第一篇:确定起跑线说课稿
《确定起跑线》说课稿
课题选定:
《确定起跑线》是人教版课程标准实验教科书《数学》六年制上册第75—76页。这是一节综合应用数学知识的实践活动课,是在学生掌握了圆的概念和周长等知识的基础上设计的。教材设计这个数学综合实践活动,一方面让学生了解田径场跑道的结构,通过小组合作的探究性活动,综合运用所学的知识和方法,动手实践解决问题,学会确定起跑线的方法;另一方面让学生体会数学在日常生活中的应用价值,增强学生应用数学的意识,不断提高实践能力和解决问题的能力。教学理念、模式:
《数学课程标准》指出:数学学习内容应当“有利于学生主动地进行观察、实验、猜测、验证、推理与交流等数学活动”、“动手实践、自主探索、合作交流是学生学习数学的重要方式”、“学生是数学学习的主人,教师是数学学习的组织者、引导者与合作者”,那么,如何体现新课程所提倡的学习方式、教学方式呢? 我的思路是:
在教学过程中,采取多媒体辅助教学,通过多媒体的直观演示,让学生观察、探索、思维与语言表达结合在一起,使学生对椭圆式跑道有一个形象的感知,并利用多媒体将知识展示出来,同时作用于学生的感官,调动学生的学习积极性,给学生充分的时间和机会让他们主动参与获取知识的过程,培养学生自主学习的意识与创新意识。
1、引导学生用多种感官参与知识的形成过程。心理学实验证明:思维往往是从动作开始的,切断活动与思维的联系,思维就不能得到发展。要解决数学知识的抽象性与学生思维形象性之间的矛盾,关键是依靠动手操作,基于上面的认识,在推导确定起跑线位置的过程中,我有目的,有意识的安排了让学生动手实践活动,让学生用眼观察,动脑思考,动口参加讨论,用耳去辨析同学们的答案,教育家乌申斯基说:“接受知识的感官越多,知识就掌握得越牢固,越全面。”
2、培养学生的兴趣,激发求知欲望。
“好奇”是少年儿童的心理特征之一,他们对新鲜的事物特别感兴趣,在教学方法的构思上用不同的方法设置疑点,让学生在探索知识的思维实践中,使思维能力受到培养和训练,激发学生思维积极性。注重给学生创设思维的空间,注意诱发学生积极体验,自己产生问题意识,自己探究,尝试,修正错误,总结规律,从而主动获取知识。
3、充分发挥计算机辅助教学的过程。
发挥计算机直观形象,声像结合,动静结合,节省教学时间等多种功能,展现知识发生、发展过程,使学生饶有兴趣地投入学习,从而加深对知识的理解与掌握,优化课堂教学结构。教学目标:
基于对教材的理解和分析,根据学生的知识现状和特点,我将本节课的教学目标定为:(1)、知识目标:通过观察,了解椭圆式田径场跑道的结构,小组合作探究确定起跑线的方法。
(2)、数学能力目标:创设情境鼓励学生探索,使学生在主动参与中发现问题,培养观察、分析与抽象概括能力。
(3)、情感与价值观目标:知识来源于实践,学习的目的在于应用,在解决具体问题过程中,培养学生自主学习意识与创新意识,为养成自主、探究性学习习惯奠定基础,激发学生学习数学的兴趣。教学的重点和难点:
根据教材的编写意图和学生的认知规律,如果学生能理解“为什么起跑线位置会不同”这个问题,那么如何确定起跑线的位置就可以迎刃而解了。因此,让学生推导确定起跑线位置的过程及其实践运用是本节课的重点,而理解起跑线的位置与什么有关则是教学的难点。设计中的困惑:
六年级的学生对起跑线并不陌生,也知道在400 m跑道上进行200 m、400 m、800 m等的赛跑时,不同跑道上的运动员起跑的位置是各不相同的。但为什么呢?学生可能很少从数学的角度去认真地思考。因而在活动开始,老师可以以图片、投影片或多媒体课件等形式呈现田径场上的400 m跑道,并直接提出问题“为什么运动员要站在不同的起跑线上?”引发学生的思考和讨论,学生凭借日常的体育活动和观看体育比赛的经验应该能够很快地理清思路,回答出问题。老师可根据学生的回答适时地引出进一步研究的问题:“各跑道的起跑线应该相差多少米呢?”显然这很难通过经验和观察得到,需要学生收集相关数据,具体分析起跑线的位置与什么有关。
这个确定起跑线是建立在圆的概念和圆的周长等知识基础上,结合生活实际与跑道结构的一个教学内容。目的在于提高学生综合运用所学的知识来发现生活中所蕴涵的数学问题,确定起跑线的位置,以及灵活分析问题、解决问题、符号化思考的能力,此其一;其二,引导学生初步形成提出问题、解决问题、发现规律、验证规律、拓展运用的科学思考体系,初步提升学生的算术素养;其三,让学生切实体会到数学在体育等生活领域的广泛应用,发展数学的应用意识,学以致用,激发学生的学习积极性。
本节课的重点在于,在解决问题时,综合运用所学的知识来发现、验证、应用规律的过程,以及学生代数和符号化思考等算术素养的培养。下面我来简单谈一下我的教学流程:
首先,第一部分:提出问题。
其实我们六年级的学生在经历了2008年北京奥运会和历年来的校运动会、区运动会以来,对于运动员要站在不同起跑线上,已经有了一些朦朦胧胧的意识,甚至有部分同学已经会跟学习语文一样去预习一下。所以,我打算引导学生,让他们自己来提出问题。老师出示一幅同一起跑线比赛的图,让他们观察。如果有学生马上发现问题了,说不公平,外道的同学吃亏,那么就此揭示课题;如果一下子没有学生发现,那么老师引导一下:请你预测一下比赛名次。在预测的时候引导学生从无序的乱猜,到能简要说明自己预测的依据,培养学生的逻辑思维能力,然后引入新课。
然后是第二部分:解决问题。
解决问题这个部分,我打算分为独立解决、发现规律和验证规律三个环节。
由于这节课的主要目的在于发现、验证、应用规律,而不在于计算,因此,我认为书上图二举例所提供的数据不合适,学生会在这上面花费大量的时间,从而影响主要目标的达成。有两个解决方案:
一、让学生使用计算器计算;
二、修改数据。我倾向于后者,打算提供给学生的数据是直道长度a=90.1米,第一条半圆形的跑道直径为d=70米,每条跑道宽1米,这样一圈的周长刚好是400米。问题是第二道要比第一道提前多少米?
