念,“向人类头脑提出的挑战,激发了人类的想像力,是思想史中任何其他单个问题都无法比拟的.无限显得既生疏又熟悉,有时超出了我们的领悟能力,有时又自然而易于理解,在征服它的过程中,人也砸碎了将自己束缚在地球上的镣铐.而为了实现这一征服, 需要调动人的一切能力,——人的推理能力,诗一般的想像力以及求知的渴望.”①再如代数符号的产生,代数符号早期是没有的,人们使用文字代替,到了古希腊人们才开始用单词表示,中世纪才开始用单个字母表示.再后来人们才用特殊的字符来表示, ?每一次的演进,都凝聚了数学先贤们大量的心血和智慧, 都充满了古代数学家们的神思技巧;还有函数概念的发展,从笛卡尔给出最简单的函数概念出发, 经莱布尼兹、贝努利、欧拉、柯西、黎曼、狄利克雷、维布伦等人之手, 一步一步的发展,其间经历了大约六七次扩充,才形成了我们今天看到的函数概念.追踪历史起源,就是要引导学生去揭示或感受知识发生的前提或原因、知识概括或扩充的经过以及向前发展的方向,引导学生在重演、再现知识发生过程的活动中,内化前人发现知识的方法和能力.使学生在掌握知识的同时,还能占有镌刻于知识产生中的认识能力,这种认识能力正是构成创新思维能力的核心.4.4 揭示思维过程策略

将数学研究中的思想和方法的要点原原本本地告诉学生,引导青年学生沿着科学的艰险道路作一次富有探索精神的、充满为真理而斗争的崇高动机的旅行, 使学 14

生充分领略以前数学大师们的灵感,承受他们的启迪,可以从中学到他们的策略和经验等.譬如, 讲数学的抽象性时, 就可以原原本本地向学生展示欧拉解决七桥问题时的思考过程,或是介绍牛顿发明万有引力定律时,关于把地球、月球抽象为质点来处理的曲折过程;讲反证法时,可以向学生详细叙述伽利略是如何更正延续1800 多年的,亚里士多德关于物体下落运动的错误断言的;讲类比时,可以向学生全面介绍自然数平方的倒数之和问题的产生背景、当时的情形及欧拉解决该问题时的奇思妙想等;结合几何知识的学习,可以向学生揭示历史上有关几何第五公设的、令一代又一代数学家忙碌了二千多年的、各种各样的思考过程及最终的解决办法.让数学史曾闪烁过光芒的火花,重新在学生的心中点燃。

前人的成功和失误,都是后人聪明的源泉.数学史可以将逻辑推理还原为合情推理, 将逻辑演绎追溯到归纳演绎.通过挖掘历史上数学家解决问题的真谛,学生不仅可以学到具体的现成的数学知识,而且可以学到“科学的方法”,开拓学生的视野,使学生更具有洞察力.结论及建议 5.1 研究结论

5.1.1 数学史融入中学课堂教学有利于教师对文化理念的落实

数学新课程的基本理念是:全面提高学生的数学文化素质,以提高一般科学素质,增进道德品质修养,形成和发展数学品质.理念的实现,可以通过将数学史的史学形态转化为教育形态,通过数学史融入中学课堂教学,来实现文化理念的落实.从本课题研究来看,数学史融入中学课堂教学已经成为课题实施教师,乃至一些数学教师的自觉行为,现在,我们经常会听到数学史融入的课,这些都表明了数学史融入中学课堂教学的行动研究是将文化理念的落实在课堂教学中的一种非常有效的途径.

5.1.2 数学史融入中学课堂教学促进了教师对教育目标的理解

在数学史融入中学课堂教学的行动研究中,首先要学习课程标准,学习新的教育理论,这些使研究者对数学的价值和数学的教育目标有了新的认识.数学的价值,既有实用价值一提供了一种解决数学内社会生活中各种问题的有利工具;又有形式 15

训练的价值一提供了一种思维的方式和方法;还有着文化价值~提供了一种价值观,倡导一种精神,它表现为数学念在入的观念以及社会的观念的形成和发展中的作用.知识型的数学教育看重数学的实用价值;能力型的数学教育看重的是数学的能力训练价值:文化型的数学教育则在注意到数学教育的实用价值和形式训练价值的同时特别看重数学的文化教育价值.

