《对数函数及其性质》教学反思

时间:2019-05-15 04:00:28下载本文作者:会员上传
简介:写写帮文库小编为你整理了多篇相关的《《对数函数及其性质》教学反思》,但愿对你工作学习有帮助,当然你在写写帮文库还可以找到更多《《对数函数及其性质》教学反思》。

第一篇:《对数函数及其性质》教学反思

《对数函数及其性质》教学反思

高亚

(渠县第二中学渠县635200)

本节课在学习了指数函数及其性质以后,学生通过类比学习的方法很容易进入学习探究的状态,因此我采用了知识迁移及类比的学习方法进行本节课的设计。

首先,复习有关指数函数知识及简单运算,通过创设文物考古的情境,估算出出土文物或古遗址的年代,引入对数函数的概念。一方面体现了“数学源于现实,寓于现实,用于现实”,另一方面使学生产生强烈的探索欲望。然后,让学生亲自动手画两个图象,我借助电脑手段,通过描点作图,引导学生说出图像特征及变化规律,并从而得出对数函数的性质,提高学生的形数结合的能力。在性质的分析环节中,给予简单的提示(如,从图形观察特征,并用数学符号语言描述等),学生基本上能够运用类比指数函数的性质,说出对数函数的定义域、值域、单调性、过定点、函数值的变化情况等。性质的应用的设计我采用了求定义域及比较大小两个例题及练习,学生完成得还不错。最后用了几分钟总结本堂课所学知识点。

本堂课有两个亮点。第一,借助电脑,演示作图过程及图像变化的动画过程,从而使学生直接地接受并提高了学生的学习兴趣和积极性,很好地突破难点和提高教学效率,从而增大教学的容量和直观性、准确性,增强教学内容的表现形式,在贯彻教学的直观性原则上发挥其独特的优势。第二,由图形变化特征引导学生自己总结出对数函数的性质。使学生积极思维、主动获取知识,从而养成良好的学习方法。

并逐步学会独立提出问题、解决问题。总之,调动学生的非智力因素来促进智力因素的发展,引导学生积极开动脑筋,思考问题和解决问题,从而发扬钻研精神、勇于探索创新。从课堂效果和学生的作业看来,我认为本堂课还存在着以下两个精品论文 参考文献 不足之处。第一,内容多,讲得太快,由于大部分学生数学基础较差,理解能力,运算能力,思维能力不高,课堂上应多给学生缓冲的时间。

比如,在例题讲解的环节,时间上还应多给予学生独立思考的时间。本堂课不应该一节课讲完,应分为两节课来讲,这样才能使课堂简洁。教学语言要更简练着实,教学中应充分挖掘教材内在的魅力,通过生动的比喻,夸张等方法打动学生。有句广告词说:“简约而不简单。”简简单单教数学,实实在在学数学是新课程,新时代对数学课堂教学本质回归的热切期盼。努力让课堂化繁为简,以小见大,以少胜多,充分发挥学生的主体性,促进师生和谐流畅的交流。第二,教学中手势动作不够丰富。如果一堂课教师只仅仅靠单一的语言交流而没有其他辅助的交流,学生听课就一定会象听讲座,听理论培训一样感觉,课堂的气氛就显得死板而毫无生气,更不能很好地调动学生的主观能动性。据有关资料显示:在信息传递中,一句话只表明了说话者要表达的内容的百分之七,声音则占所要表达内容的百分之三十五,而剩下的百分之五十多的内容却来自于说话者的姿态,动作,表情等。由此可见,教师课堂上手势动作的运用对于学生获取信息就非常重要。因而,合理的运用有效的手势动作,用于教师的辅助教学,一定会收到事半功倍的效果。既让教师的语言表达更加完美准确,又能易于学生理解并接受,达到意想不到的效果。

通过认真的反思,同时参考学生提出的意见,针对学生存在的共性问题,决定举出一些例题讲解,加强学生练习力度,从练习中发现问题,利用晚自习补充讲解,直到大部分学生理解掌握为止。

精品论文 参考文献

第二篇:对数函数及其性质教学反思

《对数函数及其性质》反思后教学

富县高级中学

王晓广

前段时间学校组织了这次“同课异构”活动,我接到通知有我后,紧张的撰写教案、制作课件后,我终于完成了前期的准备工作。端详着自己的教案,品味其中预设的高潮和亮点,走向了课堂。一定要上出自己的水平,让学生体验一下多媒体教学的魅力。