解决问题第一个环节:独立解决。要解决这个问题,有三种方案,其中学生最容易想到的一种方案是分别求出第一道和第二道的全长,然后减一减,书上的图二也有提示。但是其实关于跑道周长的计算,在之前数学书第71页的练习十六中已经出现过了,学生已经发现生活中的跑道其实是由两个半圆和两条直道构成的,知道如何计算单条跑道的长度。因此,我不打算先师生一起分析跑道的结构及周长的计算方法,而是让学生独立完成前两圈跑道差距的计算。这里要注意的是第二道的直径比第一道直径多了两个道宽。
解决问题第二个环节:发现规律。发现规律先由学生来汇报刚才这个问题如何解决,老师有意识地先请第一种解题方案的同学来汇报,(汇报的时候引导学生说明跑道结构),并做好记录。(记录的表格就是书上图四的那张,关于这张表格,我有一丝困惑。就是这个表格要不要用?如果用,那么什么时候用?怎么用?因为如果这张表格出现早了,或者在刚才独立解决的时候就给学生了,那么就会给学生造成一种无形中的定势,即根据直径,先求出圆周长、再加上两条直道求出全长,然后第二道减第一道,这可能会影响学生对其他方法的思考、探索。我个人意见是,这张表格不发给学生,不限制他们的思考方法,让学生用自己的方法来解决问题,只在汇报的时候,由老师在课件上出现、记录。)
这样,在解决这个问题的过程中,肯定有同学分发现第二种解题方案,也就是书上图三所提示的:因为各条跑道直道的长度都一样,所以要求前两圈跑道差距,只要计算出第二道和第一道所在圆周长的差距就可以了。在汇报完第一种解题方案以后,学生就会提出自己的新方法,这时,可以让学生自己来做做小老师,培养他们把内在知识外现化的能力。
至于第三种解决方案,即相邻跑道的差距=2π·道宽。这是这节课重点要发现的规律,不一定会有学生想到,那么这时就要看老师怎么引导了。要得出这个规律,不光要求学生要较强的思维能力,也要求学生有一定的算术素养。什么算术素养?就是在解决问题的时候,不要急着把答案算出来,而是运用代数的知识,符号化的思考,把一些已知数据先用公式字母代替,合并化简以后再最后求出答案。
比方说这里,在学生介绍第二种解题方案的同时,老师就可以一边记录,一边引导学生往第三种方案上靠拢。从方案一开始,相邻跑道的差距=第二道全长-第一道全长,转换成符号化表示:=(2a+πD)-(2a+πd)=πD-πd,即第二道圆周长-第一道圆周长。引导到这里,先让同学把第二种方案介绍完。然后让大家一起观察,还能不能继续等下去?有没有新的方法?这时,就会有同学说用乘法分配律=π(D-d)。那么D-d又是什么呢?部分同学可以已经发现了,让他们来说说看,如果学生解释不清楚,教师可以再通过课件演示,说明D-d就是两个道宽,而道宽是什么?就是两条半径之差。然后继续等下去:=2π(R-r)=2π·道宽。
解决问题第三个环节:验证规律。得出一个规律,但科学的思考过程而言,还不一定正确,必须要经过验证,这时可以出示刚才未完成的图四表格,让同学们先根据第三种解题方案预测一下各跑道的总长,把直径和全长两栏填完,并再次强化理解每相邻两道的直径各要加上两个道宽。然后让每个同学任选一个跑道,用第一种方案验证,验证的过程中,把圆周长这一栏也填完。
最后是第三部分:拓展应用
我们研究这节课的目的,不只是仅仅为了解决一个跑道问题,而是要举一反
三、触类旁通。而在这其中,代数及符号化思考等算术素养的培养又是重中之重。因此,我设计了以下几个题目:
拓展一:接着刚才的问题,第一道和第三道起点差距是几米?第二道和第五道呢?这时的道宽,就不是一个道宽了,而是两个、三个、甚至更多;而且也兼带着复习了一下植树问题的知识。
拓展二:200米跑,相邻跑道之间又应该相差多少米?200米只有400米的一半,只要跑一个半圆和一个直道就行了,因此,刚才的三种方案都要÷2。相邻跑道的差距=(a+πD/2)-(a+πd/2)=πD/2-πd/2=(D/2-d/2)π=(R-r)π=π•道宽。
拓展三:这是一个生活中经常会见到的八卦图,已知大圆直径为D,求白色部分的周长。我出这道题的目的,是不想仅仅局限于一个跑道问题,希望能够进一步培养学生的代数及符号化思考的能力。白色部分周长=大半圆+2•小半圆=πD/2+2×1/2•π•D/2=πD/2+πD/2=πD=大圆周长。各位领导、各位评委:
大家好!接下来我就从以下几个方面,将《包饺子》这堂综合实践活动课进行说明:
一、设计理念
由于“综合实践活动课”是新一轮课程改革诞生的全新的课程形态,所以我在设计本课时,本着综合实践活动开索,把握着综合实践活动的四大领域。设计了这堂充分体现劳动技能的综合实践活动课,将综合实践课的真实性开放性、自主性融入整堂课的设计中,抓住机会,激发学生劳动的兴趣。
二、活动方案
本节课我分为两课时完成,第一课时为准备阶段,第二课时是动手包饺子、品尝饺子,主要活动是通过小组合作子,创作饺子作品,分享劳动成果并谈感受。