不同的价值必然追求导致不同的教学目标.仅注重教学内容的使用价值,只会将知识的理解、技能的掌握作为教学目标的主体;注重数学对思维能力训练的价值,就会将培养思维能力作为教学目标的重点,突出过程与方法的目标纬度;只有在知识、能力并重的同时,还能够注意到数学的文化教育的价值,那么在制定教学目标时才真正能够将情感、态度、价值观落到实处。

5.1.3 数学史融入中学课堂教学加深了教师对教学内容的研究

数学史融入中学课堂教学的行动研究,目的不是在形式上,而是通过教师对数学史的研究,对教学内容的来龙去脉有了深入的理解,达到加深对课程的理解,也使得教学前后联系、融会贯通,浑然一体.

例如案例《正弦定理》,在没有研究数学史以前,对该定理的理解只认识到两个层次:

一是从转化的角度看,正弦定理是实现边角互化的一个工具;

二是从方程的角度看,正弦定理中含有七个量,除给定三个角外,一般情况下可知三求四.

在研究三角函数的数学史后,发现三角函数在历史上大都来源于几何,于是就思索正弦定理的几何背景是什么? 通过研究发现,正弦定理是对“大边对大角,大角对大边”的数量化解释.于是对定理的认识上升了一个层次,正弦定理是将几何问题转化为代数问题,是沟通代数和几何的桥梁,体现了几何与代数的统一.

5.1.4 数学史融入中学课堂教学提高了教师对教育理论的应用

数学史融入中学课堂教学的行动研究是把数学史融入课堂教学看成一种教学现象,用行动研究的理论来研究这种教育现象.在研究的过程中,本研究者学习了行动研究的理论,并用行动研究的理论指导对数学史融入课堂教学的指导,在实践的 16

过程,积累大大量的问题,通过这些问题的解决也促进了对行动研究理论的重新认识,提高了对教育理论的应用.

例如在《等差数列前n项和》案例研究中,用到了自然数从l加到100,少年高斯的数学思维:1+100=2+99=„„=49+52=50+51=101,101×50=5050,但缺乏对高斯思想的深入挖掘,随着对数学史的学习和研究,进一步研究高斯思想,发现以下结论:

(1)思维的变通性——追求算法简单;(2)思维的直觉性——数字内在和谐;(3)思维的概括性——寻找普遍规律;

这是多么精美的数学思维——加法向乘法的转化,因此,案例可以进一步发展,可以进一步深化.

5.2 研究建议

5.2.1 教师应加强数学史的学习与研究

在数学史融入中学课堂教学的行动研究中,发现大部分教师并不是不接受新的教育理念,也不是不愿意通过数学史的融入落实文化渗透的理念.而是由于数学史的知识匮乏导致理念难以落实,因此数学教师应注意多方学习数学史知识,多方研究数学史.

对数学史的学习研究可以分为以下三个层次:了解性学习、掌握性学习、研究性学习.

第一层次要求知道数学发展的概况,起过重要作用的数学家,影响深远的数学思想、方法等.

第二层次可以从数学史中适当提取相关内容,用于数学研究、教学、学习之中. 第三个层次以文献资料为线索,研究不同时期数学发展、数学家活动、数学思想、方法的进展等,并对数学的发展趋势提出预见性分析.

从中学数学的要求出发,中学数学教师应具有的数学史素养,属于第二层次.

5.2.2 教师应加强数学史的长期融入与渗透

数学教育是一项有目的、有计划、有组织的社会实践活动.它以传授知识和培养人才为宗旨,以促使社会进步、科学技术以及数学科学的发展,它是整个社会教 17

育的一部分.

新一轮基础教育数学课程改革将科学精神和人文精神统一于课程的“文化内涵”之中,强调人的科学素养和入文修养的辩证统一,致力于科学知识、科学精神和人文精神的沟通与融合.课程也关注到数学史对数学文化教育的意义,但文化的渗透靠不是一天、一学期、一年的渗透就能实现,而是一个长期的过程.只有长期加强数学史的文化渗透,对发展学生的文化素养才能起到应有的作用.

