第一篇:《不等式及其基本性质》教案2
《不等式及其基本性质》习题
【教学内容】
课本上不等式的五个基本性质,并学会应用.【教学目标】
1、掌握不等式的五个基本性质并且能正确应用.2、经历探究不等式基本性质的过程,体会不等式与等式的异同点,发展学生分析问题和解决问题的能力.3、开展研究性学习,使学生初步体会学习不等式基本性质的价值.【重点难点】
重点:理解不等式的五个基本性质.难点:对不等式的基本性质3的认识.【教学方法】
本节课采用“类比-实验-交流”的教学方法.【教学过程】
一、回顾交流.1、等式的基本性质 解一元一次方程的基本步骤
2、问题牵引:
用“﹥”或“﹤”填空,并总结其中的规律:
(1)5>3,5+2
3+2,5-2 3-2 ;
(2)–1<3,-1+2 3+2,-1-3 3-3 ;
结果:
(1)>、>(2)<、< 根据发现的规律填空:
当不等式两边加或减去同一个数(正数或负数)时,不等号的方向______
3、继续探究,接着又出示(3)、(4)题: 5 2×5,6×(3)6>2,6×(-5)
2×(-5),6 3×6,(4)2<3,(-2)×(-2)×(-6)
3×(-6).得到:
当不等式的两边同乘以一个正数时,不等号的方向不变; 当不等式的两边同乘以一个负数时,不等号的方向改变.总结出不等式的性质: 不等式的性质1:不等式的两边加(或减)同一个数(或式子),不等号的方向不变.c
> b±c 字母表示为:如果a>b,那么a±不等式的性质2:不等式的两边乘(或除以)同一个正数,不等号的方向不变.字母表示为:如果a>b,c>0那么ac
> bc,不等式的性质3:不等式的两边乘(或除以)同一个负数,不等号的方向改变.字母表示为:如果a>b,c<0那么ac
< bc,不等式的对称性:如果a>b,那么bb,b>c,那么a>c
二、范例学习,应用所学.1、利用不等式的性质解下列不等式.(1)x-7>26
(2)3x<2x+1(3)3x﹥50
(4)-4x﹥3
22、逐题分析得出结果.(1)x-7>26 分析:解未知数为x的不等式,就是要使不等式逐步化为x﹥a或x﹤a的形式.
解:(1)为了使不等式x-7>26中不等号的一边变为x,根据不等式的性质1,不等式两边都加7,不等号的方向不变,得 x-7+7﹥26+7 x﹥33(2)3x<2x+1
为了使不等式3x<2x+1中不等号的一边变为x,根据不等式的性质1,不等式两边都减去2x,不等号的方向不变.3x-2x﹤2x+1-2x x﹤1 通过两小题得到:解不等式时也可以“移项”,即把不等式的一边的某项变号后移到另一边,而不改变不等号的方向.(3)3x ﹥50 2为了使不等式 32x﹥50中不等号的一边变为x,根据不等式的性质2,不等式的两边都乘
23不等号的方向不变,得 x﹥75(4)-4x﹥3
为了使不等式-4x﹥3中的不等号的一边变为x,根据不等式的性质3,不等式两边都除以-4,不等号的方向改变,得x<-4通过(3)(4)的求解过程,类似于解方程两边都除以未知数的系数(未知数系数化为1),解不等式时要注意未知数系数的正负,以决定是否改变不等号的方向.三、课堂探究.已知a<0,试比较2a与a的大小.四、课堂小结提问.不等式性质的作用.