三、活动目标
1、通过包饺子,使学生学习和掌握包饺子的基本方法和技巧。
2、利用饺子的不同形状进行综合构思、合理拼配、组成创意饺子作品。
3、通过活动加深与别人合作的意识,培养学生的创新意识和想象能力。
4、通过对已有经验的应用和想象力的发挥完成饺子作品,体会学会包饺子的乐趣。
5、通过小组分享劳动成果、畅谈感受体会劳动的不易和喜悦。
6、增强小组合作学习的意识,培养学生动手动脑的能力。
四、教学重点:掌握包饺子的方法与技能 教学难点:掌握擀饺子皮和包饺子的技巧。
五、活动准备:
1、将全班同学分为6组,每组选出组长,由组长合理分配任务,准备好包饺子的工具和材料:如,每组一块桌布2个擀面杖、一把菜刀、三个盘子、六个小碟、6双筷子、电磁炉及锅各一个
2、教师带领学生去菜市场买菜和肉,并指导学生拣菜、洗菜、切菜。
3、教师辅导学生和面、拌馅。
4、学生向父母学习包饺子。
六、教法、学法
我通过启发引导、操作演示、分解难点的方法引导学生采用小组合作、自主探究、交流总结的方式进行学习,给发挥的空间和时间,大胆放手,使自己真正成为学生帮助者、引导者、促进者。
七、教学过程
根据以上的教法和学法,我将教学过程分为以下六步
(一)创设情景
激情导入
我利用多媒体播放《喜洋洋》乐曲,并出示一幅饺子图,借机道出:除夕之夜,爆竹声声,一家人围坐在桌前,员的饺子,真是温馨、幸福。今天,大家想不想学学包饺子?接着,我引导学生根据已有的经验谈谈包饺子的工书四大步骤:和面、拌馅、擀皮、包饺子。
(设计意图:伴随着快乐的音乐、声情并茂的话语,一下字就把学生的思维带入一个包饺子的工作室,使每一位小小饺子师,充分调动了学生的积极性。畅谈的方法不但使学生明白了包饺子的工序,更为包饺子打好了基础。
(二)掌握方法
提升创新
由于课前和面、拌馅的工作已经就绪,所以我将擀皮、包饺子的方法作为重点讲授:
1、学会擀皮
掌握包法
首先,我利用多媒体分别出示了擀皮和包饺子的步骤图片,让学生看图并联系生活分别说说擀皮和包饺子的步骤的面揉成一个个小面团,再用力搓成直径约3—4厘米的长条,再切成一个个小圆柱体,撒上面粉、压平,用擀面薄的饼。这样,一个饺皮就擀成了。包时,将饺皮放在手心,在饺皮中间放上饺馅,用另一只手的食指和拇指将捏合。
(设计理念:实践是理论的指导,为了更好的掌握包饺子的方法,我用比较直观、形象的图片,代替了枯燥、生
2、总结注意事项
根据以往包饺子的经验,我先让学生谈谈擀皮和包饺子时应注意的事项,并在大屏幕上总结出注意事项让学生齐读领悟。
(设计理念:作为课堂教学的引导者,我充分发挥小组合作的优势,集中学生集体的智慧,帮助学生进一步掌握包饺子方法。)
3、激活灵感
引发创新
为了能拓宽学生的创作思维、增强创作饺子的欲望,我又在大屏幕上出示了形状独特、样子逼真的饺子图,有三菱饺子、鱼饺、葵花饺、蛤蜊饺,学生欣赏着一幅幅饺子作品图,口中连连称赞,不停的发出惊讶感叹之声,脸上表现出跃跃欲试的神情。我趁热打铁,展开包饺子比赛。学生在包的同时,我巡视、指导、协助学生完成。
(设计理念:兴趣是最好的老师,有兴趣就会有好的作品。多种多样的饺子图为激发学生灵感起到了抛砖引玉的作用。学生在借鉴的基础上经过我的提示,再通过进一步加工、改进、推陈出新,包出了有自己创意的饺子。)
(三)作品展示
体验成功
利用投影将各小组的饺子作品向全班展示,并由小组长向大家介绍饺子的形状,拼出的图案、作品的名称。有的组拼出一盘开口笑饺子,有的组为作品起名葵花朵朵开,还有的饺子作品被命名为五谷丰登。饺子作品既有创意又有深刻含义。我对学生的劳动成果我分别给予充分肯定。如对第一组的饺子作品我是这样评价的:“瞧,你们的作品既有借鉴,又有创新,形态各异、栩栩如生,你们真是活学活用啊。” 学生看着一盘盘来亲手做的饺子作品,更是兴高采烈。最后大家一致推举出最佳创意奖的获得者。此时,同学脸上洋溢着幸福与激动。
(设计理念:本环节中,学生在乐中学、学中做,采用合作的方式共同参与、集思广益,体验到了劳动的喜悦。)
(四)品尝成果
畅谈感受
学生看着这一盘盘自己包的饺子垂涎三尺,当我宣布把饺子下锅时,学生早已迫不及待。品尝着香味四溢的饺子,心中更有一番感慨。借此,我抓住机会,让学生畅谈感受。有的说:“原来包饺子也不是件容易的事情,我以后可要在劳动技能方面多锻炼。”有的说:“吃着自己包的饺子就是比平时香,我心里真是太高兴了。”还有的说:“通过活动,我明白了收获是要付出代价的,劳动最光荣。”还有的说:“包饺子是一件高兴的事,尽管辛苦,但苦中更多的是甜。”、、、、、、课堂中满是学生饱含深情的话语。
(设计理念:学生的情感在此升华,让本次活动的意义在此沉淀。)
(五)提出希望
延伸活动