5.2.3 教师应加强数学史融入方式的研究与总结

数学史如何融入到课堂教学中目前虽然总结出六个方面,但还不够全面和深入.因此需要数学教师在教学中充分认识数学史的作用,全面认识数学史的意义.并且深入挖掘数学史的教育要素,不断地开发、设计、反思和总结,把数学史的史学形态转化为教育形态,再转化为可操作的教学形态,最后应用于具体的数学教学中.把数学史融入到课堂教学落到实处.

5.3 研究缺陷

数学史融入中学数学课堂教学的行动研究目前只从课堂教学设计的角度进行研究,该研究表明数学史融入中学数学课堂教学部分教师已把它做为一种自觉行为,但该研究没有从学生的角度进行跟踪,看看学生的学习和思维发生怎样的变化,这些将是该研究的后续内容.

参考文献

[1]中华人民共和国教育部制定.普通高中数学课程标准(实验稿)[M].北京:北京师范大学出版社,2003,4:1—28.

[2]中华人民共和国教育部制定.全日制义务教育数学课程标准(实验稿)跚].北京:北京师范大学出版社,2001,7:1—8.

[3]全日制普通高级中学教科书(必修)数学第一册(上)[M].北京:人民教育出版社,2006:105-137.

[4]全日制普通高级中学教科书(必修)数学第一册(下)[M].北京:人民教育出版社,2006:34-39.

[5]全日制普通高级中学教科书(必修)数学第一册(下)[M].北京:人民教育出版社,2006:129—139.

[6]全日制普通高级中学教科书(必修)数学第二册(上)[M].北京:人民教育出版社,2006:92—103.

[7]张苍等辑撰,九章算术[M].四川:重庆大学出版社,2006:217—245. [8]欧几里得,几何原本[M].北京:人民日报出版社,2005:3—6.

[9]石中英,王卫东,王妙函,行动研究[M].北京:教育科学出版社.2003,6. [10]汪晓勤,中学数学中的数学史[M].北京:科学出版社.[11]张奠宙等,数学教育导论[M].北京:高等教育出版社.[12]张奠宙等,数学史选讲[M].上海:上海科学技术出版社,2000:56-89. [13]李文林,数学史概论[M].北京:高等教育出版社,2000:5—25. [14]李文林,数学史与数学教育[M].北京:科学出版社,2004:178-191. Abstract: The history of mathematics in secondary school mathematics teaching role is very important.Teachers in the teaching process into the history of mathematics content, can help students to understand mathematics, the formation of a correct mathematical concept;help students correct mathematical way of thinking;help students broaden horizons, develop student interest in mathematics.Some of the knowledge to teach the history of mathematics also provides the stage for moral education.In order to improve 19

the quality of teaching to enhance students understanding of mathematical theory.This article from the perspective of history and humanities, the history of mathematics in this role.By mathematical Mingrenyishi, ages were questions to stimulate students intellectual curiosity.Help students a more comprehensive, in-depth understanding of mathematical knowledge 20

第五篇:在中学数学教学中如何进行德育渗透

在中学数学教学中如何进行德育渗透

【摘要】本文从德育教育势在必行出发,根据数学教学的特点,对数学教学的德育功能及如何在数学教学过程中进行德育教育作了一些探讨。

【关键词】数学教学;德育;数学教学中的德育教育

数学教学中德育渗透,就是将德育本身的因素与数学学科所具有的德育因素有机地结合起来,使德育内容在潜移默化的过程中逐步内化为学生个体的思想品德。在全面贯彻新的课程标准,全面提高学生素质的今天,要使学生具有爱国主义、集体主义精神,遵守国家法律和社会公德,逐步形成正确的世界观,人生观,价值观,必须重视德育教育,这里我结合自己的教学实践,谈谈如何在数学教学中渗透德育的几点做法。

