高中数学 对数函数的教学与反思 新人教A版(最终定稿)

时间:2019-05-15 03:25:27下载本文作者:会员上传
简介:写写帮文库小编为你整理了多篇相关的《高中数学 对数函数的教学与反思 新人教A版》,但愿对你工作学习有帮助,当然你在写写帮文库还可以找到更多《高中数学 对数函数的教学与反思 新人教A版》。

第一篇:高中数学 对数函数的教学与反思 新人教A版

《对数函数》的教学与反思

关于教育理论,我自己在大学学过一些教育理论,我在这里想结合加涅的信息加工理论,对我自己的《对数函数》这一节教学实录进行分析。下面包含了这六个方面的内容:学情分析、教材分析、教学目标、教学重难点、教学过程和教学反思(自我反思和师傅对我的点评)。1学情分析

刚从初中升入高一的学生,仍保留着初中生许多学习特点,能力发展正处于形象思维向抽象思维转折阶段,但更注重形象思维。大多数学生处于既喜欢学习数学,又害怕学习数学的矛盾心理状态之中。最根本的心理障碍是解数学题有困难,他们感到听教师讲例题有劲,自己做题目苦恼!所以只依赖老师讲,不肯自觉做;对于学习方法,明知要着重理解,但还是习惯于独立地记忆,所以不能举一反三,触类旁通。2教材分析

对数函数是高中引进的第二个初等函数,是本章的重点内容。学生在前面的函数性质、指数函数学习的基础上,用研究指数函数的方法,进一步研究和学习对数函数的概念、图象和性质以及初步应用,有利于学生进一步完善初等函数的认识的系统性,加深对函数的思想方法的理解。由于以对数为基础的对数函数概念十分抽象,它是高中

阶段学生最不易掌握的函数类型,同时初中函数教学要求降低,初中生运算能力有所下降,这双重问题增加了对数函数教学的难度。在教学过程中,虽然学生的认知水平有限,但只要让学生体验对数函数来源于实践,通过教师课件的演示,通过数形结合,让学生感受y=logax(a>0且a≠0)a取不同的值时反映出不同的函数图象,让学生观察、小组讨论、发现、归纳出图象的共同特征、函数图象的规律,进而探究学习对数函数的性质。

教学目标:(1)理解对数函数的概念,能正确画出对数函数的图象,知道对数函数的常用性质。

(2)能运用对数函数的性质比较两个对数式值的大小。

(3)通过对数函数图象及性质的探究,渗透化归、分类讨论以及数形结合的思想。

4教学重点和难点:理解对数函数的定义,掌握对数函数的图象和性质是本课的重点。难点是底数a对图象的影响及对数函数性质的灵活运用。5教学过程

·复习回顾

我们已经学习了指数和对数这两种运算,请同学们回顾指数幂运算和对数运算的定义,并说出这两种运算的本质区别。(学生思考并交流)·问题情境

引用细胞分裂和放射性物质的例子,师生交流,共同归纳总结,老师板书对数函数的定义。

设计意图:从生活实例引入,有利于激发学生的探究热情,提高学生将实际问题数学化的能力。通过从实际问题抽象出对数函数的一般形式,让学生感受从特殊到一般的数学思维方法,发展学生的抽象思维能力。

·合作探究

根据指数函数y=a与对数函数y=xlogax(a>0且a≠0)的定义域、值域之间的关系写 1

出对数函数的定义域及值域。

设计意图:通过旧知引入新知,有助于学生 同化新知识。

·新知运用

例1根据对数函数定义填空: 1)函数y = log05(4-x)的定义域是()2)函数ylog5-x定义域是()(其中a>0且a≠0)a 设计意图:本例主要考查对数函数定义中底数和定义域的限制,加深对概念的理解,所以把教材中的解答题改为填空题(对教材例题的加工),使教学过程更紧凑。

·实验探究

1xy和ylog1x让学生画 教师给出两组函数:(1)y2和ylog(2)x;222x出它们的图象,观察、探究这两组图象之间的关系。学生可相互讨论、交流自己的结论。

教师利用PPT演示上述两组图象的形成过程,揭示它们之间的关系,再引导学生得出对数函数的定义域、值域、定点、单调性等基本性质(逐渐形成下表,明确底数a是确定对数函数的要素)。

┌─┬───────────┬──────────┐ │ │y=logax(a>1)│Y=logax(0

设计意图:注重引导学生用特殊到一般的方法探究对数函数图象的形成过程,进一步体会函数作图的一般方法。同时,启发学生通过对数与指数的关系将对数函数的图象转化为指数函数的图象,体会数学知识间的相互联系以及转化的思想方法。拓宽学生探究的思路和方法,提高探究的效率和质量。教师还可通过信息技术增强学生的直观感受,发挥多元表征的作用。

·新知运用

例2比较下列各组数中两个值的大小:(1)log23,log2 3(2)log051 log052(3)log5,loga5.9

设计意图:通过运用对数函数的图象与性质解决一些简单的问题,促进学生对对数函数性质的掌握和理解,体会具体问题具体分析以及分类讨论的数学思想方法。

·回顾小结

通过本节课你还有什么问题或疑惑?生说师评。

·布置作业

书面作业:(1)(必做题)课本第70页习题第2,3题;(2)(思考题)已知函数f(x)= 2log(,若定义域为R,求实数a的取值范围;若值域为R,求实数a的取值范x-2ax3)2围。