在学生说出活动感受的基础上,我又营造了一个师生沟通的机会。“同学们,通过本次活动,我们掌握了一种劳动技能,在今后的生活中,大家要多动手、勤动脑、争取掌握更多的劳动技能来丰富我们的生活。”(设计理念:此时此刻,活动止,但行动不止。简单的总结,不但给学生有明确的生活指向,更有利于以后综合实践活动的开展。)反思:
新课程要求教师应是课程的建设者和开发者,综合实践活动课更体现教师作为课程开发者和建设者的作用。所以,我结合学生已有的生活经验开发了《包饺子》这一教学资源,并且将本课建设性的分为两课时完成。第一课时为前期准备,第二课时为具体操作。两课时中,都充分尊重学生的独特创造,努力使每一个学生具有自信心,体验劳动的乐趣,同时充分发挥评价作用,课堂上利用多媒体营造了一中轻松、愉快的氛围,构建了一个民主、和谐、愉快、互助的活动空间。• 本节综合实践活动课与生活联系紧密、实践性强、教育意义大,因此,得到了家长的认可和学校的支持。孩子们在活动中学到了书本上难以学到的知识,懂得了要怎样用探究性的眼光、思维来解决学习和生活中遇到的难题。这次活动,学生掌握的不只是包饺子的方法,而且学生的合作、交往能力也得到了发展,综合能力得到了提高。活动中孩子们表现出来的自主学习能力、学习态度,主动探索的精神令我惊讶,我为孩子们的精彩行动喝彩,新课程改革的途中,我愿与他们携手同行。
第二篇:《确定起跑线》说课稿
《确定起跑线》说课稿
一、教学内容: 人教版义务教育教科书《数学》六年级上册第80—81页
二、教材分析:
《确定起跑线》是一节综合应用数学知识的实践活动课,是在学生掌握了圆的概念和周长等知识的基础上设计的。教材设计这个活动,一方面让学生了解田径场跑道的结构,通过小组合作的探究性活动,综合运用所学的知识和方法,动手实践解决问题,学会确定起跑线的方法;另一方面让学生体会数学在日常生活中的应用价值,增强学生应用数学的意识,不断提高实践能力和解决问题的能力。
三、设计理念:
1、尽可能向学生提供现实的素材,让学生感受和学习“现实中的数学”,亲身经历将实际问题抽象成数学模型并进行解释应用的过程。
2、创设开放的问题情境和宽松的学习氛围,给学生充分的思考和交流的空间,引导学生开展自主性的数学活动。
3、关注学生思维水平的发展,让他们经历观察、分析、比较、归纳、应用的过程。
四、教学目标:
知识与技能:通过数学活动让学生了解田径赛道的结构,学会确定赛道起跑线的方法。
过程与方法:结合具体的实际问题,通过观察、比较、分析、归纳等数学活动,让学生通过独立思考与合作交流等活动加深体会数学学习方法,提高解决实际问题的能力。
情感与态度:在主动参与数学活动的过程中,让学生切实体会到探索的乐趣,感受到数学在体育等领域的广泛应用。
五、教学重难点:
教学重点:会计算每条跑道的长度,能根据跑道的长度差确定起点的位置。
教学难点:综合运用圆的知识解答生活中遇到的实际问题,探究起跑线位置的设置与什么有关,感受数学模型与生活的联系。
六、教学过程:
课一开始,我让学生谈一谈课前了解的关于跑道的有关知识。通过课前了解学生的学情,我觉得跑道虽然是学生们现实生活中非常熟悉的事物,但对于跑道的结构,即由两个完全一 1 样的半圆与两条长度相等的线段组成,多数学生并不了解,只有在充分了解跑道的结构的基础上,学生才能探究确定起跑线的问题,教师要注意准确把握学生的起点。
课件出示100米与400米起跑点的两张图片,让学生观察能发现什么?意在让学生发现外圈跑道要比内圈跑道的长,所以不能在同一起跑线上。那如何确定起跑线?从而引入课题。
初步研究起跑线的大概位置,通过观察,得出结论:第二跑道的起跑线所在的位置就是相邻两跑道的长度差。分组讨论,进一步研究如何求得长度差。学生会得到以下两个方法:
1.差=(2外半圆+2直)—(2内半圆+2直)
2.差=外圆—内圆
重点得到第二种方法,引导学生发现这个差距就是外圈两个弯道组成的圆与内圈两个弯道组成的圆的周长差。因为内外两跑道的差距和直道没关系,只和弯道有关,弯道的差就是两个跑道的差。
之后给出相应的数据,学生计算出结果是7.85米。而后提问第三道呢?更多道呢?引发学生的讨论、计算和验证。
通过对公式进行变形,得出最终结论:
相邻两跑道的长度差 = 外跑道圆周长-相邻里跑道圆周长
= d外×π-d内×π =(d外-d内)×π
也就是:跑道间的距离的2倍乘以π。
最后帮助学生梳理本节课的学习方法和探究思路。
首先,把它转化成数学问题,通过数学的解题方法得出结论,再把结论加以推广得出普遍的规律,最后把规律应用到生活实际中。应用解决400米的问题,留给学生课后探究200米的起跑线如何确定。
回顾教学过程和学生的表现,我发现了值得思考的问题。如在探究计算方法的过程中,我有意放手让学生自主探究方法,再汇报,意在让学生把计算方法达到最优化。但在教学中我始终不敢太放手,匆匆地结束探究,让部分学生还不知道从何开始就“到此结束”。因此,这节课的教学还是有待改进。
谢谢!