一、教师的人格素质是学科渗透的关键

人格就是人的品格,人的尊严,人的立身之本。对于中学阶段的学生来说,这一时期正是他们长身体、长知识的最佳时期,同时也是他们正确理想、信念、人生观、价值观初步形成的重要时期,抓住这一阶段,在教学中,通过对一些数学人物的讲述,尤其是对他们人格及其人格力量对后世所产生的影响的分析说明,使学生在潜移默化中受到启发,并循序渐进塑造健全的人格。如在数学课的教学中,为塑造学生坚持真理的崇高品格。我讲了古希腊学者亚里士多德的“我爱我师,我更爱真理”。欧几里德在临死时还在高呼:“不能征服我,让我解完这道几何题”。其热爱科学的牺牲精神无不令我们广大学生感到震撼,并激发他们追求真理,勇于实践的热情。

CEO是一个对学生极具诱惑力的词,这些人身上闪耀的人格魅力比他们所拥有的外显的财富和地位更具有吸引力,他们所拥有的高情商比他们的智商更具魅力。学生们并不是不要道德,他们拒绝的是姿态老高、面目可憎的道德说教。

教师的人格品行一直作为一个重要的教育因素,在教育的过程中潜移默化地发生着作用。“学为人师,行为规范。”要照亮别人,首先自己身上要有光明;要点燃别人,首先自己心中要有火种。孔子也说过:“其身正,不令而行。其身不正,虽令不从”,如果教师没有高尚的品德,那么就不能教育出具有良好品德的学生。学生希望他们的老师不仅是教师、学者、还是长辈、朋友;不仅要有广博的知识,还要有高尚的人格及不断进行的创新精神。一个好老师,不仅对学生有学习上的影响力,而且更重要的是具有人格上的感召力。师德高尚,就是一部生动的人生教科书,学生受其影响是潜移默化的、深刻的、终生受益的。因此,教师要做到言传身教,为人师表,是学科渗透的关键。

教师自身的形象和教师体现出来的一种精神对学生的影响是巨大的,也是直接的。教师的板书设计、语言的表达、教师的仪表等都可以无形中给学生美的感染,从而陶冶学生的情操。比如,为了上好一堂数学课,老师做了大量的准备,采取了灵活多样的教学手段,这样学生不仅学得很愉快,而且在心里还会产生一种对教师的敬佩之情,并从老师身上体会到一种责任感,这样对以后的学习工作都有巨大的推动作用。

二、充分挖掘教材中的德育素材

在数学教材中,大部分思想教育内容并不占明显的地位,这就需要教师认真钻研教材,充分发掘教材中潜在的德育因素,把德育教育贯穿于对知识的分析中。

(一)、以中国数学的光辉历史和杰出成就,激发学生的民族自豪感和爱国主义思想,爱国主义教育是德育的重要方面。在我国著名的数学典籍《九章算术》中,首次提出了正负数的概念及运算法则,使得代数学早于西方于公元前2000年就已经产生了;著名的勾股定理是西周数学家商高最早提出来的,称商高定理;刘徽首创“割圆术”,科学地得出圆周率3.14;祖冲之对圆周率进行运算得出杰出成果3.1415926<π<3.1415927。在现代,我国科学的丰硕成果同样也令世界各地的炎黄子孙自豪,如我国著名数学家华罗庚教授发起、推广的优选法,被广泛地应用于生产和科学试验,创造了很大的经济价值;陈景润成功地证明了数论中“(1+2)”定理,被誉为“陈氏定理”;美籍华裔科学家杨振宁、李政道、吴健雄因在科学上的巨大成就而荣获诺贝尔奖等,这些真实典型的数学史实不仅可以激发学生强烈的爱国情和民族自豪感,而且也激励起学生学习的进取精神。