第二篇:不等式的基本性质优秀教案
课时课题:第二章 第二节不等式的基本性质
课
型:新授课 授课人: 授课时间: 教学目标:
1.经历通过类比、猜测、验证发现不等式基本性质的探索过程,初步体会不等式与等式的异同。2.掌握不等式的基本性质,并能初步运用不等式的基本性质将比较简单的不等式转化为“x>a”或“x<a”的形式。
3.能说出不等式为什么可以从一种形式变形为另一种形式,发展其代数变形能力,养成步步有据、准确表达的良好学习习惯。
教学重难点:
重点:探索不等式的基本性质,并能灵活地掌握和应用.难点:能根据不等式的基本性质进行化简.教学过程:
一、复习引入,导入新课
师:我们学习了等式,并掌握了等式的基本性质,大家还记得等式的基本性质吗? 生:记得.等式的基本性质1:在等式的两边都加上(或减去)同一个数或整式,所得的结果仍是等式.等式的基本性质2:在等式的两边都乘以或除以同一个数(除数不为0),所得的结果仍是等式.师:不等式与等式只有一字之差,那么它们的性质是否也有相似之处呢?本节课我们将加以验证.设计意图:通过回顾等式的性质,为本节课类比等式的性质去探索不等式的性质做好铺垫,并且从学生已有的数学经验出发,有助于学生建立新旧知识之间的联系,让学生养成梳理知识体系的习惯。
二、情境导入:童言无忌(课件)
三岁的小凯幼儿园回家开始缠着他的爸爸说:“爸爸,你比我大多少岁啊?”爸爸放下手中的报纸笑眯眯的答道:“我比可爱的小凯大25岁呀,怎么了?”小凯高兴地跑开道:“再过25年我就和爸爸一样大唠”。留下错愕的爸爸沉浸在“百感交集”中„„„„
设计意图:学生对故事很感兴趣,体会到不相等的两个量的比较要在“公平”的情况下进行,即要加同时加,要减同时减。
三、新知探究
教师活动:展示课件,请同学们完成填空,并探究规律。
1、用“﹥”或“﹤”填空,并总结其中的规律:
(1)5>3, 5+2 3+2 , 5-2 3-2;(2)–1<3 ,-1+2 3+2 ,-1-3 3-3;学生活动:探究规律,交流讨论,解答上述问题,结果:(1)>、>(2)<、< 根据发现的规律填空: 当不等式两边加或减去同一个数(正数或负数)时,不等号的方向 师生共识:总结出不等式的性质:
板书:不等式的性质1 不等式的两边加(或减)同一个数(或式子),不等号的方向不变.字母表示为: 如果a>b,那么a±c > b±c 解决“童言无忌”的问题
2、继续探究,接着又出示(3)、(4)题:
(3)6>2, 6×5 2×5 , 6×(-5)2×(-5);(4)-2<3,(-2)×6 3×6 ,(-2)×(-6)3×(-6)(方法同上)又得到:
当不等式的两边同乘以一个正数时,不等号的方向不变; 当不等式的两边同乘以一个负数时,不等号的方向改变。
板书:不等式的性质2 不等式的两边乘(或除以)同一个正数,不等号的方向不变.字母表示为:如果a>b,c>0,那么ac > bc.3、继续探究,接着又出示(5)、(6)题:
(5)6>2,6×(-5)____2×(-5)
6÷(-5)____2÷(-5);(6)–2<3,(-2)×(-6)____3×(-6)
(-2)÷(-6)____3÷(-6)会发现: 当不等式的两边同乘或同除以同一个负数时,不等号的方向______;板书:不等式的性质 3 不等式的两边乘(或除以)同一个负数,不等号的方向改变。
字母表示为:如果a>b,c<0,那么ac < bc.l2l2 的正确性 4.用不等式的基本性质解释416l2l2l2l
2师:在上节课中,我们知道周长为l的圆和正方形,它们的面积分别为和,且有存
416416在,你能用不等式的基本性质来解释吗?