第三篇:确定起跑线说课稿
《确定起跑线》说课稿
【指导思想】
实事求是,根据学生的知识水平、认知水平,以学定教,重在培养学生解决问题的能力和合作探究的意识。
【分析与设计】
1、教材分析:
《确定起跑线》这节课是人教版小学数学六年级上册的综合应用,是课程标准实验教材新增加的一个内容。所谓综合应用,是指应用不同的数学知识、方法、活动经验、思维方式等解决实际问题或探索数学规律。
教材75-76页展现了一个椭圆形的运动场,提出直跑道的长度是105.8m,第一条半圆形跑道的直径为60m,每一条跑道宽1.2m。提出了三个有层次的问题:(1)为什么在跑400米时,运动员要站在不同的起点上?(2)各跑道的起点应如何确定?(3)相邻两道之间起点应相差多少米?
这个综合应用是在学生掌握了圆的特征、学会了周长、面积计算的基础上来教学的。培养学生用数学解决问题的能力是义务教育阶段数学课程的重要目标之一,教材的意图就是让学生通过小组合作的探究性活动,综合运用所学的数学知识和方法,动手实践解决问题,体会数学在日常生活中的应用价值,增强学生应用数学的意识,不断提高学生的实践能力和解决问题的能力。
2、学情分析:
通过该活动让学生了解椭圆式田径场跑道的结构,学会确定起跑线的方法。通过动手操作、画图、列表对比等方式发现事物隐含的规律;过程与方法目标定位于:通过活动培养学生利用小组合作,探究解决问题的能力。情感态度与价值观目标定位于:通过活动让学生切实体会到探索的乐趣,感受到数学在体育等领域的广泛应用。
【说教法、学法】
《数学课程标准》指出:数学学习内容应当“有利于学生主动地进行观察、实验、猜测、验证、推理与交流等数学活动”、“动手实践、自主探索、合作交流是学生学习数学的重要方式”、“学生是数学学习的主人,教师是数学学习的组织者、引导者与合作者”,那么,如何体现新课程所提倡的学习方式、教学方式呢?
我的思路是:
(1)小学数学问题解决法:新课标指出:“问题情境——建立模型——解决问题——应用拓展”是教学的一种基本模式,结合“猜测——验证”的教学思想,有效地组织学生独立思考和合作学习相结合、教师适度引导和学生自主探究相结合,让学生经历探究问题的过程、感受学习数学的乐趣。
(2)对比教学法;一是创设对比性情境:100米起终点与400米其终点的对比,运用日常生活学生熟悉的情景,为学生创设问题情境、动手操作和合作交流的情境,激发学生的学习兴趣,更易于学生掌握数学与客观规律的联系。让学生在对比中发现问题、提出问题。二是在探究问题时采用列表的方法,让学生有序地进行对比,便于学生对问题进行抽象、升华。体现方法论。
(3)尝试法:课标指出:过程让学生经历,结论让学生去概括。本节课的结论是相邻两道之间的差就是两个两个圆周长的差,引导学生概括相邻两跑道之间的差距。虽然不一定严密,但学生进行了有益的尝试,有总结有反思就会有进步。
【说教学过程】
一、创设对比情景,提出问题
1、对比性的情景导入:
情景一:甲乙丙丁四人站在1-4四条跑道上参加100米的赛跑,并且起点相同。
情景二:甲乙丙丁四人站在1-4四条跑道上参加400米的赛跑,并且起点相同。分四个道次沿椭圆形跑道跑一圈,再回到同一个终点,谁先回到终点就为第一。
师:同学们对这场比赛有什么看法吗? 可以怎么办?
生:因为终点相同,所以要把外道的起点向前挪!
2、提出问题:这个距离是随便移动的吗?相邻起跑线相差多少米?
3、揭示课题:今天,我们用知识找出相邻起跑线相差多少米?重新确定一个公平的起跑线。(板书课题:确定起跑线)
【设计意图:数学课程标准中指出:数学要紧密联系学生的生活环境,从学生的经验和已有知识出发,创设良好的教学环境。课的开始在这样一个学生熟悉的活动中设计了一个对比性的情景,设计了一场不公平的比赛,让学生在观看的同时也发现比赛中存在的问题,并且提出问题。也使学生感受到生活中也隐藏着数学问题,数学就在我们的身边。】
二、猜想验证、探究问题
(一)了解跑道结构、简化问题:
(1)出示完整跑道图(共四道,跑道最内圈为400米)
(板书:跑道一圈长度=圆周长+2个直道长度)
(2)四个人沿跑道跑一圈,各跑道之间的差距会在跑道的哪一部分呢?(猜测)
(3)小结:沿跑道跑一圈与直道无关,与左右两个弯道有关。
【设计意图:学生在观察中发现相邻跑道的差距没有在直道部分,而在弯道部分。也就把所研究的问题很有重点地简化为探究弯道之差,也给学生留下了广阔的思考空间和数学思想的渗透——抓住事物的本质特征。】
(二)寻求、探究解决方法:
1、独立思考和探究:弯道之差是多少呢?请自己观察图形,想想如何计算弯道之差?左右两个半圆形的弯道合起来是一个什么?
2、小组合作、讨论:你怎样找出相邻弯道的差距?相邻弯道差距其实就是谁的长度之差?