在初中阶段的学生,思想并不成熟,理解问题更不会太深奥。因此,政治思想教育对待他们就是指学生在学习数学知识的过程中,老师适当加上一些有关系的社会问题及祖国知识等,以此培养学生爱国的思想感情。举一个例子:在学生学习有理数概念时,涉及到学习正负数的知识。这时,老师可以利用体温计等身边的一些东西举例说明正数与负数。最好的是向学生们讲一些有关中国重要的地理知识。比如说,“喜马拉雅山的主峰珠穆朗玛峰,海拔8848米,是世界上海拔最高的地方,被称为‘地球之巅’由于山顶经年积雪,气温很低。人们把它同南北两极并列,称它为地球上的‘第三极’。珠穆朗玛峰的高度就是一个正数。泰山主峰玉皇顶周围以及老平台、黄石崖和黄崖山一带,海拔高度在1000米至1545米。此处峰高谷深,地形陡峭,侵蚀切割深度500米至800米 ”。这样,学生不仅灵活掌握正、负数据的概念,还学会了一个重要的地理知识,受到了爱家乡、爱祖国教育。同时,还让学生明白,数学的应用范围相当广泛,不学好数学是不能在社会上立足的。

(二)、利用数学应用教学,培养学生理论联系实际的作风。

数学应用的广泛性是数学学科的基本特征之一,数学的应用不仅形成了一大批新的应用数学学科,而且与计算机的应用相结合形成了数学技术。数学一方面仍发挥基础和应用基础的巨大作用,另一方面也成为现代社会中一种不可替代的技术。数学社会化、社会数学化展示了数学在社会中的巨大作用。加强数学与实际的应用联系,强化应用已逐渐成为人们的共识,这不仅在于数学应用教学可以培养学生的应用意识和应用能力,而且还可以利用它们对学生进行思想教育。现代社会中的人口问题、资源问题、生产效率问题、企业管理问题等均与数学关联紧密,同时无不受价值观念与道德规范的制约。因此,数学教育中要注意数学本身的知识体系向各个领域推延而自然派生的德育意义。我在讲授初二上学期有关勾股定理和直角三角形知识时,向学生讲述了这样的事实:早在公元前两千年,我国的治水英雄—大禹,为了解决在治水中的地势测量问题,就巧妙地利用了直角三角形的边角关系,解决了不少治水工程的难题,这种方法要早于西方三角术的研究达两千年之多。通过这个故事,不仅使学生看到了中国古代人民的聪明智慧,而且使学生深切感受到了数学知识的实用价值,增强了学生学习数学应用题的积极性。在以后讲授直角三角形知识在各方面的广泛应用时,再进一步启发学生。数学知识只有最终同实际问题相结合,运用到实际问题的解决中去,才能真正体现出它的实用价值。另外为了加深学生对课堂讲授内容的理解,提高学生解决实际问题的能力,我给学生针对性地布置了一些实习作业,如自己制作测角器,测量学校旗杆的高度;或者建议学生到农村、工厂、建筑工地参观学习,了解数学知识在各方面的应用。总之,在讲授课本知识的同时,必须密切配合社会形势,市场经济变化态势,及时增加渗透生活、生产常识、金融投资常识、市场竞争常识等,引导学生处处做一个生活中的有心人,以此培养和发展学生理论联系实际的能力。

(三)、挖掘数学中的美育素材,重视对学生进行美育教育

别林斯基说:“美育和德育是密切联系着的,它能陶冶健康的情感,培养崇高的情操,鼓舞人们为建设美好的未来去战斗。”著名数学家华罗庚说:“数学本身也有无穷的美妙。”可以说数学是万花筒,是一个五彩缤纷的世界。在数学教材中,蕴藏着丰富的美育因素。

比如圆是平面图形中最完美的图形,它的完美不仅在于它的完全对称性(轴对称、中心对称),而且在于它体现着一种伟大的精神——集体主义精神,这是因为圆本身就是把无数零散的点,有秩序地、对称地、和谐地、按统一的规律(到定点的距离等于定长)排列而成的封闭图形,就像一个和美的大家庭,每个成员都有自己的位置和作用,同时也遵循着集体的纪律。由此我启迪学生,你们个人就象圆上一个个孤立的点,你们所处的班集体乃至于整个社会就好比一个圆,集体的形象与荣誉与你们自己的努力是分不开的,若个人不遵守集体的纪律,不能正确处理个人利益与集体利益的关系,就会像不在圆上的点一样,游离于集体之外,也就得不到集体的温暖。这样用形象生动的语言将集体主义教育自然地渗透到学生的心田。