探究作业:对数函数y = log2x二与y = log1X之间存在什么关系?进而研究函数y=f(x)

2与函数y=-f(x)图象之间的关系。

设计意图:设置思考与探究作业的目的是加强新旧知识间的联系,有利于将新知顺利地嵌入到已有的知识网络中。

6教学反思

函数是高中数学的主线,对数函数是高中数学的难点之一,为了调动学生学习的积极性,本课从实例出发,启发引导学生得到对数函数的定义。在概念理解上,通过步步设问、课堂讨论来加深理解。先让学生亲自动手画两个图象,教师再借助电脑,通过描点作图,演示作图过程及图象变化的动画过程;再引导学生说出图象特征及变化规律,从而得出对数函数的性质,提高学生的形数结合的能力。本课充分体现了“教师为主导,学生为主体”的教学原则。

听课点评(杨萌整理): 师傅任老师首先肯定我的语言表达相当清晰。但板书中,对数中的底数的位置应该下移一些,避免学生的误解。(板书的注意)任老师认为教科书中细胞分裂的例子对于对数而言是可以的,但是对于对数函数是不合适的。虽然学生不一定会认识到有问题存在,但作为教师应该要斟酌。

任老师还指出,如果在上课时强调了对数函数的单调性与底数a有关,问题就可以减少很多。而且还应该讲出为什么要学习对数函数,渗透变换的思想;师傅还说应该告诉学生研究函数图象及性质的目的,是为了不用每次比较大小都要画图象。应该告诉学生单调性不能靠眼睛看出来,它是有严格的定义的,在以后的学习中会解决,这样才能使学生形成正确的数学观。

在教学临场处理上,师傅肯定了我老师不急于否定学生的做法,用例子分析求函数定义域时不能将函数变形,因为变形不一定等价。

在计算机课件的制作上,师傅特别强调,课件要自然,要能根据学生的回答现场操作,不建议使用PPT制作数学课件。

第二篇:对数函数教学反思

对数函数教学反思

对数函数教学反思1

一、教材分析。

本节课是《普通高中课程标准实验教科书?数学1(必修)》(人教A版)第二章第2节第二课《对数函数及其性质》。本节课的内容在教材中起到了承上启下的关键作用。一方面,对数函数是在学生系统学习了函数概念,基本掌握了函数性质的基础上,进行研究的第一个重要的基本初等函数。作为基本初等函数,它是继指数函数之后对高中函数概念及性质的又一次应用;另一方面,对数函数是后续学习幂函数的基础,对于研究幂函数及其他基本初等函数,在研究方法上起到示范作用。

二、学生分析。

从学生的知识上看,学生已经学习了函数的定义、图像、性质,对函数的性质和图像的关系已经有了一定的认识。学生已经熟悉研究函数的一般过程和方法,会用此来研究对数函数。

从学生现有的学习能力看,通过初中对函数的认识与理解,学生已具备了一定的观察事物的能力,积累了一些研究问题的经验,初步具备了抽象、概括的能力。通过教师启发式引导,学生能自主探究完成本节课的学习,会进行多媒体的基本操作。

三、教学目标。

1、知识与技能目标:

①通过具体实例了解对数函数模型的实际背景。

②初步理解对数函数的概念、图像和性质。

2、过程与方法目标:

①借助课件绘制对数函数图像,加深对定义的认识,增强对对数函数图像的直观感知。

②学生观察对数函数图像,通过代表发言等活动,探究对数函数性质。

③通过对对数函数的研究,体会数形结合、由具体到一般及类比思想。

3、情感态度与价值观目标:通过小组讨论、代表发言活动,培养合作交流意识。

四、教学环境与准备。

多媒体网络教室、课件。

五、教学过程。

1、探究新知。

(1)归纳定义。

设计意图:通过对函数解析式的分析,突出对底数取值的认识,引导学生把解析式概括为的形式,为形成对数函数定义作铺垫。

对数函数的定义:一般地,形如(且)的函数叫做对数函数,其中是自变量,函数的.定义域为 。

师生共同分析定义要点:

①定义域为。

②对数函数是形式化的定义。

③且。教师引导学生将指数函数定义与对数函数定义作对比。

(2)作图探究。

问题2:我们研究函数的一般过程是什么?

①教师启发学生思考:归纳定义,画出图像,观察图像,总结性质,继而进行性质应用。

(设计意图:对数函数作为基本初等函数,是继指数函数后对高中函数概念及性质的再次应用,学生已经熟悉研究函数的一般过程和方法,会用此来研究对数函数。)

②作图1:画出函数的图像。

学生独立在坐标纸上作图,教师巡视个别辅导,正投对比展示学生作图结果,总结作图要点,规范列表、描点、连线的每一步。

(设计意图:描点法作图是画函数图像的基本方法,用正投呈现学生作图结果,培养学生画图基本功。)

③作图2:自主选择底数绘制对数函数的图像。

④设组确定的对数函数图像。

(设计意图:学生通过在同一坐标系中,绘制多个对数函数图像,在绘制过程中,可以更加直观地感知底数对对数函数图像的影响,能更好地观察图像特征,总结图像性质。)

⑤学生自主选择底数,绘制对数函数图像,”,各小组根据所绘制的对数函数图像,观察图像特征,总结性质,每组自荐一名代表发言。教师适时发问、点拨,引导学生总结,师生、生生互动交流。

观察图像,你认为如何对对数函数进行分类研究?

