牛顿运动定律--2011届高三物理教案及练习题

时间:2019-05-15 04:33:50下载本文作者:会员上传
简介:写写帮文库小编为你整理了多篇相关的《牛顿运动定律--2011届高三物理教案及练习题》,但愿对你工作学习有帮助,当然你在写写帮文库还可以找到更多《牛顿运动定律--2011届高三物理教案及练习题》。

第一篇:牛顿运动定律--2011届高三物理教案及练习题

2011届高三物理一轮复习教学案及跟踪训练

第一单元 牛顿运动定律

第1课时 牛顿第一定律 牛顿第三定律

要点一

牛顿第一定律

1.关于物体的惯性,下列说法中正确的是

()A.运动速度大的物体,不能很快停下来,是因为速度大时,惯性也大 B.静止的火车启动时,速度变化慢,是因为静止的火车惯性大 C.乒乓球可以快速抽杀,是因为乒乓球惯性小的缘故 D.物体受到的外力大,则惯性小;受到的外力小,则惯性大 答案

C 要点二 牛顿第三定律

2.一物体受绳的拉力作用由静止开始前进,先做加速运动,然后改为匀速运动;再改做减速运动,则下列说法中正确 的是

()A.加速前进时,绳拉物体的力大于物体拉绳的力 B.减速前进时,绳拉物体的力小于物体拉绳的力

C.只有匀速前进时,绳拉物体的力与物体拉绳的力大小才相等 D.不管物体如何前进,绳拉物体的力与物体拉绳的力大小总相等 答案 D

题型1 惯性的理解与应用

【例1】如图所示在瓶内装满水,将乒乓球用细线拴住并按入水中,线的另一端固定在瓶盖上.盖上瓶盖并将瓶子翻转,乒乓球将浮在水中.用手托着瓶子在水平向右做加速直线运动,乒 乓球在瓶中的位置会如何变化?解释你所观察到的现象.(1)若瓶中只有水,当瓶加速向右运动时,会发生什么现象?只有乒乓球呢? 答 只有水时,由于惯性,水相对瓶向左侧移动.只有乒乓球时,乒乓球也会相对瓶向左移动.(2)和乒乓球体积相同体积的水与乒乓球相比,谁的惯性大? 答 因为水的质量大于乒乓球的质量,所以水的惯性大于乒乓球的惯性.(3)若瓶中既有水又有球,当瓶向右加速会发生什么现象? 答 由于水惯性大,当水相对瓶向左移动时,将挤压球,使球相对瓶向右移动.题型2 牛顿第三定律的理解与应用

【例2】在天花板上用悬绳吊一重为G的电风扇,电风扇静止时受几个力作用?如图所示,这些

力的反作用力是哪些力?这些力的平衡力是哪些力?如果电风扇在匀速转动呢?当电风扇转动 与静止时相比较,对天花板的拉力是变大还是变小?为什么?(1)画出电风扇静止和转动时的受力图.说明分别是什么力.答 对静止的电风扇受力分析如图甲所示,电风扇受两个力:重力G、悬绳拉力F.对匀速转动的电风扇受力分析如图乙所示,电风扇受三个力作用:重力G、悬绳的 拉力F1及空气对电风扇向上的作用力F2.(2)指出图甲中F、G的反作用力及它们的平衡力.答 根据牛顿第三定律可知,重力的施力物体是地球,那么G的反作用力就是电风扇对地球的吸引力;F的施力物体 是悬绳,F的反作用力是电风扇对悬绳的拉力.电风扇受到的重力G和悬绳的拉力F正好是一对平衡力.(3)指出图乙中F1、F2、G的反作用力及它们的平衡力.答 根据牛顿第三定律,重力的施力物体是地球,那么重力G的反作用力就是电风扇对地球的吸引力;F1的施力物体是悬绳,所以F1的反作用力是电风扇对悬绳的拉力;F2的施力物体是空气,所以F2的反作用力是电风扇对空气向下的作用力.电风扇受到的重力G与绳的拉力F1和空气对电风扇向上的作用力F2的合力是一对平衡力.(4)当电风扇静止时悬绳的拉力为多大?当电风扇转动呢? 答 静止时F=G,当转动时F1+F2=G,F1=G-F2.(5)电风扇静止和转动时,悬绳的拉力哪个大? 答 静止时大.题型3 生活物理

【例3】魔盘是游乐场中的一种大型游乐设施,它转动时,坐在上面的人可以体会到做离心运动的乐趣.在半径R= 5 m的魔盘上,离其中心r=3 m处坐着一儿童,儿童从身旁轻轻释放一个光滑的小球,问:小球经多长时间可与盘边缘 相碰?(已知魔盘转动角速度ω=4 rad/s)答案

1.如图所示,重球系于易断的线DC下端,重球下再系一根同样的线BA,下面说法中正确的是()13s

A.在线的A端慢慢增加拉力,结果CD线被拉断 B.在线的A端慢慢增加拉力,结果AB线被拉断 C.在线的A端突然猛力一拉,结果AB线被拉断 D.在线的A端突然猛力一拉,结果CD线被拉断 答案 AC 2.用计算机辅助实验系统做验证牛顿第三定律的实验,点击实验菜单中“力的相互作用”.如图(a)所示,把两个力探头的挂钩钩在一起,向相反方向拉动,观察显示器屏幕上出现的结果如图(b)所示.观察分析两个力传感器的相互作 用力随时间变化的曲线,可以得到以下实验结论

A.作用力与反作用力时刻相等

B.作用力与反作用力作用在同一物体上 C.作用力与反作用力大小相等 D.作用力与反作用力方向相反 答案 ACD 3.有人设计了一种交通工具,在平板车上装了一个电风扇,风扇运转时吹出的风全部 打到竖直固定在小车中间的风帆上,靠风帆受力而向前运动,如图所示.对于这种设 计,下列分析中正确的是

()

()A.根据牛顿第二定律,这种设计能使小车运行 B.根据牛顿第三定律,这种设计能使小车运行

C.这种设计不能使小车运行,因为它违反了牛顿第二定律 D.这种设计不能使小车运行,因为它违反了牛顿第三定律 答案

D 4.请根据图中的情景,说明车子所处的状态,并对这种情景作出解释.答案 从图(1)可以看出,乘客向前倾,说明乘客相对车箱有向前运动的速度,所以汽车在减速.从图(2)可看出,乘客向后

倾,说明乘客有相对车箱向右运动的速度,说明列车在加速.第2课时 牛顿第二定律 单位制

要点一 牛顿第二定律

1.下列对牛顿第二定律的表达式F=ma及其变形公式的理解,正确的是

()A.由F=ma可知,物体所受的合力与物体的质量成正比,与物体的加速度成正比 B.由m=FaFmFa可知,物体的质量与其所受合力成正比,与其运动的加速度成反比

C.由a=D.由m=答案 CD 可知,m一定时物体的加速度与其所受合力成正比,F一定时与其质量成反比 可知,物体的质量可以通过测量它的加速度和它所受的合力而求出

要点二 单位制

2.请把下列物理量与单位一一对应起来(1)力

(2)压强

(3)功

(4)功率

A.kg·m2/s3 B.kg·m/s2 C.kg·m2/s2 D.kg/(s2·m)