生:∵4π<16 l2l2
∴,又∵l20
416l2l2
根据不等式的基本性质2,两边都乘以l得
4162设计意图:通过自主探究,对比不等式的变化让学生得出不等式的基本性质.。这样,既教给学生类比,猜想,验证的问题研究方法,又培养了学生善于动手、善于观察、善于思考的学习习惯。通过两道题目的训练提升学生利用不等式基本性质解决问题的能力。并进一步熟悉不等式的基本性质。
5.例题讲解
将下列不等式化成“x>a”或“x<a”的形式:
(1)x-5>-1;
(2)-2x>3;
生:(1)根据不等式的基本性质1,两边都加上5,得
x>-1+5
即x>4;
(2)根据不等式的基本性质3,两边都除以-2,得
x<-3;2说明:在不等式两边同时乘以或除以同一个数(除数不为0)时,要注意数的正、负,从而决定不等号方向的改变与否.程序说明:教师对题目进行分析,并引导学生题目的处理方法,如何才能将下列不等式化成“x>a”或“x<a”的形式,即“将不等式的转化为左边只含有系数和次数均为1的未知数,右边只含有常数的形式”.6.合作探究 多媒体课件展示
讨论下列式子的正确与错误.(1)如果a<b,那么a+c<b+c;
(2)如果a<b,那么a-c<b-c;
(3)如果a<b,那么ac<bc;
(4)如果a<b,且c≠0,那么
ab.cc
师:在上面的例题中,我们讨论的是具体的数字,这种题型比较简单,因为要乘以或除以某一个数时就能确定是正数还是负数,从而能决定不等号方向的改变与否.在本题中讨论的是字母,因此首先要决定的是两边同时乘以或除以的某一个数的正、负.本题难度较大,请大家全面地加以考虑,并能互相合作交流.生:(1)正确
∵a<b,在不等式两边都加上c,得
a+c<b+c;
∴结论正确.同理可知(2)正确.(3)根据不等式的基本性质2,两边都乘以c,得
ac<bc,所以正确.(4)根据不等式的基本性质2,两边都除以c,得
所以结论错误.师:大家同意这位同学的做法吗?
生:不同意.师:能说出理由吗?
生:在(1)、(2)中我同意他的做法,在(3)、(4)中我不同意,因为在(3)中有a<b,两边同时乘以c时,没有指明c的符号是正还是负,若为正则不等号方向不变,若为负则不等号方向改变,若c=0,则有ac=bc,正是因为c的不明确性,所以导致不等号的方向可能是变、不变,或应改为等号.而结论ac<bc.只指出了其中一种情况,故结论错误.在(4)中存在同样的问题,虽然c≠0,但不知c是正数还是负数,所以不能决定不等号的方向是否改变,若c>0,则有
ab ccabab,若 c<0,则有,而他只说出了一种情况,所以结果错误.cccc
师:通过做这个题,大家能得到什么启示呢?
生:在利用不等式的性质2和性质3时,关键是看两边同时乘以或除以的是一个什么性质的数,从而确定不等号的改变与否.师:非常棒.我们学习了不等式的基本性质,而且做过一些练习,下面我们再来研究一下等式和不等式的性质的区别和联系,请大家对比地进行.生:不等式的基本性质有三条,而等式的基本性质有两条.区别:在等式的两边同时乘以或除以同一个数(除数不为0)时,所得结果仍是等式;在不等式的两边同时乘以或除以同一个数(除数不为0)时会出现两种情况,若为正数则不等号方向不变,若为负数则不等号的方向改变.联系:不等式的基本性质和等式的基本性质,都讨论的是在两边同时加上(或减去),同时乘以(或除以,除数不为0)同一个数时的情况.且不等式的基本性质1和等式的基本性质1相类似.设计意图: 让学生通过尝试练习与交流讨论,加深对性质的理解和运用。题目中的不等式变形中,将同加、减、乘(或除以)具体数字换成了表示数的字母,渗透了分类讨论的数学思想,加大了难度,有助于学生能力的提升,为解不等式作好铺垫.在这个环节的教学过程中,放手让学生展示、说理、点评、争论,充分发挥学生学习的主体作用.程序说明:学生先独立练习,再小组交流、指导、检查,最后小组选派代表展示,其他小组进行点评、补充、质疑.四、训练反馈
1.填空:如果a>b,那么
(1)3a 3b;(不等式性质)(2)-a-b;(不等式性质)(3)-a+2-b+2 ;(不等式性质)
ab(4)1 1.(不等式性质)
222.用“<” “>”填空:
(1)若3x>3y,则x y;(2)若-2x<-2y,则x y;(3)若5x+1<5y+1,则x y.3.(1)若3x>6,则x ;
(2)若3x>6,则x ;
(3)若4x5>9,则4x 95,即4x 4,得x 1.4.判断下列各题的结论是否正确?并说明理由.(1)若ax>b,且a>0,则x>b;
a(2)若ax>b,且a<0,则x>b;
a(3)若a>b,则ac2>bc2;(4)若ac2>bc2,则a>b.5.若x
6.有人说:因为5>3,所以5a>3a,你认为对吗?为什么? 7.把下列不等式化为x>a或x<a的形式:
(1)2x5>3(2)3x2>4
程序说明:学生先独立练习,再小组交流、指导、检查,最后小组选派代表展示,其他小组进行点评、补充、质疑.设计意图: 分层测评,意在尊重个体差异,面向全体,激发学生的学习热情,挖掘每一个学生的潜能,让不同层次的学生得到不同程度的发展.五、课时小结
教师活动:
1.本节课你学习了那些新知识?