各小组学生共提出两类标准:

a、按图像上升和下降分两类。

b、按底数分两类。经教师引导,学生发现这两类标准可以统一:与图像上升统一;与图像下降统一。

⑥你能结合屏幕上所呈现的对数函数图像,观察它们的图像特征,并总结其性质吗?

各组学生从图像位置、特殊点、图像变化趋势等方面总结图像特征。(设计意图:学生通过观察具体对数函数图像,应用数形结合思想,归纳概括性质。)

(设计意图:通过几何画板课件的动态演示,学生更直观地观察到对数函数图像随底数的变化情况,以及为什么要把底数分为和两类,有利于学生由图像归纳性质,从而突破本节课的难点。)

(3)归纳性质。

学生观察图像,讨论总结性质。

(设计意图:学生总结性质,培养学生归纳概括能力。)

师生共同对学习内容进行总结:

①研究函数的一般过程是:定义→图像→性质→应用。

②借助图像研究性质,应用了数形结合思想;由具体对数函数入手,到一般对数函数总结性质,应用由特殊到一般思想方法;对数函数对底数分类进行研究性质,应用了分类讨论思想,类比指数函数研究对数函数,应用了类比思想。

3、例题讲解。

师:刚才我们共同探究得出性质,下边看性质应用。

例1:比较下列各组中两个值的大小:① ;② ;③ 。

(设计意图:通过例题使学生体会对数函数单调性应用,设计三题,使学生体会分类讨论思想。)

第一题教师引导讲解,示范解答过程,第二题、第三题学生正投讲解。

设计意图:通过学生正投讲解题目做法,培养学生学习数学的信心和勇气,同时,对于出现的错误及时纠错,起到示范作用。

4、归纳总结。

(1)这节课你学到哪些知识?

(2)这节课你体会到哪些数学思想方法?

5、分层作业。

(1)必做题:P73,2、3;

(2)选作题:函数和的图像间有何关系?

六、教学反思。

1、设计问题系列,驱动教学。

问题是数学的心脏,本节课以6个问题为主线贯穿始终,以问题解决为教学线索,在教师的主导与计算机的辅助下,学生思维由问题开始,由问题深化。

2、借助信息技术突出重点、突破难点。

本节课的学习重点是对数函数的概念、图像和性质;学习难点是用数形结合方法从具体到一般地探索概括对数函数性质,为突出重点、突破难点,使用了以下信息技术:

(1)探究对数函数概念:课上播放PPT课件,学生总结三个“观察事例”中函数解析式的共同特征,概括到的形式,从而形成概念,突出学习重点。

(2)绘制对数函数图像:作图1,学生动手画图,初步感知对数函数图像,教师个别辅导,正投展示,对比分析作图结果,纠正作图错误,总结作图要点,培养学生作图基本功;作图2,设计课件,全体学生参与,自选底数绘制对数函数图像,从而加深了学生对定义的认识,增强了对图像的直观感知,突出学习重点。

(3)探究对数函数性质:对数函数性质的获得,需要借助对数函数图像。设计“动手实践2”,教师运用课件的动态演示功能,验证底数取定义范围内所有值时,对数函数的性质,学生操作课件“动手实践2”,通过拖动点“”,改变底数的值,观察对数函数图像随底数的变化情况,学生的亲身体验,提高了对研究过程的参与程度,有效突破学习难点。

(4)运用课件“演示””功能,使得大量图像共享成为可能,使得学生小组代表发言活动得以实施,提高了学生对研究过程的参与程度,使得学习效率明显提高,更为有效地突破学习难点。

对数函数教学反思2

1.本设计适于学习程度一般的学生,坚持面向全体学生,引导学生积极主动地参与获取知识的全部过程,体现以学生为中心的教育教学理念。由于学生已了解研究函数的具体方法及步骤,有了研究指数函数的经验,为研究对数函数提供了知识上的积累。因此,通过我们高一数学备课组的.共同研究、多次讨论、反复修改,本教学设计从特殊到一般,运用类比的思想,类比指数函数的研究方法及模式,通过画出对数函数的图像,从中直观地归纳出其性质。

2.从课堂具体实施情况来看,让学生自己动手,亲身体验方面做得比较欠缺,比如对数函数图像的画法,考虑到时间问题,没有让学生自己动手体验,而是老师代替了。其次学生之间的交流、讨论,师生之间的互动还需加强,课堂气氛还不够活跃。

3.总之,通过本次数学组的集体备课活动,使我们真正体会到了集体的力量是无穷的,在集体备课中,依据主备人的预案,大家根据自己的研究心得和教学实际经验讨论补充,集思广益,达成共识,以期达到教师参加集体备课,带着经验和问题而来,携着感悟和启发而归的目的。