(3)—C

(4)—A

答案(1)—B(2)—D

题型1 已知受力求动过情况

【例1】如图所示,传送带与地面夹角θ=37°,从A到B长度为16 m,传送带以v0=10 m/s 的速率逆时针转动.在传送带上端A无初速地放一个质量为m=0.5 kg的物体,它与传 送带间的动摩擦因数μ=0.5.求物体从A运动到B需要的时间.(sin37°=0.6, cos 37° =0.8,取g=10 m/s2)答案 2s 题型2 由运动求受力情况

【例2】如图所示,质量M=10 kg的木楔静止于粗糙的水平地面上,已知木楔与地面间的动摩 擦因数μ=0.02.在木楔倾角θ=30°的斜面上,有一质量m=1.0 kg的物体由静止开始沿斜

面下滑,至滑行路程s=1.4 m时,其速度v=1.4 m/s.在这一过程中木楔始终保持静止,求地面对木楔的摩擦力的大小 和方向(g取10 m/s2).答案

0.61 N,方向水平向左.题型3 生活物理

【例3】如图所示,是建筑工地常用的一种“深穴打夯机”,电动机带动两个滚轮匀速转动将 夯杆从深坑提上来,当夯杆底端刚到达坑口时,两个滚轮彼此分开,将夯杆释放,夯杆只在重力 作用下运动,落回深坑,夯实坑底,且不反弹.然后两个滚轮再次压紧,夯杆被提到坑口,如此周 而复始.已知两个滚轮边缘的线速度恒为v=4 m/s,滚轮对夯杆的正压力N=2×104 N,滚轮与夯

杆间的动摩擦因数μ=0.3,夯杆质量m=1×103 kg,坑深h=6.4 m,假定在打夯的过程中坑的深度变化不大可以忽 略,g=10 m/s2.求:(1)夯杆被滚轮压紧,加速上升至与滚轮速度相同时离坑底的高度.(2)打夯周期是多少? 答案(1)4 m(2)4.2 s

1.如图所示,在光滑水平面上有两个质量分别为m1和m2的物体A、B,m1>m2, A、B间水平连接着一轻质弹簧秤.若用大小为F的水平力向右拉B,稳定后

B的加速度大小为a1,弹簧秤示数为F1;如果改用大小为F的水平力向左拉A,稳定后A的加速度大小为a2,弹簧秤示数为F2.则以下关系式正确的是

A.a1=a2,F1>F2

答案

A 2.如图所示,U形槽放在水平桌面上,物体M放于槽内静止,此时弹簧对物体的压力为3 N,物体的 质量为0.5 kg,与槽底之间无摩擦.使槽与物体M一起以6 m/s2的加速度向左水平运动时()A.弹簧对物体的压力为零

B.物体对左侧槽壁的压力等于零

D.弹簧对物体的压力等于6 N

()B.a1=a2,F1a2,F1>F2

C.物体对左侧槽壁的压力等于3 N 答案 B 3.(2009·资阳模拟)我国“神舟”5号飞船于2003年10月15日在酒泉航天发射场由长征—2F 运载火箭成功发射升空,若长征—2F运载火箭和飞船起飞时的总质量为1.0×105 kg,火箭起飞 时推动力为3.0×106 N,运载火箭发射塔高160 m(g取10 m/s2).求:(1)假如运载火箭起飞时推动力不变,忽略空气阻力和火箭质量的变化,运载火箭经多长时间飞

离发射塔?(2)这段时间内飞船中质量为65 kg的宇航员对座椅的压力多大? 答案(1)4 s(2)1.95×103 N 4.京沪高速公路3月7日清晨,因雨雾天气导致一辆轿车和另一辆出现故障熄火停下来的卡车相撞.已知轿车刹车时产生的最大阻力为重力的0.8倍,当时的能见度(观察者与能看见的最远目标间的距离)约37 m,交通部门规定此种天气状况下轿车的最大行车速度为60 km/h.设轿车司机的反应时间为0.6 s,请你通过计算说明轿车有没有违反规定超速行驶?(g取10 m/s2)答案 轿车车速至少72 km/h是超速行驶

1.下列对运动的认识不正确的是 ...

()A.亚里士多德认为物体的自然状态是静止的,只有当它受到力的作用才会运动 B.伽利略认为力不是维持物体速度的原因

C.牛顿认为力的真正效应总是改变物体的速度,而不仅仅是使之运动

D.伽利略根据理想实验推论出,如果没有摩擦,在水平面上的物体,一旦具有某一个速度,将保持这个速度继续运动下去 答案

A 2.我国《道路交通安全法》中规定:各种小型车辆前排乘坐的人(包括司机)必须系好安全带,这是因为()A.系好完全带可以减小惯性

B.是否系好安全带对人和车的惯性没有影响 C.系好安全带可以防止因车的惯性而造成的伤害 D.系好安全带可以防止因人的惯性而造成的伤害  答案

D 3.物体静止在水平桌面上,则

()A.桌面对物体的支持力的大小等于物体的重力,这两个力是一对平衡力 B.物体所受的重力和桌面对它的支持力是一对作用力与反作用力 C.物体对桌面的压力就是物体的重力,这两个力是同一种性质的力 D.物体对桌面的压力和桌面对物体的支持力是一对相互平衡的力 答案

A 4.在平直轨道上,匀速向右行驶的封闭车厢内,悬挂着一个带滴管的盛油容器,滴管口正对车厢地

板上的O点,如图所示,当滴管依次滴下三滴油时,设这三滴油都落在车厢的地板上,则下列说 法中正确的是

()A.这三滴油依然落在OA之间,而且后一滴比前一滴离O点远些 B.这三滴油依然落在OA之间,而且后一滴比前一滴离O点近些 C.这三滴油依然落在OA之间同一位置上 D.这三滴油依然落在O点上 答案 D 5.一汽车在路面情况相同的公路上直线行驶,下面关于车速、惯性、质量和滑行路程的讨论,正确的是

A.车速越大,它的惯性越大 B.质量越大,它的惯性越大

C.车速越大,刹车后滑行的路程越长

D.车速越大,刹车后滑行的路程越长,所以惯性越大 答案 BC 6.如图甲所示,小车上固定着硬质支架,杆的端点固定着一个质量为m的小球.杆对小球的作用力的变化如图乙所示,则关于小车的运动,下列说法中正确 的是(杆对小球的作用力由F1变化至F4)A.小车向右做匀加速运动