总之,结合数学科本身的严谨性特点;结合数学的形式、内涵进行美育教育,能够达到:

1、使学生通过数学养成严谨、朴实的学风:“数学使人周密”(培根语)数学在训练人的思维、思想方法以及熏陶人的精神方面有着重要的作用。学习数学能使人严惩缜密、有条理的思维方式,数学的推理有助于培养学生一丝不苟的态度,反对华而不实,夸夸其谈的作风。

2、使学生通过数学养成理智、自律的习惯:数学中的真理是数学逻辑上的合理性,解决数学问题一定要*着一套“定理规则”,而不是随心所欲,信口开河。这一种解决问题的方法有助于培养学生在解决社会实践中的问题是“以规矩而成方圆”的习惯。

3、使学生通过数学养成实事求是的作风。数学中的结论不是模棱两可的,数学语言也是周密严谨的,是就是,非就非,这种客观公正的性能使学生追求诚实、实事求是的工作作风,而唾弃社会上的弄虚作假、浮夸等不良之风。

4、使学生通过数学养成宽容、大度的品质。“弟子不必不如师,师不必贤与弟子”(韩愈语)。有的教师在碰到学生提出与自己不同的意见或指出自己在教学中的错误时,总认为是触犯了尊严的师道,然后对这些学生“严惩不贷”其实老师也不是圣人,在教学中出错也是在所难免,对学生的质疑我们不仅要宽容、大度,更要鼓励,只有这样才能在教学的过程中培养学生培养宽容、大度的良好品质。

因此,数学教育应使学生获得对数学美的审美能力,这既有利于激发学生对数学的爱好,也有助于增强学生的创新及创造能力。

三、利用平面直角系及函数图象教学对学生进行人生观教育

数学中存在着严密的逻辑推理,同时也存在许多富有哲理的东西,应有针对性地对学生进行人生观教育。比如我在讲授平面直角坐标系时,首先讲平面直角坐标系是一种划定点位置的工具,它把几何中研究的基本对象“点”与代数中研究的基本对象“数”联系起来,通过平面内点与有序实数对的对应关系,将一个点在平面内的位置,由它的两个坐标(横坐标、纵坐标)确定下来。由此加以引申,我们所处的整个社会,实际上也有一些无形的坐标系,每个人进入社会后,就象平面内的点一样,都在寻找自己的位置。一般说来,个人的定位参数概括起来也有两个,即个人的先天因素和后天因素。在这两个因素中确定定位高低、好坏的唯一能动因素是后天因素,那就说明个人在社会上的定位,在某种程度上与自己的后天努力是密切相关的。因而告诫学生,在初中这个人生观发展的十字路口,每个学生都应正确认识自己和社会,确定正确的人生目标,端正人生态度,为以后长大成才而努力学习。

另外,在学习完函数图象后,通过对各类函数图象特征的总结,如有的是直线、有的是抛物线、有的是双曲线、有的是折线等,启发学生,人生的道路并不是一帆风顺的,就如同函数图象一样,有时平坦,有时崎岖;有时高潮跌起,有时低潮绵延,应始终保持冷静向上的人生态度,去经受成功与失败的考验。

四、结合教学实际对学生进行辩证唯物主义教育

数学自身充满着矛盾、运动、发展和变化,体现着唯物论的辩证法,是体现唯物论和辩证法更具体、更广泛的学科。数学中许多概念都是从客观现实中抽象出来的。许多法则、公式、定理、公理都是按照“由特殊到一般,再由一般到特殊”或遵循“从实践中来,到实践中去”的认识规律而产生、推导、归纳、概括、推广、发展、应用的。如代数中的加和减、乘和除是一对矛盾,引进了负数和分数之后,它们可以互相转化,反映了对立统一的哲学思想;一些定理、定义、公式、法则之间相互制约、相互联系、相互依赖,都反映了普遍联系的规律;还有反证法的思想,实际上是矛盾中否定之否定规律的体现。解决一个数学问题,总是把未知转化为熟知的问题,或者将复杂的问题转化为简单的问题等,这就是数学中的矛盾转化原理。在教学中充分利用数学内容和数学方法,对学生进行生动而具体的辩证唯物主义教育,使学生在学习中体验和领会事物的绝对与相对、现象与本质、静止与运动、具体与抽象、特殊与一般。量变与质变、实践与认识、对立与统一的辩证关系,为培养学生的科学思维方法,提高学生分析和解决问题的能力奠定良好的基础。