对数函数教学反思3

在教学过程中,我类比指数函数图象和性质的研究,研究了对数函数图象和性质。同学们课堂上能积极主动参与获得性质的过程。我用了三节课就对数函数的图象和性质,图象和性质的应用进行讲解。可从作业和课堂效果看来。同学们没有对指数函数的性质和图象掌握的好,分析有以下原因

1、学生对对数函数概念的理解及对数的运算不过关。导致部分题目出现运算错误或不会。

2、利用对数函数的单调性比较俩个对数式的'大小书写格式不规范。说明同学们用函数的观点解决问题的思想方法还没形成。

3、同学们对对数与指数的互化不是很熟练。导致有关指对互化题目出现错误。尤其是解决有关对数和指数混合式子的有关计算时困难很大,问题最多。还有在解决有关对数型函数定义域问题,更不会用对数函数的单调性去解决。

以上这些原因我通过认真的反思,同时参考学生提出的意见,决定讲俩节习题课,针对学生存在的共性问题解决,找出他们的盲点,同时加强练习力度。从练习中发现问题,再利用晚自习系统讲解,直到绝大部分学生理解掌握为止。

对数函数教学反思4

《对数函数及其性质》是人教版数学必修一的内容。有人说“课堂教学是学术研究的实践活动,既像科学家进入科学实验室,又像艺术家登上艺术表演的舞台,教学是一种创造的艺术,一种遗憾的艺术。”回顾这节课有成功之处,也有遗憾之处。

成功之处:

1、通过盲生摸读理解函数图象,让学生更直观地归纳出对数函数的性质,对突破本节课的重、难点起了很大的帮助。

2、在引入新课时,根据我校学生的实际情况我重新设计了教学情境,从“细胞分裂”问题导入新课。由于问题具有开放性,又简单易行,学生表现得都很积极,课堂开始让学生动起来了。这样引入新课就自然了许多,学生接受起来也容易些。一堂成功的数学课,往往给人以自然、和谐、舒服的享受。所以设计恰当的情境引入新课是很重要的。

3、通过选取不同的底数a的对数图象,让学生类比研究指数函数图象及其性质分组探究对数函数的.图象和性质。这个环节让学生合作学习,合作学习让学生感受到学习过程中的互助,还能让学生自己建构知识体系。不同数学内容之间的联系和类比,有助于学生了解与中学数学知识有关的扩展知识及内在的数学思想,促使学生认真思考其中的一些问题,加深对其理解。

遗憾之处:

1、在分组讨论如何画对数函数图象时,由于担心教学任务不能准确完成,我就直接找几位学生说出特殊点的坐标来列表,然后“描点、连线”一句话带过,整个过程太过精简,没有让学生真正的参与进来,对调动学生的积极性也没有起到好的作用,让学生失去一个展示自己成果的机会。

2、在讲完例题紧接着给出的练习题难易不当,这样学生做起来就有点吃力了,甚至有些学生觉得不知道该怎么做了,最后两道稍难的练习题应该留到下节课解决会更好些。

3、课堂小结只是带领学生复习了本节课所学的重点内容。如果能结合练习题提出问题,让学生思考解决这些问题的同时也为下节课的教学做准备,这样更有助于学生知识的扩展和延伸。

教育无止境,教育事业应该是一个常做常新的事业。为师无止境,教书生涯应该是一个不断常新不断前行的充满新奇的旅途。反思将让教师的生命变得五彩缤纷,反思将让我们的教育变成一支抑扬顿挫的交响乐。

对数函数教学反思5

本节课在备课组全体老师集体备课后,课堂教学设计完成得很好,课件的制作精美实用,学案的设计适当充分。各人再根据具体班级的情况去修改某些细节。

本节课在学习了指数函数及其性质以后,学生通过类比学习的方法很容易进入学习探究的状态,因此我还是采用了知识迁移及类比的.学习方法进行本节课的设计。

回顾了指数函数的概念及性质以后,通过把指数式写成对数式的小练习,学生很轻松的完成把指数函数式写成对数函数式。进而引出课题。学生自主阅读课本70页内容后完成学案的第一部分,基本上能够理解对数函数的概念。并且很自觉的主动动手画图,观察图形得出性质,在性质的分析环节中,给予简单的提示(如,从图形观察特征,并用数学符号语言描述等),学生基本上能够运用类比指数函数的性质,说出对数函数的定义域、值域、单调性、过定点、函数值的变化情况等,性质的应用的设计我只采用了比较大小及求定义域两个例题及练习。学生完成得还不错,但在时间上还应多给予学生独立思考的时间。还需加强习题的变式能力。

对数函数教学反思6

这节课讲的课题是对数函数及其性质。对数函数及其性质是人教版A版数学必修一的内容。

通过这节课的教学,我主要有以下三点收获:

授课的致用性:

大家往往固有的潜意识是数学枯燥无味,如果将来不搞科学研究,学之无用。本人要利用一切可以利用的数学课告诉大家,基础数学是提高国民基本科学常识的必备武器。那么,对数函数的学习则是对历史文物研究的基础知识。当下的国民,生活质量稳步提高,假日旅游已经成为常态,我们将来的国民不能再是只是游玩,而是懂道的.欣赏。

碳14的对数公式

则是今天导课的重要兴趣吸引点。

信息技术的应用

多媒体教学已经成为常态教学手段,几何画板的动态展示已经为学生展示了直观的对数函数底数真数改变的图像变化。当然辅助教学手段是在学生的导学案上有习题和绘图两种手动跟进。

作业布置的探索性尝试

(1)上百度,知乎查阅考古年代的推断方法及碳14的相关应用.