C.小车的加速度越来越大

答案 C 7.一个重500 N的木箱放在大磅秤上,木箱内有一个质量为50 kg的人,站在小磅秤上.如图所 示,如果人用力推木箱顶部,则小磅秤和大磅秤上的示数F1、F2的变化情况为()A.F1增大、F2减小 C.F1减小、F2不变 答案 D 8.如图所示,底板光滑的小车放在水平地面上,其上放有两个完全相同且量程均为20 N的弹簧 秤,甲、乙系住一个质量为1 kg的物块.当小车做匀速直线运动时,两弹簧秤的示数均为10 N.则当小车做匀加速直线运动时,弹簧秤甲的示数变为8 N,这时小车运动的加速度大小是

A.2 m/s答案 B

9.如图所示,三个完全相同物块1、2、3放在水平桌面上,它们与桌面间的动摩擦 2

()

()

B.小车由静止开始向右做变加速运动 D.小车的加速度越来越小

B.F1增大、F2增大 D.F1增大、F2不变()

B.4 m/s

C.6 m/s

D.8 m/s

因数都相同.现用大小相同的外力F沿图示方向分别作用在1和2上,用

12F 的外力沿水平方向作用在3上,使三者都做加速运动.令a1、a2、a3分别表示物块1、2、3的加速度,则()A.a1=a2=a3 答案 C 10.有一仪器中电路如右图所示,其中M是质量较大的金属块,将仪器固定在一辆

汽车上,汽车启动时和急刹车时,发现其中一盏灯亮了,试分析是哪一盏灯 亮了.答案 汽车启动时绿灯亮,急刹车时红灯亮

11.如右图所示,长L=75 cm的质量为m=2 kg的平底玻璃管底部置有一玻璃小球,玻璃管从静止开始受到一竖

直向下的恒力F=12 N的作用,使玻璃管竖直向下运动,经一段时间t,小球离开管口.空气阻力不计,取 g=10 m/s2.求:时间t和小球离开玻璃管时玻璃管的速度的大小.答案 0.5 s 8 m/s B.a1=a2,a2>a3

C.a1>a2,a2<a3

D.a1>a2,a2>a3

12.用如右图所示的装置可以测量汽车在水平路面上做匀加速直线运动的加速度.该装置是

在矩形箱子的前、后壁上各安装一个由力敏电阻组成的压力传感器.用两根相同的轻 弹簧夹着一个质量为2.0 kg的滑块,滑块可无摩擦滑动,两弹簧的另一端分别压在传 ..感器a、b上,其压力大小可直接从传感器的液晶显示屏上读出.现将装置沿运动方向固定在汽车上,传感器b在前,传感..器a在后.汽车静止时,传感器a、b的示数均为10 N.(取g=10 m/s2)(1)若传感器a的示数为14 N、b的示数为6.0 N,求此时汽车的加速度大小和方向.(2)当汽车以怎样的加速度运动时,传感器a的示数为零? 答案(1)4 m/s2(2)10 m/s2 13.(2007·上海·19B)如右图所示,固定光滑细杆与地面成一定倾角,在杆上套有一个光滑小环, 小环在沿杆方向的推力F作用下向上运动,推力F与小环速度v随时间变化规律如下图所示, 取重力加速度g=10 m/s2.求:(1)小环的质量m.(2)细杆与地面间的倾角α.答案(1)1 kg(2)30°

第二单元 牛顿运动定律应用

(一)第3课时 瞬时问题与动态分析 超重与失重

要点一 瞬时问题

1.如图所示,物体甲、乙质量均为m,弹簧和悬线的质量可忽略不计.当悬线被烧断的瞬间,甲、乙的加 速度数值应为

()A.甲是0,乙是g 答案 B B.甲是g,乙是g C.甲是0,乙是0 D.甲是

g2,乙是g

要点二 动态分析

2.如图所示,一轻质弹簧一端系在墙上的O点,另一端连接小物体,弹簧自由伸长到B点,让小 物体m把弹簧压缩到A点,然后释放,小物体能运动到C点静止,物体与水平地面间的动摩擦 因数恒定,试判断下列说法正确的是

()A.物体从A到B速度越来越大,从B到C速度越来越小 B.物体从A到B速度越来越小,从B到C加速度不变 C.物体从A到B先加速后减速,从B到C一直减速运动 D.物体在B点受合外力为零 答案 C

要点三 超重与失重

3.下列关于超重和失重现象的描述中正确的是

()A.电梯正在减速上升,在电梯中的乘客处于超重状态

B.磁悬浮列车在水平轨道上加速行驶时,列车上的乘客处于超重状态 C.荡秋千时秋千摆到最低位置时,人处于失重状态

D.“神舟”六号飞船在绕地球做圆轨道运行时,飞船内的宇宙员处于完全失重状态 答案 D

题型1 瞬时问题

【例1】如图如图(a)所示,一质量为m的物体系于长度分别为L1、L2的两根细线上,L1的一端悬挂在天花板上,与竖直方向夹角为θ,L2水平拉直,物体处于平衡状态.(1)现将图(a)中L2线剪断,求剪断瞬间物体的加速度.(2)若将图(a)中的细线L1改为质量不计的轻弹簧而其余情况不变,如图(b)所示,求剪断L2瞬间物体的加速度.答案(1)gsinθ(2)gtanθ

题型2 程序法分板牙 动态问题

【例2】一个小球(小球的密度小于水的密度)从较高的位置落下来,落入足够深的水池中,在小球从静止下落,直到在水中下落到最大深度的过程中,下列小球速度随时间变化的图线可能正确的是

答案 A

()题型3 超重与失重观点解题

【例3】如图所示,在台秤的托盘上,放着一个支架,支架上挂着一个电磁铁A,电磁铁的正下方

有一铁块B,电磁铁不通电时,台秤的示数为G.当接通电路,在铁块被电磁铁吸起的过程中, 台秤的示数将 A.不变

答案 B

()D.忽大忽小 B.变大 C.变小

题型4 运动建模

【例4】一科研火箭从某一无大气层的行星的一个极竖直向上发射,由火箭传来的无线电信息表明:从火箭发射时的一段时间t内(火箭喷气过程),火箭上所有物体对支持物的压力或对其悬挂装置的拉力是火箭发射前的1.8倍,除此之外,在落回行星表面前的所有时间内,火箭里的物体处于失重状态,问从火箭发射到落回行星表面经过多长时间?(行星引力大小随距行星表面高度的变化可忽略不计)

答案 3t

1.如图所示,物体P以一定的初速度v沿光滑水平面向右运动,与一个右端固定的轻质弹簧 相撞,并被弹簧反向弹回.若弹簧在被压缩过程中始终遵守胡克定律,那么在P与弹簧发生 相互作用的整个过程中

()A.P的加速度大小不断变化,方向也不断变化 B.P的加速度大小不断变化,但方向只改变一次

C.P的加速度大小不断改变,当加速度数值最大时,速度最小 D.有一段过程,P的加速度逐渐增大,速度也逐渐增大 答案 C 2.某同学把一体重秤放在电梯的地板上,他站在体重秤上随电梯运动并观察体重秤示数的变化情况.下表记录了几个特定时刻体重秤的示数.(表内时间不表示先后顺序)