2.在数学思想或方法上,你有什么感悟? 3.在小组学习中,你觉得应该注意些什么? 4.你还有什么困惑吗?
学生活动:畅所欲言,说出自己对本节课学习的感受和收获。
(预设问题)
1.等式与不等式的基本性质有什么相同点和不同点?
2.对不等式进行变形要特别注意什么
设计意图:让学生通过总结反思,一是为了进一步引导学生反思自己的学习方式,有利于培养归纳、总结的习惯,让学生自主构建知识体系;二是为了激起学生感受成功的喜悦,激励学生以更大的热情投入到以后的学习中去。比较不等式基本性质与等式基本性质的异同,不仅有利于学生认识不等式,而且可以使学生体会知识之间的内在联系,整体上把握知识,发展学生的辨证思维。
六、限时作业
课本P42习题2.2 知识技能 2 设计意图:通过作业来规范学生题目完成的规范性.七、教学反思:
本节课设计旨在让学生经历通过实验、猜测、验证,发现不等式性质的探索过程.用类比和实验探究法作为主要方法贯穿整个课堂教学之中,并以多媒体作为辅助教学手段.让学生充分进行讨论交流,在自主探索和合作学习中掌握不等式的性质.这样就能有效地突破本节课的难点,为学生今后的学习打下坚实的基础.
教学过程中贯穿了一条“创设情境,引出新知—实验讨论,得出性质—探究辨析,突破难点—运用性质,解决问题”的线索,使学生真正成为学习的主人.在师生交流合作中营造互动的氛围,让学生积极主动地参与教学的整个过程,使他们的学习态度、情感意志和个性品质等都得到不同程度的提高.
为了突破教学难点,让学生能熟练准确地运用“不等式性质3",本课设计了多样化的练习以巩固所学知识.在学生回答、板演、讨论的过程中,课堂气氛被激活,教学难点被突破,使学生在轻松愉快的氛围中扎实地掌握性质并灵活运用.同时,学习伙伴之间进行了思维的碰撞和沟通.
第三篇:不等式的基本性质教案
课题:不等式的基本性质 课型:新授课 教学目标:
知识与技能:了解实数的基本事实,能够比较两个实数的大小,掌握不等式的基本性质并运用基本性质证明一些简单的不等式。
过程与方法:通过对基本不等式的基本性质的证明,使学生在不等式证明中逐渐掌握基本性质,并有运用基本性质的意识。能够用类比的方法从等式的基本性质来推出不等式的基本性质。
情感态度与价值观:通过类比等式的基本性质来联系不等式的基本性质,是学生掌握类比的数学方法。
教学重点:比较两个实数的大小关系,掌握不等式的基本性质。教学难点:通过运用基本性质来证明不等式。教学过程:
一.新知引入
以人们常用的长与短,多与少,轻与重等现实中存在的数量上的不等关系来引入数学中人们用不等式来表示事物的不等关系。
说明研究不等式的出发点是实数的大小关系,并举例说明:(i)设存在a,b两个实数,它们在数轴上的对应的点分别是A,B,当A在点B的左边时,a与b有着怎样的大小关系?(a
(ii)设存在a,b两个实数,它们在数轴上的对应的点分别是A,B,当A在点B的右边时,a与b有着怎样的大小关系?(a>b)(i)(ii)边说边在黑板上画出数轴,呈现出相应的图形,并让全班一起回答,把答案写在对应图形的右边。
由上面两个实数的不等关系以及已经学过的等式关系,得出实数a,b存在的三种大小关系并且构成了实数的基本事实。
a>b a-b>0.ab(或a
二.练习巩固
例1. 比较(x3)(x2)和(x4)(x9)的大小.(答案:>)
让学生思考片刻,让学生说出解答的过程,并在黑板上写出详细过程。最后总结比较两个实数的大小关系,可以通过考察它们的差与0的大小关系来解答,并说明这种方法是作差比较法。
三.以旧推新
在学习和证明不等式的过程中,我们需要广泛运用基本性质,那么不等式有哪些基本性质?我们要怎么去研究和运用不等式的基本性质?