3、交流小结:只要计算出各圆的周长,算出相邻两圆相差多少米,就是相邻跑道的差距,也就是相邻起跑线相差多少米。
【设计意图:新课程标准中指出,教师要积极利用各种教学资源,创造性地使用教材,设计符合学生发展的教学过程,培养学生的创新意识。在这里学生发现左右的半圆是一个圆,课件将左右的弯道合成一个圆;通过小组的合作、交流,从而找出问题的结果:弯道之差其实就是大小两个圆的周长之差。】
(三)、列表解决问题:
1、教师带领学生填写表格的前两道,剩下的由学生完成。
道数 1 2 3 4 直径 60、62.4、64.8、67.2 周长
相邻两道的差
道宽 1.2米 直道 105.8
2、汇报结论:相邻起跑线相差都是2π,也就是道宽×2×π。说明起跑线的确定与道宽最有关系。C环差=跑道宽*2π
3、计算相邻起跑线相差的具体长度:跑道宽*2π
【设计意图:学生在教师的组织、引导下开展独立学习和小组合作学习,既保持学习的独立个性又发挥小组合作、交流、相互启发。通过表格法,找出确定起跑线的规律:即400米起跑线差距是跑道宽*2π,为了便于学生发现规律及后面的计算,道宽改用整数1米,结果用代数式来表示,减轻了学生的计算负担,同时也提升了学生的数学思维品质。
用表格法既有效搭起学生发现规律的桥梁,也进行了方法论的渗透。学生在探究活动中不仅加强了对所学知识的理解,同时获得了运用数学解决问题的思考方法,学会了与他人合作,学生的数学素养得到提高。】
三、巩固练习、实践应用
师:400米的跑步比赛,道宽为1.25米,起跑线该依次提前多少米?
生:1.25×2×π=2.5×3.14=7.85(米)
师:400米的跑步比赛,道宽为1.5米,起跑线该依次提前多少米?
生:1.5×2×∏=3×3.14=9.42(米)
四、拓展延伸、自我评价
1、解决问题:在运动场上还有200米的比赛,道宽为1.25米,起跑线又该依次提前多少米?
预设1:道宽与前面的400米一样,我可以用前面算的7.58米除以2,是3.79米。
预设2:200米的比赛就只跑了400米的一半,跑了一个弯道,只增加了一个道宽,就可以直接用道宽×∏。
2、全课小结:谈一谈,这节课你有什么收获?
【设计意图:通过对200米跑道起跑线的确定,让他们充分运用知识、所发现的规律解决其他类似的问题,在新课的基础之上有一个小小的拓展,呈现一定的问题梯度,打开学生思维的空间,激发学生的智慧,也高度体现:不同的学生获得不同的数学知识,不同的学生获得不同的数学学习体验。】
第四篇:《确定起跑线》课堂实录
《确定起跑线》课堂实录
【教学目标】
知识与技能:让学生经历运用圆的有关知识计算跑道长度的过程,明确“跑道内外圈的长度不同是因为弯道的构造决定的”,理解“跑道的弯道部分,是由同一圆心不同半径的半圆构成,外圈半径大,外圈比内圈要长”,了解“跑道宽度相同,相邻跑道长度的差就相等”,从而学会确定起跑线的方法。
过程与方法:结合具体的实际问题,通过观察、比较、分析、归纳等数学活动,让学生通过独立思考与合作交流等活动加深体会数学学习方法,提高解决实际问题的能力。
情感与态度:在主动参与数学活动的过程中, 让学生切实体会到探索的乐趣,感受到数学在体育等领域的广泛应用。
【教学重点】了解田径场跑道的结构,通过转化为计算圆的周长,从而能正确计算起跑线的位置,理解起跑线设置原理。
【教学难点】综合运用圆的知识解答生活中遇到的实际问题,探究起跑线位置的设置与什么有关,感受数学模型与生活的联系。
【教学难点】综合运用圆的知识解答生活中遇到的实际问题,探究起跑线位置的设置与什么有关。
教学过程:
师:课前通过了解,谁能给大家介绍一下跑道的结构。
生1:两边可以看成是半圆,中间是长方形。
生2:我补充一点,有弯道和直道。有1道一直到8道
师:了解了跑道的结构,看两幅图,一个是100米起跑点,一个400米的起跑点,你发现了什么?
生1:100米在同一起跑线上起跑,400米不在同一起跑线上起跑。师:同意吗?为什么400米的没有在同一起跑线上呢
生1:因为内外距离不一样。
生2:因为外圈比内圈跑得要多一些,外圈起点要靠前。板书课题:确定起跑线
师:你打算从第几跑道开始研究啊?(生:第一)我们习惯上从第一道按顺序研究,先拿最靠里的第一道和第二道。
你知道第一道的起点在哪吗?
生:起点就是在终点。(课件出示第一道起跑线)
师:看一下1道的运动员是怎么跑的?(课件出示一道运动员跑步的过程。)
师:1到运动员所跑的长度呢,我们通常指的是里圈的长度?
师:请问:第二道的起跑线在什么位置?
生1:在终点靠前一点,拐弯的距离。
生2:在终点往前的位置。
师:在第一道起跑线往前一点。为什么呢?
生1:如果在同一起跑线,第二道的比第一道要跑的多。
师:同意吗?谁能再来说一说。
生2:第二道要比第一道多跑
师:为了公平,第二道应该往前一点要使他们跑得一样多,往前的这一块应该是多少呢?
生1:外圈比内圈多多少,就应该往前移多少米.师:还有吗?
生:他们之间的距离就是第二道比第一道多得部分。
师:也就是第二道与第一道的差。
师:很好,现在我们把解决生活中的确定起跑线问题就转化成了数学问题,求两跑道的长度差。(板书:长度差)
师:怎么来求这个长度差呢?现在拿出学具纸,进行画一画割一割看看怎样得到长度差。
小组讨论,教师巡视指导,全班汇报。
生1:我们可以先求出两个大半圆的和,再求出直道的和,再减去两个小半圆与两个直道的和,就可以求出他们的差。
师:谁明白她得思路了?