时间 体重秤示数/kg 若已知t0时刻电梯静止,则下列说法错误的是

t0 45.0

t1 50.0

t2 40.0

t3 45.0

()A.t1和t2时刻该同学的质量并没有变化,但所受重力发生变化 B.t1和t2时刻电梯的加速度方向一定相反

C.t1和t2时刻电梯的加速度大小相等,运动方向不一定相反 D.t3时刻电梯可能向上运动 答案 A 3.(2009·贵阳模拟)细绳拴一个质量为m的小球,小球用固定在墙上的水平弹簧支撑,小球 与弹簧不粘连,平衡时细绳与竖直方向的夹角为53°,如图所示.(已知cos 53°=0.6,sin 53° =0.8)以下说法正确的是

()A.小球静止时弹簧的弹力大小为B.小球静止时细绳的拉力大小为

3535mg mg

C.细线烧断瞬间小球的加速度立即为g D.细线烧断瞬间小球的加速度立即为答案 D

35g

4.如图甲所示为学校操场上一质量不计的竖直滑杆,滑杆上端固定,下端 悬空.为了研究学生沿杆的下滑情况,在杆顶部装有一拉力传感器,可显 示杆顶端所受拉力的大小.现有一学生(可视为质点)从上端由静止开始 滑下,5 s末滑到杆底时速度恰好为零.以学生开始下滑时刻为计时起点, 传感器显示的拉力随时间变化情况如图乙所示,g取10 m/s2.求:(1)该学生下滑过程中的最大速率.(2)滑杆的长度.答案(1)2.4 m/s(2)6.0 m

第4课时 专题:二力合成法与正交分解法

要点一 二力合成法

1.一辆小车在水平面上行驶,悬挂的摆球相对于小车静止,并且悬绳与竖直方向成θ角,如图所示, 下列关于小车的运动情况正确的是

A.加速度方向向左,大小为gtanθ B.加速度方向向右,大小为gtanθ C.加速度方向向左,大小为gsinθ D.加速度方向向右,大小为gsinθ 答案 A

()要点二 正交分解法

2.如图所示,质量为m的人站在自动扶梯上,扶梯正以加速度a向上减速运动,a与水平方向的夹 角为θ.求人受的支持力和摩擦力.请用两种建立坐标系的方法分别求解.答案 m(g-asinθ),方向竖直向上 macosθ,方向水平向左

题型1 根据二力合成法确定物体的加速度

【例1】如图所示,小车在斜面上沿斜面向下运动,当小车以不同的加速度运动时,系在小车顶 部的小球分别如图中①②③所示三种状态.①中细线呈竖直方向,②中细线垂直斜面,③中细 线水平.试分别求出上述三种状态中小车的加速度.(斜面倾角为θ)答案 ①a=0 ②a=gsinθ,方向沿斜面向下 ③a=

gsin,方向沿斜面向下

题型2 正交分解法的应用

【例2】风洞实验室中可产生水平方向的、大小可以调节的风力,现将一套有小球的细直杆 放入风洞实验室中,小球孔径略大于细杆直径(如图所示).(1)当杆在水平方向上固定时,调节风力的大小,使小球在杆上做匀速运动,这时小球所受 的风力为小球所受重力的0.5倍,求小球与杆之间的动摩擦因数.(2)保持小球所受风力不变,使杆与水平方向间夹角为37°并固定,则小球从静止出发在细杆上滑下距离s所需时间 为多少?(sin 37°=0.6,cos 37°=0.8)答案(1)0.5(2)8s

3g题型3 传送带上的物理问题

【例3】如图所示,传送带与水平面的夹角为θ=37°,其以4 m/s的速度向上运行,在传送 带的底端A处无初速度地放一个质量为0.5 kg的物体,它与传送带间动摩擦因数μ=0.8, AB间(B为顶端)长度为25 m.试回答下列问题:(1)说明物体的运动性质(相对地球).(2)物体从A到B的时间为多少?(g=10 m/s2)答案(1)由题设条件知tan 37°=0.75,μ=0.8,所以有tan 37°<μ,这说明物体在斜面(传送带)上能处于静止状态,物体开始无初速度放在传送带上,起初阶段:对物体受力分析如右图所示.根据牛顿第二定律可知: f滑-mgsin 37°=ma f滑=μN

① ②

N=mgcos 37°

求解得a=g(μcos 37°-sin 37°)=0.4 m/s2 ④

设物体在传送带上做匀加速直线运动时间t1及位移s1,因 v0=0

⑤ ⑥ a=0.4 m/s2

vt=4 m/s

根据匀变速直线运动规律得: vt=at1 s1=

⑨ 12at

2代入数据得: t1=10 s

⑩ s1=20 m<25 m

说明物体将继续跟随传送带一起向上匀速运动,物体在第二阶段匀速运动时间t2: t2=sv25204 s1.25

所以物体运动性质为:物体起初由静止起以a=0.4 m/s2做匀加速直线运动,达到传送带速度后,便以传送带速度做匀 速运动.(2)11.25 s

1.如图所示,动力小车上有一竖杆,杆顶端用细绳拴一质量为m的小球.当小车沿倾角为30° 的斜面匀加速向上运动时,绳与杆的夹角为60°,小车的加速度为

()

A.32g

B.g

C.D.g2

答案 B 2.如图所示,倾斜索道与水平面夹角为37°,当载人车厢沿钢索匀加速向上运动时,车厢里的 人对厢底的压力为其重量的1.25倍,那么车厢对人的摩擦力为其体重的()A.14倍

B.13倍

C.54倍

D.43倍

答案 B 3.如图所示,质量为m的物体放在倾角为α的斜面上,物体和斜面间的动摩擦因数为μ,如沿水平方向 加一个力F,使物体沿斜面向上以加速度a做匀加速直线运动,则F为多少? 答案 m(agsingcos)cossin

4.如图所示,传送带以恒定的速度v=10 m/s运动,传送带与水平面的夹角θ为37°,PQ=16 m, 将一小物块无初速地放在传送带上P点,物块与此传送带间的动摩擦因数μ=0.5,g=10 m/s2.求当传送带顺时针转动时,小物块运动到Q点的时间为多少?(sin 37°=0.6,cos 37°=0.8)答案 4 s

1.如图所示,在光滑的水平面上,质量分别为m1和m2的木块A和B之间用轻弹簧相连,在拉

力F作用下,以加速度a做匀加速直线运动,某时刻突然撤去拉力F,此瞬时A和B的加速度为a1和a2,则()A.a1=a2=0

B.a1=a,a2=0

C.a1=m1m1m2a,a2m2m1m2a

D.a1=a,a2-m1a

m2答案 D 2.如图所示,小球从高处下落到竖直放置的轻弹簧上,从接触弹簧开始到将弹簧压缩到最短的过程中, 下列叙述中正确的是

()A.小球的速度一直减小 B.小球的加速度先减小后增大

D.在该过程的位移中点上小球的速度最大 C.小球加速度的最大值一定大于重力加速度 答案 BC

3.如图所示,水平面绝缘且光滑,弹簧左端固定,右端连一轻质绝缘挡板,空间存在着水平方 向的匀强电场,一带正电小球在电场力和挡板压力作用下静止.若突然将电场反向,则小球 加速度的大小随位移x变化的关系图象可能是下图中的 答案 A