(2)周末看一部考古相关的电影或纪录片。通过这种作业布置方式的尝试,让学生体会教改绝对不是一句空话,普通教师已经在行动。

当然,本节课还是有很多没有想到。也有三点。

1、内容的繁多性

总是认为本节课内容简单,要多讲一点,把可能的题型都要讲到,犯了大多数教龄多年的通病———经验式授课。导致本节课结束时有些许的时间紧张。

2、师生互动的简单重复

发挥学生的主观能动性一直是我们追求的,所以师生互动是很重要的一个展示环节。但是我们还只是简单的小组交流,板书展示。还是得开动脑筋,多些互动样式。

3、授课中的德育环节

其实本节课教学中我还是在导课过程,以及作业布置中体现出了德育的部分情节。但是还是远远不够,不能因为数学课的特殊性就可以忽略德育。润物细无声,潜移默化的影响才是为人师应该具备的素养。培养品德高尚的社会主义新人是目标,我辈仍需努力。

对数函数教学反思7

对数函数的教学共分两个部分完成。第一部分为对数函数的定义,图像及性质;第二部分为对数函数的应用。对数函数是在学习对数概念的基础上学习对数函数的概念和性质,通过学习对数函数的定义,图像及性质,可以进一步深化学生对函数概念的理解与认识,使学生得到较系统的函数知识和研究函数的方法,并且为学习对数函数以及对数函数的应用作好准备。

在教学过程中,我类比指数函数图象和性质的研究,研究了对数函数图象和性质。同学们课堂上能积极主动参与获得性质的过程。我用了三节课就对数函数的图象和性质,图象和性质的应用进行讲解。但是从作业和课堂效果看来。同学们没有指数函数的性质和图象掌握的好。特反思如下:

1、学生对对数函数概念的理解及对数的运算不过关。学生在做这些运算时有时不能灵活运用公式例如换底公式,有时学生会想当然地自己“发明”公式。导致部分题目出现运算错误或不会。

2、在利用对数函数的单调性比较两个对数式的大小书写格式不规范,因此在解题的`过程中就把真数和底数混乱了,这说明同学们用函数的观点解决问题的思想方法还没形成。

3、在解有关求定义域的问题时,学生不能很好的掌握底数a的取值范围以及真数必修大于0.

4、同学们对对数与指数的互化不是很熟练。导致有关指数与对数互化题目出现错误。尤其是解决有关对数和指数混合式子的有关计算时困难很大,问题最多。还有在解决有关对数型函数定义域问题时,更不会用对数函数的单调性去解决。

以上这些原因我通过认真的反思,同时参考学生提出的意见,决定讲两节习题课,针对学生存在的共性问题解决,找出他们的盲点,同时加强练习力度。从练习中发现问题,再通过系统讲解,直到绝大部分学生理解掌握为止。

对数函数教学反思8

本节课在学习了指数函数及其性质以后,学生通过类比学习的方法很容易进入学习探究的状态,因此我采用了知识迁移及类比的学习方法进行本节课的设计。

首先,复习有关指数函数知识及简单运算,通过创设文物考古的情境,估算出出土文物或古遗址的年代,引入对数函数的概念。一方面体现了“数学源于现实,寓于现实,用于现实”,另一方面使学生产生强烈的探索欲望。然后,让学生亲自动手画两个图象,我借助电脑手段,通过描点作图,引导学生说出图像特征及变化规律,并从而得出对数函数的性质,提高学生的形数结合的能力。在性质的分析环节中,给予简单的提示(如,从图形观察特征,并用数学符号语言描述等),学生基本上能够运用类比指数函数的性质,说出对数函数的定义域、值域、单调性、过定点、函数值的变化情况等。性质的应用的设计我采用了求定义域及比较大小两个例题及练习,学生完成得还不错。最后用了几分钟总结本堂课所学知识点。

本堂课有两个亮点。第一,借助电脑,演示作图过程及图像变化的动画过程,从而使学生直接地接受并提高了学生的学习兴趣和积极性,很好地突破难点和提高教学效率,从而增大教学的容量和直观性、准确性,增强教学内容的表现形式,在贯彻教学的直观性原则上发挥其独特的优势。第二,由图形变化特征引导学生自己总结出对数函数的性质。使学生积极思维、主动获取知识,从而养成良好的学习方法。

并逐步学会独立提出问题、解决问题。总之,调动学生的'非智力因素来促进智力因素的发展,引导学生积极开动脑筋,思考问题和解决问题,从而发扬钻研精神、勇于探索创新。从课堂效果和学生的作业看来,我认为本堂课还存在着以下两个精品论文参考文献不足之处。第一,内容多,讲得太快,由于大部分学生数学基础较差,理解能力,运算能力,思维能力不高,课堂上应多给学生缓冲的时间。