提示语发问,引起学生思考,并且加以引导:我们已经知道实数的基本事实以及两个实数的三种关系,而这三种关系又可以分为相等关系和不等关系。既然如此,它们之间应该会有一定的联系,那我们可不可以试着用等式的基本性质来推出不等式的基本性质? 回顾等式的基本性质,让一些同学回答,教师再进行完善,并写在黑板的草稿区。由等式的对称性和传递性容易得到不等式的两个性质: 性质1:a>bbb,b>ca>c(单向传递性)
由等式的加减法和乘法运算法则是否可以推出不等式的相应的性质?尝试和学生一起思考,先在黑板试着写出不等式的相应性质,并让学生在已有的经验上去说明其正误。
尝试写出:
a>bac>bc a>bac>bc 学生很容易判断前者是成立的,而后者不一定成立,与c的取值有关,从而总结得出以下性质:
性质3:a>bac>bc 性质4:a>b,c>0ac>bc a>b,c<0ac 性质5:a>b>0anbn(nN,n2)性质6:a>b>0nanb(nN,n2) 给学生演示性质5,6的证明过程。 说明这些基本不等式是不等式证明和运用的基础,提醒学生在运用这些性质时要注意实数的符号(是否大于0)。 四.推论证明 利用不等式的基本性质还可以得出不等式的相关推论。性质3推论: (i)如果a+b>c,那么a>c-b(ii)如果a>b,c>d,那么a+c>b+d(iii)如果a>b,c>d,那么a-d>b-c 对这3个推论都让学生思考运用不等式的基本性质进行证明,1分钟后,教师在黑板上演示推论(i)(ii)的证明过程,并强调运用的是哪个性质,推论(iii)让一个学生根据前面的演示来回答解答过程,并要说出是依据什么性质。教师板书过程。性质4推论: (i)如果a>b>0,c>d>0,那么ac>bd(ii)如果a>b>0,c>d>0,那么 ab dc让学生思考片刻证明过程,推论(i)让学生回答解答过程及依据,教师完善并板书。推论(ii)由教师引导思考过程和方向: 要证ab1111,即证,在已知c>d>0的前提,问学生的证法。dcdcdc学生可能会运用函数的单调性质来证明,说明这个方法可行,并要求学生思考运用不等式的基本性质该怎么证明,引导学生回顾比较实数大小的方法并运用基本性质证明。 让学生回答11的证明过程: dc由c>d>0,得出cd>0,c-d>0,111cd0, 则0,cddccd11 dcaa0 dc接着证明推论(ii): 由a>0及性质4,得由a>b>0, c>0,1ab0及性质4,得0 cccab 由性质2得,。 dc五.小结与作业 小结:回顾本节课的内容,重复比较两个实数大小的方法是作差比较法,回顾不等式的基本性质及其推论,强调证明不等式的过程中要熟练运用这些基本性质及其推论。 作业:课后习题1.1的第1-4题。 教学准备 1.教学目标 (一)教学知识点: 1.探索并掌握不等式的基本性质; 2.理解不等式与等式性质的联系与区别.(二)能力训练要求: 通过对比不等式的性质和等式的性质,培养学生的求异思维,提高大家的辨别能力.(三)情感与价值观要求: 通过大家对不等式性质的探索,培养大家的钻研精神,同时还加强了同学间的合作与 交流.2.教学重点/难点 教学重点: 探索不等式的基本性质,并能灵活地掌握和应用.教学难点: 能根据不等式的基本性质进行化简.3.教学用具 课件 4.标签 不等式的基本性质 教学过程 Ⅰ.创设问题情境,引入新课 [师]我们学习了等式,并掌握了等式的基本性质,大家还记得等式的基本性质吗? [生]记得.