4.如图所示,在一个盛有水的容器内静止一木块,当容器由静止开始以加速度g下降,则在此 过程中木块相对于水面

A.上升

答案 C

()

()B.下降 C.不变 D.无法判断

5.(2009·日照一中月考)在水平地面上运动的小车车厢底部有一质量为m1的木块,木块 和车厢通过一根水平轻弹簧相连接,弹簧的劲度系数为k.在车厢的顶部用一根细线悬 挂一质量为m2的小球.某段时间内发现细线与竖直方向的夹角为θ,在这段时间内木

块与车厢也保持相对静止,如图所示.不计木块与车厢底部的摩擦力,则在这段时间内弹簧的形变量为()A.m1gktan B.m1gktan

C.(m1m2)gktan D.(m1m2)gktan

答案 A

6.弹簧秤用细线系两个质量都为m的小球,现让两小球在同一水平面内做匀速圆周运动,两球始终 在过圆心的直径的两端,如图所示,此时弹簧秤读数为 A.大于mg 答案 C 7.引体向上是同学们经常做的一项健身运动.该运动的规范动作是:两手正握单杠,由悬垂开始,上拉时,下颚须超过单杠面,下放时,两臂放直,不能曲臂(如图所示).这样上拉下放,重复 动作,达到锻炼臂力和腹肌的目的.关于做引体向上动作时人的受力, 以下判断正确的是

()B.小于2mg

()

C.等于2mg D.无法判断

A.上拉过程中,人受到两个力的作用

B.上拉过程中,单杠对人的作用力大于人的重力 C.下放过程中,单杠对人的作用力小于人的重力 D.下放过程中,在某瞬间人可能只受到一个力的作用 答案 AD

8.如图所示,天平左盘上放着盛水的杯子,杯底用细绳系着一木质小球,右盘上放着砝码, 此时天平处于平衡状态,若细绳断裂小球加速上升过程中,天平平衡状态将发生怎样的 变化

()A.仍然平衡

B.右盘上升,左盘下降 D.无法判断 C.左盘上升,右盘下降

答案 C

9.如图所示,小车沿水平面向右做加速直线运动,车上固定的硬杆和水平面的夹角为θ,杆的顶端固 定着一个质量为m的小球.当车运动的加速度逐渐增大时,杆对小球的作用力(F1至F4变化)的受 力图形(OO′沿杆方向)可能是下图中的()

答案 C

10.如图所示,弹簧S1的上端固定在天花板上,下端连一小球A,球A与球B之间用线相连.球B与球C之 间用弹簧S2相连.A、B、C的质量分别为mA、mB、mC,弹簧与线的质量均不计.开始时它们都处在静止 状态.现将A、B间的线突然剪断,求线刚剪断时A、B、C的加速度.答案 mBmCmAg,方向向上

mBmCmAg,方向向下 0 11.如图所示,质量为m=1 kg的小球穿在倾角为θ=30°的斜杆上,球恰好能在杆上匀速

下滑.若球受到一个大小为F=20 N的水平推力作用,可使小球沿杆向上加速滑动(g 取10 m/s2).求:(1)小球与斜杆间的动摩擦因数μ的大小.(2)小球沿杆向上加速滑动时的加速度大小.答案(1)33(2)1.55 m/s2

12.如图所示,某同学在竖直上升的升降机内研究升降机的运 动规律.他在升降机的水平地板上安放了一台压力传感器(能 及时准确显示压力大小),压力传感器上表面水平,上面放置了 一个质量为1 kg的木块,在t=0时刻升降机从地面由静止开始

上升,在t=10 s时上升了H,并且速度恰好减为零.他根据记录的压力数据绘制了压力随时间变化的关系图象.请你根据题中所给条件和图象信息回答下列问题.(g取10 m/s2)(1)题中所给的10 s内升降机上升的高度H为多少?(2)如果上升过程中某段时间内压力传感器显示的示数为零,那么该段时间内升降机是如何运动的? 答案(1)28 m(2)做加速度大小为g的匀减速运动

13.(2009·西昌模拟)如图所示,P为位于某一高度处的质量为m的物 块,B为位于水平地面上的质量为M的特殊长平板,m/M=1/10,平板 与地面间的动摩擦因数μ=2.0×10-2.在板的上表面上方,存在一定厚

度的“相互作用区域”,如图中画虚线的部分,当物块P进入相互作用区时,B便有竖直向上的恒力F作用于P,F=αmg,α=51.F对P的作用使P刚好不与B的上表面接触;在水平方向P、B之间没有相互作用力.已知物块P开始自由落下的时刻,板B向右的速度为v0=10.0 m/s,P从开始下落到刚到达相互作用区所经历的时间为T0=2.00 s.设B板足够长,保证物块P总能落入B板上方的相互作用区,取重力加速度g=9.80 m/s.问:当B开始停止运动那一时刻,P已经回到过初始位置几次? 答案 11次

2第三单元 牛顿运动定律应用

(二)第5课时 专题:整体法和隔离法解决连接体问题

要点一 整体法

1.光滑水平面上,放一倾角为θ的光滑斜木块,质量为m的光滑物体放在斜面上,如图所示, 现对斜面施加力F.(1)若使M静止不动,F应为多大?(2)若使M与m保持相对静止,F应为多大? 答案(1)12mgsin 2θ(2)(M+m)gtanθ

要点二 隔离法

2.如图所示,质量为M的木箱放在水平面上,木箱中的立杆上套着一个质量为m的小球,开始时 小球在杆的顶端,由静止释放后,小球沿杆下滑的加速度为重力加速度的1/2,即a=g/2,则小 球在下滑的过程中,木箱对地面的压力为多少? 答案 2Mm2g

题型1 隔离法的应用

【例1】如图所示,薄平板A长L=5 m,质量M=5 kg,放在水平桌面上,板右端与桌边缘相齐.在 A上距其右端s=3 m处放一个质量m=2 kg的小物体B,已知A与B之间的动摩擦因数μ1=0.1, A、B两物体与桌面间的动摩擦因数μ2=0.2,最初系统静止.现在对板A向右施加一水平恒力F,将A从B下抽出(设B不会翻转),且恰使B停在桌面边缘,试求F的大小(取g=10 m/s2).答案 26 N 题型2 整体法与隔离法交替应用

【例2】如图所示,质量m=1 kg的物块放在倾斜角θ=37°的斜面上,斜面体的质量M=2 kg, 斜面与物体间的动摩擦因数μ=0.2,地面光滑.现对斜面体施加一水平推力F,要使物体m 相对斜面静止,F应为多大?(设物体与斜面的最大静摩擦力等于滑动摩擦力,g取10 m/s2)答案 14.34 N≤F≤33.6 N