总之,在数学教学中渗透德育是一个重要的并且需要进一步研究和探索的课题,在进行这一课题实践时必须注意方法上文道结合,做到自然妥贴,切忌生搬硬套。不可将数学课变为政治课,那将失去数学课的教学本质;做到量力而行、因材施教、因人施教,脱离实际、要求过高就会出现形式主义;只有持之以恒、锲而不舍地寓德育于教学之中,长期地熏陶、渗透,才能收到效果,使学科内容与德育内容做到和谐统一,恰如随风潜入夜的春雨,滋润万物。参考文献:

[1] 道德学习的三种途径 徐丹《中国德育》2006年

[2] 追求德育与智育的和谐统一 李万军《中国德育》2006年 [3] 德育及公民教育在香港课程改革中的理念、策略和实践经验

在中学数学教学中如何进行德育渗透

彰武三中

张 强

下载如何在中学数学教学中渗透数学文化(大全)word格式文档
下载如何在中学数学教学中渗透数学文化(大全).doc
将本文档下载到自己电脑,方便修改和收藏,请勿使用迅雷等下载。
点此处下载文档

文档为doc格式


声明:本文内容由互联网用户自发贡献自行上传,本网站不拥有所有权,未作人工编辑处理,也不承担相关法律责任。如果您发现有涉嫌版权的内容,欢迎发送邮件至:645879355@qq.com 进行举报,并提供相关证据,工作人员会在5个工作日内联系你,一经查实,本站将立刻删除涉嫌侵权内容。

相关范文推荐

    在教学中渗透传统节日文化

    在教学中渗透传统节日文化 随着时代的发展,学生所接受的洋文化日趋丰富,他们不但知道圣诞节,还能说出许多外国的节日,然而对他们有印象的节日也只不过是“六一儿童节、五一劳动......

    课堂教学中渗透数学文化

    编号:题目:课堂教学中渗透数学文化 内容提要: 课程改革使数学文化的研究得以更加深入,一个重要的标志是数学文化走进中小学课堂,渗入实际数学教学,努力使学生在学习数学过程中真......

    在数学教学中渗透传统文化

    在数学教学中渗透传统文化 加强中华传统文化教育是深化中国特色社会主义和中国梦宣传教育的重要组成部分。而初中阶段主要以增强学生对中华传统文化的理解为重点,提高自身认......

    在数学教学中渗透德育教育

    在数学教学中渗透德育教育 在小学数学教学中渗透德育教育,就是要将德育本身的因素与数学学科所具有的德育因素有机地结合起来,使德育内容在潜移默化的过程中逐步内化为学生个......

    在数学教学中渗透美育

    在数学教学中渗透美育 刘丽君 教学内容 义务教育课程标准实验教科书——北师大教材八年级下册第四章第二节课。 案例背景 我国数学家徐利治认为:“数学教学的目的之一是使学......

    在数学教学中渗透数学文化的做法与体会

    在数学教学中渗透数学文化的做法与体会 五通镇中心校:李清海 文化,是一个使用十分普遍而又没有公认定义的概念。我们在此把“文化”界定为人类一切物质和精神的历史沉淀,其中的......

    如何在中学数学教学中渗透德育教育

    如何在中学数学教学中渗透德育教育 如何在数学学科中渗透德育教育理念,“以学生发展为本”的思想,我个人认为在中学数学教学中渗透德育教育主要有以下几方面的方法。 1、利用......

    漫谈中学数学教学中的德育渗透

    浅议中学数学合作学习中的教学策略姓名:普凡伟性别:男民族:彝职称:中学高级工龄:主要研究领域:工作 单 位:蒙自县冷泉中学电话:20年 1、后进生转化工作 、 班主任工作研究1357733261......