我这节课讲的是“对数函数及其性质”,有人说“课堂教学是学术研究的实践活动,既像科学家进入科学实验室,有像艺术家登上艺术表演的舞台,教学是一种创造的艺术,一种遗憾的艺术。”回顾这节课有成功之处,也有遗憾之处。通过这节课我有以下三点收获;

1.运用对媒体画出函数图像,让学生更直观的观察出对数函数的图像。对突破本节课的重、难点起了很大的帮助。

2.通过选取不同的底数a的对数图像,让学生类比研究指数函数图像及其性质分组探究对数函数的图像和性质。这个环节让学生合作学习,合作学习让学生感受到学习过程中的互助。还能让学生自己建构知识体系,没有传授也没有灌输。分类的思想学生在小学和初中就已经接触了很多,应该不陌生,但是要将其变成自己的学习方法、甚至能灵活运用,却不太容易。旧知要经常温习,已有的思想方法也要经常回顾。不同数学内容之间的联系和类比,有助于学生了解与中学数学知识有关的扩展知识及内在的数学思想,促使学生认真思考其中的一些问题,加深对其理解。

3.课件上重点内容的“强调”与“闪烁”。使用多媒体课件后,课堂教学的容量会大大增加,概念的呈现、过程的演示、例题的讲解将会变得得心应手。但千万别忘记对于重要的知识点、关键的词语要用特殊的字体、特别的颜色或制作特效加以强化。不过,“强调”与“闪烁”应该少而精,如果对呈现的内容都辅以特效,那么重点的内容就会在特效中淹没,所以特效的使用不宜太多。

通过这节课我也有以下几点遗憾;1.我明知课件的设计要注意整体性,即整个课件要保留“重要的板书”。无论课件的进程如何,都应能较好地体现教者的教学思路,同时让学生时刻能够看到重要的教学内容,让学生有“板书”可记。只有这样,我们的课件才起到既能代替传统意义的黑板,又能增加大量教学信息的作用。而自己制作课件的能力太差,课件都是拼凑起来的。

2.几何画板还不会用,函数的一些图像只能下载后再编辑。例如指数函数与对数函数图像的关系,达不到自己思路的效果。

3.多媒体操作不熟练。例如最后小结时,我本想由“记住对数函数的图像和性质”这句话链接到具体内容,但是操作过快而结束了。再播放时又从头开始了。

经过思考我觉得《对数函数的图像和性质》这节课按以下思路来讲:

一、导课。导入新课用复习指数函数的图像和性质,采用老师问学生答的方式。

二、画图像。讲授新课时先让学生画出对数函数的图像,学生肯定是用描点法,老师再用图像变换法(几何画板)给学生演示。

三、研究性质。得到函数图像以后,老师给出学生问题(定义域,值域,定点,单调性,对称性),要求学生按问题去研究性质。然后让学生逐个回答问题,老师最后总结性质。

四、应用。老师出示例题,检查学生对性质是否掌握。例题1求对数型复合函数的定义域。例题2比较同底数的两个对数的大小。例题3比较两个不同底数也不同真数的对数的大小。然后学生做同一类型练习题。

五、小结。让学生自己小结本节课的内容,老师补充。最后老师点出本节课所用的数学思想,让学生体验感受。

总之,在大力提倡信息技术与课程整合的大背景下,多媒体课件必将逐步走进我们的课堂。如何利用多媒体,如何用好多媒体,如何让多媒体更好地服务教学,将是我们经常思考的话题,同时,它将在我们不断探索和实践中找到更完美的方案。

第三篇:对数函数的性质教学反思

1、设计问题系列,驱动教学

问题是数学的心脏,本节课以6个问题为主线贯穿始终,以问题解决为教学线索,在教师的主导与计算机的辅助下,学生思维由问题开始,由问题深化。

2.借助信息技术突出重点、突破难点

本节课的学习重点是对数函数的概念、图像和性质;学习难点是用数形结合方法从具体到一般地探索概括对数函数性质,为突出重点、突破难点,使用了以下信息技术:

◇探究对数函数概念:课上播放PPT课件,学生总结三个“观察事例”中函数解析式的共同特征,概括到的形式,从而形成概念,突出学习重点。

◇绘制对数函数图像:作图1,学生动手画图,初步感知对数函数图像,教师个别辅导,正投展示,对比分析作图结果,纠正作图错误,总结作图要点,培养学生作图基本功;作图2,设计课件,全体学生参与,自选底数绘制对数函数图像,从而加深了学生对定义的认识,增强了对图像的直观感知,突出学习重点。

◇探究对数函数性质:对数函数性质的获得,需要借助对数函数图像。设计“动手实践2”,教师运用课件的动态演示功能,验证底数取定义范围内所有值时,对数函数的性质,学生操作课件“动手实践2”,通过拖动点“”,改变底数的值,观察对数函数图像随底数的变化情况,学生的亲身体验,提高了对研究过程的参与程度,有效突破学习难点。

◇运用课件“演示””功能,使得大量图像共享成为可能,使得学生小组代表发言活动得以实施,提高了学生对研究过程的参与程度,使得学习效率明显提高,更为有效地突破学习难点。

第四篇:《对数函数的性质》教学反思

一、教材分析。

本节课是《普通高中课程标准实验教科书?数学1(必修)》(人教A版)第二章第2节第二课《对数函数及其性质》。本节课的内容在教材中起到了承上启下的关键作用。一方面,对数函数是在学生系统学习了函数概念,基本掌握了函数性质的基础上,进行研究的第一个重要的基本初等函数。作为基本初等函数,它是继指数函数之后对高中函数概念及性质的又一次应用;另一方面,对数函数是后续学习幂函数的基础,对于研究幂函数及其他基本初等函数,在研究方法上起到示范作用。

二、学生分析。

从学生的知识上看,学生已经学习了函数的定义、图像、性质,对函数的性质和图像的关系已经有了一定的认识。学生已经熟悉研究函数的一般过程和方法,会用此来研究对数函数。

从学生现有的学习能力看,通过初中对函数的认识与理解,学生已具备了一定的观察事物的能力,积累了一些研究问题的经验,初步具备了抽象、概括的能力。通过教师启发式引导,学生能自主探究完成本节课的学习,会进行多媒体的基本操作。

三、教学目标。

1、知识与技能目标:

①通过具体实例了解对数函数模型的实际背景。

②初步理解对数函数的概念、图像和性质。

2、过程与方法目标:

①借助课件绘制对数函数图像,加深对定义的认识,增强对对数函数图像的直观感知。

②学生观察对数函数图像,通过代表发言等活动,探究对数函数性质。

③通过对对数函数的研究,体会数形结合、由具体到一般及类比思想。

3、情感态度与价值观目标:通过小组讨论、代表发言活动,培养合作交流意识。

四、教学环境与准备。

多媒体网络教室、课件。

五、教学过程。

1、探究新知。

(1)归纳定义。

设计意图:通过对函数解析式的分析,突出对底数取值的认识,引导学生把解析式概括为的形式,为形成对数函数定义作铺垫。

对数函数的定义:一般地,形如(且)的函数叫做对数函数,其中是自变量,函数的定义域为。

师生共同分析定义要点:

①定义域为。

②对数函数是形式化的定义。

③且。教师引导学生将指数函数定义与对数函数定义作对比。

(2)作图探究。

问题2:我们研究函数的一般过程是什么?

①教师启发学生思考:归纳定义,画出图像,观察图像,总结性质,继而进行性质应用。

(设计意图:对数函数作为基本初等函数,是继指数函数后对高中函数概念及性质的再次应用,学生已经熟悉研究函数的一般过程和方法,会用此来研究对数函数。)

②作图1:画出函数的图像。

学生独立在坐标纸上作图,教师巡视个别辅导,正投对比展示学生作图结果,总结作图要点,规范列表、描点、连线的每一步。

(设计意图:描点法作图是画函数图像的基本方法,用正投呈现学生作图结果,培养学生画图基本功。)

③作图2:自主选择底数绘制对数函数的图像。

④设组确定的对数函数图像。

(设计意图:学生通过在同一坐标系中,绘制多个对数函数图像,在绘制过程中,可以更加直观地感知底数对对数函数图像的影响,能更好地观察图像特征,总结图像性质。)

⑤学生自主选择底数,绘制对数函数图像,”,各小组根据所绘制的对数函数图像,观察图像特征,总结性质,每组自荐一名代表发言。教师适时发问、点拨,引导学生总结,师生、生生互动交流。

观察图像,你认为如何对对数函数进行分类研究?