题型3 临界问题

【例3】如图所示,有一块木板静止在光滑足够长的水平面上,木板的质量为M=4 kg,长度为L= 1 m;木板的右端停放着一个小滑块,小滑块的质量为m=1 kg,其尺寸远远小于木板长度,它与木 板间的动摩擦因数为μ=0.4,已知最大静摩擦力等于滑动摩擦力.求:(1)为使木板能从滑块下抽出来,作用在木板右端的水平恒力F的大小应满足的条件.(2)若其他条件不变,在F=28 N的水平恒力持续作用下,需多长时间能将木板从滑块下抽出.答案(1)F >20 N(2)1 s

1.如图所示,滑轮的质量不计,已知三个物体的质量关系是m1=m2+m3,这时弹簧秤的读数为T.若把物 体m2从右边移到左边的物体m1上,弹簧秤的读数T将 A.增大 答案 B

2.如图所示,斜面体ABC置于粗糙的水平地面上,小木块m在斜面上静止或滑动时,斜面体均保 持静止不动.下列哪种情况,斜面体受到地面向右的静摩擦力

A.小木块m静止在BC斜面上

()B.减小

()

C.不变 D.无法确定

B.小木块m沿BC斜面加速下滑

C.小木块m沿BA斜面减速下滑

答案 BC

D.小木块m沿AB斜面减速上滑

3.如图所示,在平静的水面上,有一长l=12 m的木船,木船右端固定一直立桅杆,木船和桅杆的 总质量为m1=200 kg,质量为m2=50 kg的人立于木船左端,开始时木船与人均静止.若人匀加

速向右奔跑至船的右端并立即抱住桅杆,经历的时间是2 s,船运动中受到水的阻力是船(包括人)总重的0.1倍,g取10 m/s2.求此过程中船的位移大小.答案 0.4 m 4.如图所示,在长为L的均匀杆的顶部A处,紧密套有一小环,它们一起从某高处做自由落体运动, 杆的B端着地后,杆立即停止运动并保持竖直状态,最终小环恰能滑到杆的中间位置.若环在杆 上滑动时与杆间的摩擦力大小为环重力的1.5倍,求从杆开始下落到环滑至杆的中间位置的全 过程所用的时间.答案 3L2g

第6课时 专题:图象 临界与极值

要点一 动力学图象问题

1.静止在光滑水平面上的物体受到一个水平拉力的作用,该力随时间变化的关系如图所 示,则

()A.物体将做往复运动

C.2 s末物体的速度最大 答案 A

B.2 s内的位移为零 D.3 s内,拉力做的功为零

要点二 临界与极值问题

2.(2009·重庆模拟)如图所示,把质量m1=4 kg的木块叠放在质量m2=5 kg 的木块上.m2放在光滑的水平面上,恰好使m1相对m2开始滑动时作用于木块

m1上的水平拉力F1=12 N.那么,至少应用多大的水平拉力F2拉木块m2,才能恰好使m1相对m2开始滑动? 答案 15 N

题型1 利用牛顿定律进行图象转换问题

【例1】一个质量为4 kg的物体静止在足够大的水平地面上,物体与地面间的动摩擦因

数μ=0.1.从t=0开始,物体受到一个大小和方向呈周期性变化的水平力F作用,力F 随时间的变化规律如图所示.求83秒内物体的位移大小(g取10 m/s2).答案 167 m 题型2 摩擦力产生的临界问题

【例2】如图所示,一质量m=500 kg的木箱放在质量M=2 000 kg的平板车的后部,木箱到驾 驶室的距离L=1.6 m.已知木箱与平板间的动摩擦因数μ=0.484,平板车在运动过程中所受阻

力是车和箱总重的0.20倍.平板车以v0=22.0 m/s的恒定速度行驶,驾驶员突然刹车,使车做匀减速直线运动,为了不让木箱撞击驾驶室,g取10 m/s2.试求:(1)从刹车开始到平板车完全停止至少要经过多长时间?(2)驾驶员刹车时的制动力不能超过多大? 答案(1)4.4 s(2)7 420 N 题型3 程序法的应用

【例3】一小圆盘静止在桌布上,位于一方桌的水平桌面的中央.桌布的一边与桌的AB边重合, 如图所示.已知盘与桌布间的动摩擦因数为μ1,盘与桌面间的动摩擦因数为μ2.现突然以恒定

加速度a将桌布抽离桌面,加速度的方向是水平的且垂直于AB边.若圆盘最后未从桌面掉下,则加速度a满足的条件是什么?(以g表示重力加速度)答案 a≥12221g

1.石丽同学在由静止开始向上运动的电梯里,将一测量加速度的小探头固定在质量为1 kg的手提包上,到达某一楼层 停止,采集数据并分析处理后列表如下: 运动规律 时间段/s 加速度/m·s-2

匀加速直线运动

0~2.5 0.40

匀速直线运动 2.5~11.5

0

匀减速直线运动 11.5~14.0 0.40 石丽同学在计算机上绘出如下图象,设F为手对提包的拉力.请你判断下图中正确的是()

答案 AC

2.如图所示,不计滑轮和绳的质量及一切摩擦阻力,已知mB=3 kg,要使物体C有可能处于平衡 状态,那么mC的可能值为 A.3 kg 答案 AB

3.如图所示,小车上有一竖直杆,小车和杆的总质量为M,杆上套有一块质量为m的木块,杆与木块 间的动摩擦因数为μ,小车静止时木块可沿杆自由滑下.问:必须对小车施加多大的水平力让车在 光滑水平面上运动时,木块才能匀速下滑.()

D.30 kg

B.9 kg C.27 kg

答案 1(m+M)g 4.一质量为m=40 kg的小孩在电梯内的体重计上,电梯从t=0时刻由静止开始上升, 在0到6 s内体重计示数F的变化如图所示.问:在这段时间内电梯上升的高度是 多少?(取重力加速度g=10 m/s2)答案 9 m

1.(2009·西安模拟)如图所示,在光滑水平面上叠放着A、B两物体,已知mA=6 kg、mB=2 kg, A、B间动摩擦因数μ=0.2,在物体A上系一细线,细线所能承受的最大拉力是20 N,现水平向右拉细线,g取10 m/s2,则

A.当拉力F<12 N时,A静止不动 B.当拉力F>12 N时,A相对B滑动

C.当拉力F=16 N时,B受A的摩擦力等于4 N D.无论拉力F多大,A相对B始终静止 答案 CD

2.如图所示,在升降机内的弹簧下端吊一物体A,其质量为m,体积为V,全部浸在水中.当升降机由静 止开始以加速度a(a

A.不变 答案 C

3.一个小孩在蹦床上做游戏,他从高处落到蹦床上后又被弹回到原高度.小孩在从高处下落到 弹回的整个过程中,他的运动速度随时间变化的图象如图所示,图中Oa段和cd段是直线.B.伸长