比如,在例题讲解的环节,时间上还应多给予学生独立思考的时间。本堂课不应该一节课讲完,应分为两节课来讲,这样才能使课堂简洁。教学语言要更简练着实,教学中应充分挖掘教材内在的魅力,通过生动的比喻,夸张等方法打动学生。有句广告词说:“简约而不简单。”简简单单教数学,实实在在学数学是新课程,新时代对数学课堂教学本质回归的热切期盼。努力让课堂化繁为简,以小见大,以少胜多,充分发挥学生的主体性,促进师生和谐流畅的交流。第二,教学中手势动作不够丰富。如果一堂课教师只仅仅靠单一的语言交流而没有其他辅助的交流,学生听课就一定会象听讲座,听理论培训一样感觉,课堂的气氛就显得死板而毫无生气,更不能很好地调动学生的主观能动性。据有关资料显示:在信息传递中,一句话只表明了说话者要表达的内容的百分之七,声音则占所要表达内容的百分之三十五,而剩下的百分之五十多的内容却来自于说话者的姿态,动作,表情等。由此可见,教师课堂上手势动作的运用对于学生获取信息就非常重要。因而,合理的运用有效的手势动作,用于教师的辅助教学,一定会收到事半功倍的效果。既让教师的语言表达更加完美准确,又能易于学生理解并接受,达到意想不到的效果。

通过认真的反思,同时参考学生提出的意见,针对学生存在的共性问题,决定举出一些例题讲解,加强学生练习力度,从练习中发现问题,利用晚自习补充讲解,直到大部分学生理解掌握为止。

对数函数教学反思9

“对数函数”的教学共分两个部分完成。第一部分为对数函数的定义,图像及性质;第二部分为对数函数的应用。“对数函数”第一部分是在学习对数概念的基础上学习对数函数的概念和性质,通过学习对数函数的定义,图像及性质,可以进一步深化学生对函数概念的理解与认识,使学生得到较系统的函数知识和研究函数的方法,并且为学习对数函数作好准备。

在讲解对数函数的定义前,复习有关指数函数知识及简单运算,然后由实例引入对数函数的概念,然后,让学生亲自动手画两个图象,我借助电脑手段,通过描点作图,引导学生说出图像特征及变化规律,并从而得出对数函数的性质,提高学生的形数结合的能力。作了以上分析之后,再分a>1与0。

大部分学生数学基础较差,理解能力,运算能力,思维能力等方面参差不齐;同时学生学好数学的自信心不强,学习积极性不高。针对这种情况,在教学中,我注意面向全体,发挥学生的主体性,引导学生积极地观察问题,分析问题,激发学生的求知欲和学习积极性,指导学生积极思维、主动获取知识,养成良好的学习方法。并逐步学会独立提出问题、解决问题。总之,调动学生的非智力因素来促进智力因素的发展,引导学生积极开动脑筋,思考问题和解决问题,从而发扬钻研精神、勇于探索创新。这种讲法既严谨又直观易懂,还能让学生主动参与教学过程,对培养学生的创新能力有帮助,学生易于接受易于掌握,而且利用表格,可以突破难点。

然后经行巩固训练,养学生利用所学知识解决实际问题的能力,通过这个环节学生可以加深对本节知识的理解和运用,并从讲解过程中找出所涉及的`知识点,予以总结。充分体现“数形结合”和“分类讨论”的思想。通过反馈来看,大部分学生能够达到本节课的知识目标,并在一定程度上培养了学生主学习、综合归纳、数形结合的能力。最后经行归纳总结,引导学生对主要知识进行回顾,使学生对本节有一个整体的把握,因此,从三方面进行总结:对数函数的概念、对数函数的图象和性质、比较对数值大小的方法。

本节课调动学生学习的积极性,使学生变被动学习为主动愉快的学习。教学中我引导学生从实例出发启发出指数函数的定义,在概念理解上,用步步设问、课堂讨论来加深理解。在对数函数图像的画法上,我借助电脑,演示作图过程及图像变化的动画过程,从而使学生直接地接受并提高学生的学习兴趣和积极性,很好地突破难点和提高教学效率,从而增大教学的容量和直观性、准确性,充分体现了“教师为主导,学生为主体”的教学原则取得了较好的教学效果。

对数函数教学反思10

“对数函数”的教学共分两个部分完成。第一部分为对数函数的定义,图像及性质;第二部分为对数函数的应用。“对数函数”第一部分是在学习对数概念的基础上学习对数函数的概念和性质,通过学习对数函数的定义,图像及性质,可以进一步深化学生对函数概念的理解与认识,使学生得到较系统的函数知识和研究函数的方法,并且为学习对数函数作好准备。

在讲解对数函数的定义前,复习有关指数函数知识及简单运算,然后由实例引入对数函数的概念,然后,让学生亲自动手画两个图象,我借助电脑手段,通过描点作图,引导学生说出图像特征及变化规律,并从而得出对数函数的性质,提高学生的形数结合的能力。