生2:先不管直道,算出外圈半圆距离和内圈的半圆的距离,再加上直道。
师:也就是说,外圈两个半圆加上两个直道减去内圈两个半圆加上两个直道。记录下来。板书:
差=(2半圆(外)+2直)-(2半圆(内)+2直)
师:这种方法行不行。(生:可以)非常好,这个同学把这个封闭图形通过分割,转化成了我们所学过的2个半圆和两条直道,求差。还有别的方法么?
生1:两个弯道拼成一个圆,算出里面圆的周长和外面圆的周长,第二道减去第一道,就知道第二道在哪起跑了。
生有问题:第二道的周长怎么求呢?
师:没有给出数据没法求。他的思路可以吗?
生:可以
师:谁明白了。
生2:他是说可以先求出两个大半圆拼成的圆的和,再求出直道的和,再减去两个小半圆拼成的圆与两个直道的和,就可以求出他们的差。
师:她说的是不是黑板上的这个思路啊。
生3:先不管直道,因为距离不相等,算出弯道距离,外圈减去内圈。
师:先写下来
板书:差=圆(外)-圆(内)。
师:是不是就是外圈两个弯道组成的圆与内圈两个弯道组成的圆的周长差。你明白了吗?同位两个互相说一说。
师:是不是就是前进的距离啊。和直道没有关系。我们一起看看课件。(课件演示)
师:同学们真了不起通过把这个图形分解和重新组合在一起。
师:要想算出这个长度差,你想知道什么数据呢?
生1:知道直径或是半径。
生2:1道和2道相差的距离。(什么意思啊?)生3:里圈和外圈差多少,就能算出外圈的直径。
师:就是想知道两个跑道之间的距离。
课件:距离是多少?(1.25)72.6表示什么?
生:内圈的直径。
师:请问外圈的直径该是多少呢?
生1:内圈的直径加上第二圈比第一圈多得距离。师:列个算式。
生:72.6+1.25×2
师:1.25×2求得是什么?
生1:两个弯道的和?
生2:不是,是外边大圆的直径。
生3:增加1.25×2
生4:外圈比内圈多1.25×2
师:也就是说第二圈比第一圈多2个1.25
师:非常好,这两种方法都可以,任选一种方法,利用手中计算器开始算吧。派取3.14。
独立完成,汇报交流。
(板书算式)生:先求外圆的周长。
(72.6+1.25×2)×3.14-72.6×3.14
算一下多少啊?最后的结果是7.85米。
师:差是7.85米说明第二跑道起点在哪儿??
生1:第一跑道往前7.85米.生2:第二跑道在第一跑道前边7.85米。
师:(课件演示)也就是说第二跑道在第一跑道往前7.85米。
这个同学怎么了?
生提问:1.25×2×3.14直接就能求出长度差来?
师:谁听明白了。板书:间隔×2×3.14 非常有想法,一会我们再来验证到底行不行?
师:那第三道的起点应该在哪个位置,(课件出示3道)(生:第二道往前7.85米)他和2跑道有相差多少呢?
生:相差7.85米。
师:他说是和第二跑道相差7.85米,是么?再算一算。师:第三道有几个间隔啊?
生:4个
师:再加上72.6,就是第三道的直径,再乘3.14,就求出了第三跑道圆的周长是多少.是多少啊?
生:7.85/15.7
师:再计算一边。
生计算
师:一起列出算式,第三道直径是多少?
(72.6+1.25×4 ×3.14-(72.6+1.25×2)×3.14
计算一边是多少?
师:把数据记录下来,再相减,就可得到7.85.那第四道,第五道,更多道呢?
生:都是7.85 师:如果是的话,为什么相邻两个跑道的差是一个不变的数?四人一小组继续讨论讨论。
汇报:
生1:相邻两个的宽是一样的。
生2:间隔没有扩大或是缩小,7.85一直不变,再多跑道也是7.85.师:如果有长有短,有宽有细就不公平了。
师:如果我们用d外表示外圆直径,d内表示内圆直径。那么这样两圆的长度差是多少呢?
生:d外x3.14-d内x3.14
师:看到这个算式你有什么想法?
生1:(d外-d内)也就是两跑道之间的间隔。因为有两个间隔所以间隔×2×3.14。
生2:(d外-d内)就表示两跑道之间有两个间隔,所以间隔×2×3.14。
师:也就是说外圆的直径减去内圆的直径就是两个间隔,即间隔×2×3.14。把掌声送给那位同学。
师:你们可真了不起,我们把求相邻两跑道差的方法加以推广就得到了这么重要的一个规律。(板书:规律)
师:如果跑道有无限条的话,起点应该怎样确定啊?
生1:旁边那个跑道加或是减7.85就可以了。
生2:不一定,算出二道和一道差多少,依次加就可以了。
师:那么我们以后再计算相邻两跑道差时,只要知道什么就行了。
生:周长?