()

()

C.缩短 D.无法确定

根据此图象可知,小孩跟蹦床相接触的时间为 A.t1~t4 答案 C

()D.t2~t5 B.t2~t4

C.t1~t5 4.如图所示,质量为m1和m2的两个物体用细线相连,在大小恒定的拉力F作用下,先沿水平面, 再沿斜面(斜面与水平面成θ角),最后竖直向上运动.则在这三个阶段的运动中,细线上张力 的大小情况是 A.由大变小

答案 C

5.先后用相同材料制成的橡皮条彼此平行地沿水平方向拉同一质量为m的物块,且每次使橡 皮条的伸长量均相同,物块m在橡皮条的拉力作用下所产生的加速度a与所拉橡皮条的数

目n的关系如图所示.若更换物块所在水平面的材料,再重复这个实验,则图中直线与水平轴间的夹角θ将()A.变大 答案 B

6.(2009·洛阳模拟)如图所示,一轻绳通过一光滑定滑轮,两端各系一质量分别为m1和m2的物体, m1放在地面上,当m2的质量发生变化时,m1的加速度a的大小与m2的关系图象大体图中的()

答案 D 7.如图所示,质量m的球与弹簧Ⅰ和水平细线Ⅱ相连,Ⅰ、Ⅱ的另一端分别固定于P、Q.球静止时,Ⅰ中拉力大小T1,Ⅱ中拉力大小T2,当仅剪断Ⅰ、Ⅱ中的一根的瞬间,球的加 速度a应是

()B.不变

C.变小

D.与水平面的材料有关

()B.由小变大 C.始终不变 D.由大变小再变大

A.若断Ⅰ,则a=g,方向水平向右 B.若断Ⅱ,则a=C.若断Ⅰ,则a=T2mT1m,方向水平向左 ,方向沿Ⅰ的延长线

D.若断Ⅱ,则a=g,竖直向上 答案 B

8.如图所示,在光滑水平桌面上有一链条,共有(P+Q)个环,每一个环的质量均为m,链条右端 受到一水平拉力F.则从右向左数,第P个环对第(P+1)个环的拉力是

()

A.F B.(P+1)F

C.QFPQ

D.PFPQ

答案 C

9.如图所示,当车厢向前加速前进时,物体M静止于竖直车厢壁上,当车厢加速度增加时,则()①静摩擦力增加

②车厢竖直壁对物体的弹力增加 ④物体的加速度也增加 C.①②④

D.①③④ ③物体M仍保持相对于车厢的静止状态

A.①②③ 答案 B B.②③④

10.在一正方形小盒内装一小圆球,盒与球一起沿倾角为θ的光滑斜面下滑,如图所示.若不计 摩擦,当θ角增大时,下滑过程圆球对方盒前壁压力N及对方盒底面的压力N′将如何变化()A.N′变小,N变小 C.N′变小,N变大 答案 B 11.(2009·文登三中月考)假设雨点下落过程受到的空气阻力与雨点的横截面积S成正比,与雨点下落的速度v的平方成正比,即f=kSv2(其中k为比例系数).雨点接近地面时近似看做匀速直线运动,重力加速度为g.若把雨点看做球形,其半径为r,设雨点的密度为ρ,求:

(1)每个雨点最终的运动速度vm(用ρ、r、g、k表示).(2)雨点的速度达到

B.N′变小,N为零 D.N′不变,N变大

12vm时,雨点的加速度a为多大?

34答案(1)4rg3k(2)g

12.一同学住在23层高楼的顶楼.他想研究一下电梯上升的运动过程,某天他乘电梯上楼时携带了一个质量为5 kg的重物和一个量程足够大的台秤,他将重物放在台秤上,电梯从第1层开始启动,一直运动到第23层才停下.在这个过程中,他记录了台秤在不同时段内的读数如下表所示.时间/s 电梯启动前 0~3.0 3.0~13.0 13.0~19.0 19.0以后

根据表格中的数据,求:

台秤示数/N 50.0 58.0 50.0 46.0 50.0

(1)电梯在最初加速阶段和最后减速阶段的加速度大小.(2)电梯在中间阶段上升的速度大小.(3)该楼房平均每层楼的高度.答案(1)1.6 m/s,方向竖直向上 0.8 m/s,方向竖直向下(2)4.8 m/s(3)3.16 m 13.如图所示,倾角为α的光滑斜面体上有一个小球m被平行于斜面的细绳系于斜面上,斜面体 放在水平面上.(1)要使小球对斜面无压力,求斜面体运动的加速度范围,并说明其方向.(2)要使小球对细绳无拉力,求斜面体运动的加速度范围,并说明其方向.(3)若已知α=60°,m=2 kg,当斜面体以a=10 m/s2向右做匀加速运动时,绳对小球拉力多大?(g取10 m/s2)答案(1)a≥gcotα 方向向右(2)a=gtanα 方向向左(3)20

2N,与水平方向成45°角

知识整合 演练高考

题型1 惯性的应用

【例1】(2008·全国Ⅰ·15)如图所示,一辆有动力驱动的小车上有一水平放置的 弹簧,其左端固定在小车上,右端与一小球相连,设在某一段时间内小球与小车相

对静止且弹簧处于压缩状态,若忽略小球与小车间的摩擦力,则在此段时间内小车可能是

A.向右做加速运动 C.向左做加速运动 答案 AD

B.向右做减速运动 D.向左做减速运动

()

题型2 用牛顿第二定律分析问题

【例2】(2008·宁夏·20)有一固定斜面的小车在水平面上做直线运动,小球通过细绳与车顶 相连.小球某时刻正处于如图所示状态.设斜面对小球的支持力为N,细绳对小球的拉力为T, 关于此时刻小球的受力情况,下列说法正确的是 A.若小车向左运动,N可能为零

()

B.若小车向左运动,T可能为零 D.若小车向右运动,T不可能为零 C.若小车向右运动,N不可能为零 答案 AB 题型3 超重与失重

【例3】(2007·山东·17)下列实例属于超重现象的是

()

A.汽车驶过拱形桥顶端

B.荡秋千的小孩通过最低点 D.火箭点火后加速升空 C.跳水运动员被跳板弹起,离开跳板向上运动 答案 BD

题型4 综合动力学问题

【例4】(2007·江苏·19)如图所示,一轻绳吊着粗细均匀的棒,棒下端离地面高H,上端套着一个细环.棒和环的质量均为m,相互间最大静摩擦力等于滑动摩擦力kmg(k>1).断开轻绳,棒和环自由下落.假 设棒足够长,与地面发生碰撞时,触地时间极短,无动能损失.棒在整个运动过程中始终保持竖直,空气 阻力不计.求:(1)棒第一次与地面碰撞弹起上升过程中,环的加速度.(2)从断开轻绳到棒与地面第二次碰撞的瞬间,棒运动的路程s.(3)从断开轻绳到棒和环都静止,摩擦力对环及棒做的总功W.答案(1)(k-1)g,方向竖直向上(2)k3k1H(3)2kmgHk1