等式的基本性质1:在等式的两边都加上(或减去)同一个数或整式,所得的结果仍是等式.基本性质2:在等式的两边都乘以或除以同一个数(除数不为0),所得的结果仍是等式.[师]不等式与等式只有一字之差,那么它们的性质是否也有相似之处呢?本节课我们将加以验证.Ⅱ.新课讲授 1.不等式基本性质的推导 [师]等式的性质我们已经掌握了,那么不等式的性质是否和等式的性质一样呢?请大家探索后发表自己的看法.如果 7 > 3,那么 7+5 ____ 3+ 5,7-5____3-5.如果-1< 3,那么-1+2____3+2,-1-4____3 – 4.你能总结一下规律吗? 在不等式的两边都加上(或减去)同一个整式,不等号的方向不变.[师]很好.不等式的这一条性质和等式的性质相似.下面继续进行探究.[生]∵3<5 ∴3×2<5×2 3× <5×.所以,在不等式的两边都乘以同一个数,不等号的方向不变.[生]不对.如3<5 3×(-2)>5×(-2)所以上面的总结是错的.[师]看来大家有不同意见,请互相讨论后举例说明.[生]如3<4 3×3<4×3 3× <4× 3×(-3)>4×(-3)3×(-)>4×(-)3×(-5)>4×(-5)由此看来,在不等式的两边同乘以一个正数时,不等号的方向不变;在不等式的两边同乘以一个负数时,不等号的方向改变.[师]非常棒,那么在不等式的两边同时除以某一个数时(除数不为0),情况会怎样呢?请大家用类似的方法进行推导.[生]当不等式的两边同时除以一个正数时,不等号的方向不变;当不等式的两边同时除以一个负数时,不等号的方向改变.[师]因此,大家可以总结得出性质2和性质3,并且要学会灵活运用.2.用不等式的基本性质解释 > 的正确性 [师]在上节课中,我们知道周长为l的圆和正方形,它们的面积分别为 和,且有 > 存在,你能用不等式的基本性质来解释吗? [生]∵4π<16 ∴ > 根据不等式的基本性质2,两边都乘以l 2得 > 3.例题讲解 将下列不等式化成“x>a”或“x<a”的形式:(1)x-5>-1;(2)-2x>3;(3)3x<-9.[生](1)根据不等式的基本性质1,两边都加上5,得 x>-1+5 即x>4; (2)根据不等式的基本性质3,两边都除以-2,得 x<- ; (3)根据不等式的基本性质2,两边都除以3,得 x<-3.说明:在不等式两边同时乘以或除以同一个数(除数不为0)时,要注意数的正、负,从而决定不等号方向的改变与否.Ⅲ.课堂练习 1.将下列不等式化成“x>a”或“x<a”的形式.(1)x-1>2(2)-x< [生]解:(1)根据不等式的基本性质1,两边都加上1,得x>3(2)根据不等式的基本性质3,两边都乘以-1,得 x>- 2.已知x>y,下列不等式一定成立吗?(1)x-6<y-6;(2)3x<3y;(3)-2x<-2y.解:(1)∵x>y,∴x-6>y-6.∴不等式不成立;(2)∵x>y,∴3x>3y ∴不等式不成立;(3)∵x>y,∴-2x<-2y ∴不等式一定成立.Ⅳ.课时小结 1.本节课主要用类推的方法探索出了不等式的基本性质.2.利用不等式的基本性质进行简单的化简或填空.Ⅴ.课后作业习题 Ⅵ.活动与探究 1.比较a与-a的大小.解:当a>0时,a>-a; 当a=0时,a=-a; 当a<0时,a<-a.说明:解决此类问题时,要对字母的所有取值进行讨论.2.有一个两位数,个位上的数字是a,十位上的数是b,如果把这个两位数的个位与十位上的数对调,得到的两位数大于原来的两位数,那么a与b哪个大哪个小? 解:原来的两位数为10b+a.