各小组学生共提出两类标准:

a、按图像上升和下降分两类。

b、按底数分两类。经教师引导,学生发现这两类标准可以统一:与图像上升统一;与图像下降统一。

⑥你能结合屏幕上所呈现的对数函数图像,观察它们的图像特征,并总结其性质吗?

各组学生从图像位置、特殊点、图像变化趋势等方面总结图像特征。(设计意图:学生通过观察具体对数函数图像,应用数形结合思想,归纳概括性质。)

(设计意图:通过几何画板课件的动态演示,学生更直观地观察到对数函数图像随底数的变化情况,以及为什么要把底数分为和两类,有利于学生由图像归纳性质,从而突破本节课的难点。)

(3)归纳性质。

学生观察图像,讨论总结性质。

(设计意图:学生总结性质,培养学生归纳概括能力。)

师生共同对学习内容进行总结:

①研究函数的一般过程是:定义→图像→性质→应用。

②借助图像研究性质,应用了数形结合思想;由具体对数函数入手,到一般对数函数总结性质,应用由特殊到一般思想方法;对数函数对底数分类进行研究性质,应用了分类讨论思想,类比指数函数研究对数函数,应用了类比思想。

3、例题讲解。

师:刚才我们共同探究得出性质,下边看性质应用。

例1:比较下列各组中两个值的大小:① ;② ;③。

(设计意图:通过例题使学生体会对数函数单调性应用,设计三题,使学生体会分类讨论思想。)

第一题教师引导讲解,示范解答过程,第二题、第三题学生正投讲解。

设计意图:通过学生正投讲解题目做法,培养学生学习数学的信心和勇气,同时,对于出现的错误及时纠错,起到示范作用。

4、归纳总结。

(1)这节课你学到哪些知识?

(2)这节课你体会到哪些数学思想方法?

5、分层作业。

(1)必做题:P73,2、3;

(2)选作题:函数和的图像间有何关系?

六、教学反思。

1、设计问题系列,驱动教学。

问题是数学的心脏,本节课以6个问题为主线贯穿始终,以问题解决为教学线索,在教师的主导与计算机的辅助下,学生思维由问题开始,由问题深化。

2、借助信息技术突出重点、突破难点。

本节课的学习重点是对数函数的概念、图像和性质;学习难点是用数形结合方法从具体到一般地探索概括对数函数性质,为突出重点、突破难点,使用了以下信息技术:

(1)探究对数函数概念:课上播放PPT课件,学生总结三个“观察事例”中函数解析式的共同特征,概括到的形式,从而形成概念,突出学习重点。

(2)绘制对数函数图像:作图1,学生动手画图,初步感知对数函数图像,教师个别辅导,正投展示,对比分析作图结果,纠正作图错误,总结作图要点,培养学生作图基本功;作图2,设计课件,全体学生参与,自选底数绘制对数函数图像,从而加深了学生对定义的认识,增强了对图像的直观感知,突出学习重点。

(3)探究对数函数性质:对数函数性质的获得,需要借助对数函数图像。设计“动手实践2”,教师运用课件的动态演示功能,验证底数取定义范围内所有值时,对数函数的性质,学生操作课件“动手实践2”,通过拖动点“”,改变底数的值,观察对数函数图像随底数的变化情况,学生的亲身体验,提高了对研究过程的参与程度,有效突破学习难点。

(4)运用课件“演示””功能,使得大量图像共享成为可能,使得学生小组代表发言活动得以实施,提高了学生对研究过程的参与程度,使得学习效率明显提高,更为有效地突破学习难点。

第五篇:《222对数函数及其性质》教学反思专题

这节课讲的课题是对数函数及其性质。对数函数及其性质是人教版A版数学必修一的内容。

通过这节课的教学,我主要有以下三点收获:

授课的致用性:

大家往往固有的潜意识是数学枯燥无味,如果将来不搞科学研究,学之无用。本人要利用一切可以利用的数学课告诉大家,基础数学是提高国民基本科学常识的必备武器。那么,对数函数的学习则是对历史文物研究的基础知识。当下的国民,生活质量稳步提高,假日旅游已经成为常态,我们将来的国民不能再是只是游玩,而是懂道的欣赏。