生:间隔。
师:知道了间隔按照这个规律去做就可以了。
师:今后我们在研究生活中的实际问题时,就要按照这个思路去研究。首先,把它转化成数学问题,再通过数学的解题方法得出结论,再把结论进行推广得出普遍的规律。我们这节用得是分割和组合(板书:分割组合)最后再把规律应用到生活实际中。
师:好了,400米的起跑线研究完了,那200米呢?出示课件体会200米比赛。这个问题我们下节课研究。(课件表明200米一道起点、终点一道路线图。)
板书设计: 确定起跑线 间隔×2×3.14
实际问题 差=(2半圆外+2直)-(2半圆内+2直)
转化
数学问题 =圆外-圆内
组合 分割 =(72.6+1.25x2)x3.14-72.6x3.14
规律 =7.85米
d外x3.14-d内x3.14
应用 =3.14x(d外-d内)
第五篇:《确定起跑线》教学设计
《确定起跑线》教学设计
浙江省诸暨市浣东街道双桥小学 陈文龙(初稿)浙江省诸暨市实验小学教育集团 陈菊娣(修改)浙江省诸暨市教育局教研室 汤 骥(统稿)
教学内容:人教版小学数学教材六年级上册第80~81页相关内容。
教学目标:
1.通过数学活动让学生了解椭圆式田径跑道的结构,学会确定跑道起跑线的方法。
2.结合具体的实际问题,通过观察、比较、分析、归纳等数学活动,让学生通过独立思考与合作交流等活动提高解决实际问题的能力。
3.在主动参与数学活动的过程中,让学生切实体会到探索的乐趣,让学生切实体会到数学在体育等领域的广泛应用。
教学重点:通过对跑道周长的计算,了解椭圆式田径场跑道的结构,能根据所学知识解决确定起跑线的问题。
教学难点:综合运用圆的知识解答生活中遇到的实际问题,探究起跑线的设置与哪些因素有关。
教学准备:课件
教学过程:
一、情景引入 出示校运会100米比赛和400米比赛的场面。
教师:看了两个比赛,在起跑线上你发现了什么情况?(组织学生交流)
预设1:100米跑运动员站在同一条起跑线上,而400米跑运动员站在不同的起跑线上。预设2:外面跑道的运动员站在前面,里面跑道的运动员站在后面,这样公平吗? 预设3:400米跑的起跑线位置是怎样安排的?
教师:今天,我们就带着这些问题走进运动场,用我们学过的知识来研究、解决这些问题,了解比赛的时候各跑道的起跑线是如何确定的。
【设计意图】引导学生观察不同的起跑场景,比较不同点,从而引入需要研究的数学问题。
二、合作探究
(一)明确探究的方向(课件出示完整跑道图)
教师:观察跑道图,每条跑道一圈的长度相等吗?差别在哪里呢?比赛的时候,是怎样解决这个问题的?怎样才能做到公平比赛?
(二)合作探究
1.小组交流:观察跑道图,说一说,每一条跑道具体是由哪几部分组成的?内、外跑道的差异是怎样形成的?
学生充分交流得出结论:
①跑道一圈长度=2条直道长度+1个圆的周长(两个弯道合成一个圆); ②内外跑道的长度不一样,是因为内圆和外圆的周长不一样。2.小组讨论:怎样找出相邻两个跑道的长度之差? 预设1:分别把每条跑道的长度算出来,也就是计算2个直道长度与一个圆周长的总和,再相减,就可以知道相邻两条跑道的长度之差。
预设2:因为跑道的长度与直道无关,只要计算出各圆的周长,再算出相邻两圆的周长相差多少米,就是相邻跑道的长度之差。
(三)计算验证
教师:计算圆的周长要知道什么? 学生:直径。
教师:第一道的直径为72.6米,第二道是多少?第三道呢?(让学生选择自己喜欢的方法进行计算。)
预设1:计算每一条跑道的长度。
预设2:弯道长度相减。
75.1×3.14159-72.6×3.14159≈7.85(m); 77.6×3.14159-75.1×3.14159≈7.85(m); „„
预设3:先求弯道直径之差,再计算长度之差。(75.1-72.6)×3.14159≈7.85(m);(77.6-75.1)×3.14159≈7.85(m); „„
(引导学生将3.14159换成进行计算)
教师:刚才大家通过计算已经知道了400米跑相邻两个跑道长度大约相差7.85米,也就是相邻跑道的起跑线应该相差7.85米。哪一种方法更快、更简便呢?
预设:第三种方法更简便。教师:75.1-72.6表示什么?
预设:跑道宽度的2倍,也就是两个圆的直径之差。教师:如果我们在计算圆的周长时直接用来表示,看你有什么发现?(72.6+1.25×2-72.6)=1.25×2×;(75.1+1.25×2-75.1)=1.25×2×; „„
(相邻跑道起跑线相差都是“跑道宽×2×”)
教师:从这里可以看出:起跑线的确定与什么关系最为密切? 预设:与跑道的宽度关系最为密切。
小结:同学们经过努力终于找到了确定起跑线的秘密!只要知道了跑道的宽度,就能确定起跑线的位置。
【设计意图】通过不同的方式,计算相邻跑道的长度差,不断对探究方法进行优化,接近造成相邻跑道长度差的根源,让学生明白相邻跑道长度差和跑道宽度的关系。
三、巩固应用
1.校园运动会的跑道宽比成人比赛的跑道宽要窄些,400米的跑步比赛,跑道宽为1米,你能帮裁判计算出相邻两条跑道的起跑线应该依次提前多少米吗?如果跑道宽是1.2米呢?(圆周率取3.14)
2.在运动场上还有200米的比赛,跑道宽为1.25米,起跑线又该依次提前多少米?(提示:200米比赛有一圈吗?)
【设计意图】促进学生举一反三,设置不同难度的问题,让学生用最简洁的方法计算起跑线应该依次提前多少米,尤其是200米比赛,只有半圈,只有一个弯道,也就是只相差圆周长的一半。
四、课外延伸 课外活动时,我们到操场上去实地试一试,确定一下400米赛跑每一条跑道的起跑线在哪儿吧。
【设计意图】学习了书面的确定起跑线后,到实际的场地上去实践一下,一方面可以巩固所学知识,另一方面可以直观地验证确定起跑线的方法,提升学生学习数学的积极性,获得学习数学的成功感。