调换后的两位数为10a+b.根据题意得10a+b>10b+a.根据不等式的基本性质1,两边同时减去a,得9a+b>10b 两边同时减去b,得9a>9b 根据不等式的基本性质2,两边同时除以9,得a>b.课堂小结 学了这节课,你有什么收获? 课后习题 完成课后练习题。 板书 不等式的基本性质 不等式和它的基本性质 (一)教学目标:1.了解不等式的意义,掌握不等式的基本性质,并能正确运用它们将不等式变形; 2.提高学生观察、比较、归纳的能力,渗透类比的思维方法; 重、难点:掌握不等式的基本性质并能正确运用它们将不等式变形。教 法:尝试、讨论、引导、总结 教 具:投影仪 教学内容及程序: 一、前提测评 1.前边,我们已学习了等式和它的基本性质。请同学们思考并回答下列问题。2.由“等式表示相等关系”,教师问:在现实生活中,同种量间有没有不等的关系呢?(如身高与身高、面积与面积等)请学生举一些实例。 3.这节课,我们就来认识表示不等式关系的式子,并研究它的性质。(板书:不等式和它的基本性质) 二、达标导学 我们先来认识不等式。(板书:“1.不等式的意义”)1. 教师出示下列式子(板书): -7<-5 ,3+4>1+4 ,5+31≠2-5 ,a≠0 ,a+2>a+1 ,x+3<6。学生观察上面式子时,教师问:哪位同学能由等式的意义,说说“什么叫做不等式?”(对学生的回答作以修正并板书:“不等式的意义:用不等号表示不等关系的式子,叫做不等式”。) 2. 例 1、用不等式表示: ①a是负数; ② x的6倍减去3大于10;③ y的1与6的差小于1 ④ x与2的和是非负数; ⑤ x的2倍与y的一半的差不大于1 3. 练习:P56 练习1、2、3 4. 学生做了课本第56页练习后,教师:本章我们主要研究含有未知数的不等式,如x+3<6。对于“x+3<6”中,当x取某些数值(- 1、0、„„)时,不等式成立;当x取另外一些数值(如3、6、„„)时,不等式不成立。与前面学过的方程类似,使不等式成立的数,我们说它是不等式的解,反之,使不等式不成立的数,我们说它不是不等式的解。完成课本上P56想一想 5. 练习:P57 练习4 ▲下面,我们研究不等式的基本性质。(板书:“2.不等式的基本性质“)1.引导发现 教师引导学生回忆等式的基本性质(教师叙述)为促使类比,教师说明;“等式”和“不等式”都是表示同种量间的数量关系。并提 出问题:不等式作类似变形后,所得结果左、右两边的不等式关系会不会发生变化呢? 学生讨论3-5分钟。教师视学生讨论情况可再做适当引导。讨论结果:有时两边大小关系不变,有时两边大小关系改变了。 6. 实例探究 不等式在作上述哪种变形时,两边大小关系不变或两边大小关系改变呢? 将学生分组,对下列不等式作:①两边都加上(减去)同一个数;②两边都乘以(除以)同一个正数;③两边都乘以(除以)同一个负数,这三种变形。 A组:7>4 B组-3<5; C组-4>-5; D组-2<-1。 变形教师了解各组学生变形的结果,引导归纳:“不等式的三条基本性质”(板书)。3.强化认识 ①学生再作“对数字不等式”的第三种变形即给两边都乘以(除以)一个负数。②口答:判断: ①∵3>2 ∴-3>-2 () ②∵-1<2 ∴1<-2 () ③∵1x0 ∴x>0 ()2④∵-a<-3 ∴a<3 () 三、达标检测(另附纸) 四、评价总结: 五、作业: P12 A1- 3B1 六、教后感第四篇:不等式的基本性质_教学设计_教案
第五篇:不等式和它的基本性质1教案