碳14的对数公式

则是今天导课的重要兴趣吸引点。

信息技术的应用

多媒体教学已经成为常态教学手段,几何画板的动态展示已经为学生展示了直观的对数函数底数真数改变的图像变化。当然辅助教学手段是在学生的导学案上有习题和绘图两种手动跟进。

作业布置的探索性尝试

(1)上百度,知乎查阅考古年代的推断方法及碳14的相关应用.(2)周末看一部考古相关的电影或纪录片。通过这种作业布置方式的尝试,让学生体会教改绝对不是一句空话,普通教师已经在行动。

当然,本节课还是有很多没有想到。也有三点。

1、内容的繁多性

总是认为本节课内容简单,要多讲一点,把可能的题型都要讲到,犯了大多数教龄多年的通病———经验式授课。导致本节课结束时有些许的时间紧张。

2、师生互动的简单重复

发挥学生的主观能动性一直是我们追求的,所以师生互动是很重要的一个展示环节。但是我们还只是简单的小组交流,板书展示。还是得开动脑筋,多些互动样式。

3、授课中的德育环节

其实本节课教学中我还是在导课过程,以及作业布置中体现出了德育的部分情节。但是还是远远不够,不能因为数学课的特殊性就可以忽略德育。润物细无声,潜移默化的影响才是为人师应该具备的素养。培养品德高尚的社会主义新人是目标,我辈仍需努力。

下载《对数函数及其性质》教学反思word格式文档
下载《对数函数及其性质》教学反思.doc
将本文档下载到自己电脑,方便修改和收藏,请勿使用迅雷等下载。
点此处下载文档

文档为doc格式


声明:本文内容由互联网用户自发贡献自行上传,本网站不拥有所有权,未作人工编辑处理,也不承担相关法律责任。如果您发现有涉嫌版权的内容,欢迎发送邮件至:645879355@qq.com 进行举报,并提供相关证据,工作人员会在5个工作日内联系你,一经查实,本站将立刻删除涉嫌侵权内容。

相关范文推荐

    对数函数及其性质

    对数函数及其性质(说课稿)2.2对数函数及其性质各位老师,大家好!今天我说课的内容是人教版必修(一)对数函数及其性质第一课时,下面,我将从教材分析、教法分析、学法分析、教辅手段、......

    对数函数及其性质-教学设计

    2.2.2对数函数及其性质(一)三维目标 一、 知识与技能 1.理解对数函数的概念; 2.掌握对数函数的图象与性质.二、 过程与方法 1.培养学生数学交流能力和与他人合作精神; 2.用联系的观点......

    对数函数及其性质教学案例

    对数函数及其性质教学案例 朝阳四高 姜明丽 一、教材分析 本小节选自《普通高中课程标准数学教科书-数学必修(一)》(人教版)第二章基本初等函数对数函数及其性质(第一课时),主要内......

    对数函数教学反思

    对数函数教学反思 对数函数教学反思1 一、教材分析。本节课是《普通高中课程标准实验教科书?数学1(必修)》(人教A版)第二章第2节第二课《对数函数及其性质》。本节课的内容在教材......

    对数函数性质的应用教学设计

    我成长,我负责;越努力,越幸运. 对数函数性质的应用教学设计 ————四川省盐亭中学数学组 赵军 课题:对数函数的性质及其应用 课型:高一习题课(第一课时) 教学目标: 1.会根据对数......

    对数函数教学反思(模版)

    对数函数的教学反思 王莉 高二年级数学组 “对数函数”的内容包括对数函数的定义,图像及性质和对数函数的应用。对数函数的定义,图像及性质是在学习对数概念的基础上学习对数......

    对数函数的定义及性质

    ylogxaN(a0,a0,N0) aN(a0且a1) 定义域:(0.+∞) 值域:实数集R 定点:函数图像恒过定点(1,0) 单调性:a>1时,在定义域上为单调增函数,并且上凸; 0......

    对数函数教学反思(合集五篇)

    对数函数教学反思 对数函数的教学共分两个部分完成。第一部分为对数函数的定义,图像及性质;第二部分为对数函数的应用。对数函数是在学习对数概念的基础上学习对数函数的概念......