大部分学生数学基础较差,理解能力,运算能力,思维能力等方面参差不齐;同时学生学好数学的自信心不强,学习积极性不高。针对这种情况,在教学中,我注意面向全体,发挥学生的主体性,引导学生积极地观察问题,分析问题,激发学生的求知欲和学习积极性,指导学生积极思维、主动获取知识,养成良好的学习方法。并逐步学会独立提出问题、解决问题。总之,调动学生的'非智力因素来促进智力因素的发展,引导学生积极开动脑筋,思考问题和解决问题,从而发扬钻研精神、勇于探索创新。

为了调动学生学习的积极性,使学生变被动学习为主动愉快的学习。教学中我引导学生从实例出发启发出指数函数的定义,在概念理解上,用步步设问、课堂讨论来加深理解。在对数函数图像的画法上,我借助电脑,演示作图过程及图像变化的动画过程,从而使学生直接地接受并提高学生的学习兴趣和积极性,很好地突破难点和提高教学效率,从而增大教学的容量和直观性、准确性。总之,本堂课充分体现了“教师为主导,学生为主体”的教学原则。

第三篇:高中数学 2.2.2对数函数及其性质(二)教案 新人教A版必修1

3.2.2对数函数

(二)教学目标:进一步理解对数函数的定义,掌握对数函数的图象和性质 教学重点:掌握对数函数的图象和性质.教学过程:

1、复习对数函数的概念

2、例子:

(一)求函数的定义域

1. 已知函数f(x)lg(x23x2)的定义域是F, 函数g(x)lg(x1)lg(x2)的定义域是N, 确定集合F、N的关系?

2.求下列函数的定义域:

(1)f(x)

1(2)log(x1)3f(x)log2x13x2

(二)求函数的值域

f(x)log2x 2.f(x)logax 3.f(x)log2x[1,2]

x[1,2]

x224.求函数(1)f(x)log2(x22)(2)f(x)log

2(三)函数图象的应用

1的值域 x22ylogax ylogbx ylogcx的图象如图所示,那么a,b,c的大小关系是

2.已知ylogm(3)logn(3)0,m,n为不等于1的正数,则下列关系中正确的是()

(A)1

(1)y|lgx|(2)ylg|x|

(四)函数的单调性

1、求函数ylog22(x2x)的单调递增区间。

ylog1(x2x2)

2、求函数2的单调递减区间

(五)函数的奇偶性

1、函数ylog22(xx1)(xR)的奇偶性为[ ] A.奇函数而非偶函数 B.偶函数而非奇函数 C.非奇非偶函数 D.既奇且偶函数

(五)综合

1.若定义在区间(-1,0)内的函数f(x)log2a(x1)满足f(x)0,则a的取值范围()

(A)(1,1)(B)(1,12](C)(12,)(D)(0,)2

课堂练习:略

小结:本节课进一步复习了对数函数的定义、图象和性质 课后作业:略

第四篇:对数函数教学反思(模版)

对数函数的教学反思

王莉

高二年级数学组

“对数函数”的内容包括对数函数的定义,图像及性质和对数函数的应用。对数函数的定义,图像及性质是在学习对数概念的基础上学习对数函数的定义和性质,通过学习对数函数的定义,图像及性质,可以进一步深化学生对函数概念的理解与认识,使学生得到较系统的函数知识和研究函数的方法,并且为学习对数函数作好准备。

在讲解对数函数的定义前,复习有关指数函数知识及简单运算,然后由实例引入对数函数的概念,然后,引导学生动手画两个图象,通过描点作图,引导学生说出图像特征及变化规律,并从而得出对数函数的性质,提高学生数形结合的能力。

我校绝大部分学生数学基础差,理解能力、运算能力、思维能力等方面参差不齐;同时学生学好数学的自信心不强,学习积极性不高。针对这种情况,在教学中,我注意面向全体,发挥学生的主体性,引导学生积极地观察问题,分析问题,激发学生的求知欲和学习积极性,指导学生积极思维、主动获取知识,养成良好的学习方法。并逐步学会独立提出问题、解决问题。总之,调动学生的非智力因素来促进智力因素的发展,引导学生积极开动脑筋,思考问题和解决问题,从而发扬钻研精神、勇于探索创新。

为了调动学生学习的积极性,使学生变被动学习为主动愉快的学习。教学中我引导学生从实例出发启发出对数函数的定义,在概念理解上,用步步设问、课堂讨论来加深理解。在对数函数图像的画法上,我借助电脑,演示作图过程及图像变化的动画过程,从而使学生直接地接受并提高学生的学习兴趣和积极性,很好地突破难点和提高教学效率,从而增大教学的容量和直观性、准确性。总之,本堂课充分体现了“教师为主导,学生为主体”的教学原则。

第五篇:新人教新课标下对高中数学教学过程的一点反思

新人教新课标下对高中数学教学过程的一点反思

今年接触高一,感觉 新课程标准下数学教学过程 和以往有点差别,高中学生已经具备自学和创新的能力,在高中教学过程中实行课改势在必行。根据实际教学实践,对新课标 数学教学过程 我是这样理解的: 教师 根据课堂教学目标精心设计教案,组织和引导 学 生主动 学习并 掌握数学知识、发展数学 潜能、形成良好个性心理品质的认识与发展相统一的活动过程。一切以学生的发展为目标,在教师指导下主动、富有个性的过程。以下是本人的一些心得,在实际中的一点反思:

一、加强教师、学生、教材的 有机结合 新课程 注重 对学生创新意识和实践能力的培养,教师是数学教学过程的组织者和引导者,所以对老师的能力要求提高了,教师积极探索和运用先进的教学方法,不断提高师德素养和专业水平,教师应设计生动有趣,适合学生水平的现实情景,引导学生从数量和空间关系去观察、比较、分析、提出问题、进行猜想和实验、推理和判断等数学活动,不仅使学生获得数学的知识,用数学知识去解决实际问题,而且更重要的是:使学生认识到数学原来就来自我们身边的现实世界,是认识和解决我们生活和工作问题的有力武器,同时也获得进行数学探究的切身体验和能力。要全面的面向学生,因材施教,创造性地进行教学。学生是数学教学过程的主体,学生的发展(学生心智、健全人格形成)是教学活动的出发点和归宿,因此,数学教学过程是让学生采取接受、探究、模仿、体验等学习方式,使学生的学习成为在教师指导下主动的、富有个性的过程。教材是数学教学过程的重要 媒介,教师在应依据课程标准,灵活地、创造性地使用教材,充分利用多样化课程资源,使学生在掌握课本内容的基础上发挥创造能力,拓展学生 思维 发展空间。教师 要当好组织者和协调者教师的角色在课堂中起着很重要的作用,那种死板教条、灌输式教学已不适应 新课程 的教学过程,教师是学生的导师,指导学生发展自己的个性,督促其自我参与 课堂教学活动,使自己成为课堂的主人。培养健全学生人格的发展和积极向上价值观的形成,培养学生自信心、责任感、合作意识、创新意识、求实态度和科学精神,给学生提供思考、探究和具体动手操作的题材,让每个学生都有机会接触、了解、钻研自己感兴趣的数学问题,最大限度地满足每一个学生的数学需要,最大限度地开启每一个学生的智慧潜能。将丰富的现实情景引入课堂,鼓励学生发展自己的解题策略,促进同伴间的合作与交流,使学生学会学习、学会做人和学会生活,让学生感受数学学习的内在魅力 新课程标准下的教师也不再是学生知识的唯一源泉,而是各种知识源泉的组织者、协调者,可以说,教师的任务不再是只让学生掌握课堂知识就可以的,而是以 促进 人的发展和科学文化的发展为根本目标。

下载高中数学 对数函数的教学与反思 新人教A版(最终定稿)word格式文档
下载高中数学 对数函数的教学与反思 新人教A版(最终定稿).doc
将本文档下载到自己电脑,方便修改和收藏,请勿使用迅雷等下载。
点此处下载文档

文档为doc格式


声明:本文内容由互联网用户自发贡献自行上传,本网站不拥有所有权,未作人工编辑处理,也不承担相关法律责任。如果您发现有涉嫌版权的内容,欢迎发送邮件至:645879355@qq.com 进行举报,并提供相关证据,工作人员会在5个工作日内联系你,一经查实,本站将立刻删除涉嫌侵权内容。

相关范文推荐

    新人教A版高中数学教材目录

    新人教A版高中数学教材目录(必修+选修)必修1第一章 集合与函数概念1.1 集合1.2 函数及其表示1.3 函数的基本性质第二章 基本初等函数(Ⅰ)2.1 指数函数2.2 对数函数2.3 幂函数第三章 函......

    人教A版高中数学必修1教案-2.2对数函数教案

    课题:§2.2.1对数 教学目的:(1)理解对数的概念; (2)能够说明对数与指数的关系; (3)掌握对数式与指数式的相互转化. 教学重点:对数的概念,对数式与指数式的相互转化 教学难点:对数概念的理......

    对数函数教学反思(合集五篇)

    对数函数教学反思 对数函数的教学共分两个部分完成。第一部分为对数函数的定义,图像及性质;第二部分为对数函数的应用。对数函数是在学习对数概念的基础上学习对数函数的概念......

    对数函数及其性质教学反思

    《对数函数及其性质》反思后教学 富县高级中学王晓广 前段时间学校组织了这次“同课异构”活动,我接到通知有我后,紧张的撰写教案、制作课件后,我终于完成了前期的准备工作。端......

    《对数函数及其性质》教学反思

    《对数函数及其性质》教学反思 高亚 (渠县第二中学渠县635200) 本节课在学习了指数函数及其性质以后,学生通过类比学习的方法很容易进入学习探究的状态,因此我采用了知识迁移......

    对数函数的性质教学反思

    1、 设计问题系列,驱动教学问题是数学的心脏,本节课以6个问题为主线贯穿始终,以问题解决为教学线索,在教师的主导与计算机的辅助下,学生思维由问题开始,由问题深化。2.借助信息技......

    高中数学教学设计与教学反思

    高中数学教学预设与生成进行分析和反思 一、指导思想 数学是一门培养人的思维,发展人的思维的重要学科。因此,在教学中,不仅要使学生“知其然”而且要使学生“知其所以然”。所......

    高中数学教学设计与教学反思

    教学设计与反思 一、指导思想与理论依据 数学是一门培养人的思维,发展人的思维的重要学科。因此,在教学中,不仅要使学生“知其然”而且要使学生“知其所以然”。所以在学生为主......