高考演练

1.(2008·广东·1)伽利略在著名的斜面实验中,让小球分别沿倾角不同、阻力很小的斜面从静止开始滚下,他通过实验观察和逻辑推理,得到的正确结论有

()A.倾角一定时,小球在斜面上的位移与时间成正比 B.倾角一定时,小球在斜面上的速度与时间成正比

C.斜面长度一定时,小球从顶端滚到底端时的速度与倾角无关 D.斜面长度一定时,小球从顶端滚到底端时所需的时间与倾角无关 答案 B

2.(2008·广东理科基础·12)质量为m的物体从高处由静止释放后竖直下落,在某时刻受到的空气阻力为f ,加速度为a=则f的大小是 A.f =1313g, mg

()mg B.f =C.f =mg 答案 B

D.f =mg

3.(2008·山东·19)直升机悬停在空中向地面投放装有救灾物资的箱子,如图所示.设投放初速度为零, 箱子所受的空气阻力与箱子下落速度的平方成正比,且运动过程中箱子始终保持图示姿态.在箱子下

落过程中,下列说法正确的是

()A.箱内物体对箱子底部始终没有压力

B.箱子刚从飞机上投下时,箱内物体受到的支持力最大 C.箱子接近地面时,箱内物体受到的支持力比刚投下时大

D.若下落距离足够长,箱内物体有可能不受底部支持力而“飘起来” 答案 C

4.(2008·江苏·7)如图所示,两光滑斜面的倾角分别为30°和45°、质量分别为2m和m的 两个滑块用不可伸长的轻绳通过滑轮连接(不计滑轮的质量和摩擦),分别置于两个斜面上并 由静止释放;若交换两滑块位置,再由静止释放,则在上述两种情形中正确的有

()A.质量为2m的滑块受到重力、绳的张力、沿斜面的下滑力和斜面的支持力的作用 B.质量为m的滑块均沿斜面向上运动

C.绳对质量为m的滑块的拉力均大于该滑块对绳的拉力 D.系统在运动中机械能均守恒 答案 BD 5.(2008·天津·20)一个静止的质点,在0~4 s时间内受到力F的作用,力的方向始终在同 一直线上,力F随时间t的变化如图所示,则质点在A.第2 s末速度改变方向

C.第4 s末回到原出发点

答案 D

6.(2008·北京·20)有一些问题你可能不会求解,但是你仍有可能对这些问题的解是否合理 进行分析和判断.例如从解的物理量单位,解随某些已知量变化的趋势,解在一些特殊条件

下的结果等方面进行分析,并与预期结果、实验结论等进行比较,从而判断解的合理性或正确性.举例如下:如图所示,质量为M、倾角为θ的滑块A放于水平地面上.把质量为m的滑块B放在A的斜面上.忽略一切摩擦,有人求得B相对地面的加速度a=

()

B.第2 s末位移改变方向 D.第4 s末运动速度为零

MmMmsingsin,式中g为重力加速度.对于上述解,某同学首先分析了等号右侧量的单位,没发现问题.他进一步利用特殊条件对该解做了如下四项分析和判断,所得结论都是“解可能是对的”.但是,其中有一项是错误的.请..你指出该项

()A.当θ=0°时,该解给出a=0,这符合常识,说明该解可能是对的 B.当θ=90°时,该解给出a=g,这符合实验结论,说明该解可能是对的 C.当Mm时,该解给出a≈gsinθ,这符合预期的结果,说明该解可能是对的

D.当mM时,该解给出a≈答案 D

gsin,这符合预期的结果,说明该解可能是对的

7.(2008·上海·5)在伽利略羊皮纸手稿中发现的斜面实验数据如下表所示,人们推测第二、三列数据可能分别表示时间和长度.伽利略的一个长度单位相当于现在的2930 mm,假设一个时间单位相当于现在的0.5 s.由此可以推算实验时光滑斜面的长度至少为 m;斜面的倾角约为 度.(g取10 m/s2)表:伽利略手稿中的数据 4 9 16 25 36 49 64 答案 2.034 1.5 2 3 4 5 6 7 8

298 526 824 1 192 1 600 2 104 8.(2008·海南·15)科研人员乘气球进行科学考察,气球、座舱、压舱物和科研人员的总质量为990 kg.气球在空 中停留一段时间后,发现气球漏气而下降,及时堵住.堵住时气球下降速度为1 m/s,且做匀加速运动,4 s内下降了12 m.为使气球安全着陆,向舱外缓慢抛出一定的压舱物.此后发现气球做匀减速运动,下降速度在5分钟内减少了 3 m/s.若空气阻力和泄漏气体的质量均可忽略,重力加速度g取9.89 m/s2,求抛掉的压舱物的质量.答案 101 kg 9.(2008·上海·21)总质量为80 kg的跳伞运动员从离地500 m的直升机上跳下, 经过2 s拉开绳索开启降落伞,如图所示是跳伞过程中的v-t图象,试根据图象 求:(g取10 m/s2)(1)t=1 s时运动员的加速度和所受阻力的大小.(2)估算14 s内运动员下落的高度及克服阻力做的功.(3)估算运动员从飞机上跳下到着地的总时间.答案(1)8 m/s2 160 N

(2)158 m 1.25×105J

(3)71 s 10.(2007·海南·16)如图所示,一辆汽车A拉着装有集装箱的拖车B,以速度v1= 30 m/s进入向下倾斜的直车道.车道每100 m下降2 m.为使汽车速度在s=200 m 的距离内减到v2=10 m/s,驾驶员必须刹车.假定刹车时地面的摩擦阻力是恒力,且该力的70%作用于拖车B,30%作用于汽车A.已知A的质量m1=2 000 kg,B的质量m2=6 000 kg.求汽车与拖车的连接处沿运动方向的相互作用力.重 力加速度g取10 m/s2.答案 880 N

章末检测

1.用绝缘细线将一个质量为m、带电荷量为q的小球悬挂在天花板下面,设空间中存在有沿水平方向的匀强电场.当小球静止时把细线烧断,小球将做 A.自由落体运动

()

B.曲线运动 D.变加速直线运动 C.沿悬线的延长线做匀加速直线运动

答案 C

2.如图所示,质量分别为mA、mB的A、B两物块用轻线连接放在倾角为θ的斜面上,用始终平行于斜面向上的拉力F拉A,使它们沿斜面匀加速上升,A、B与斜面的动摩擦因数均为

μ,为了增加轻线上的张力,可行的办法是

()A.减小A物块的质量

C.增大倾角θ 答案 AB

B.增大B物块的质量 D.增大动摩擦因数μ 3.如图所示,在一无限长的小车上,有质量分别为m1和m2的两个滑块(m1>m2)随车一起向右 匀加速运动.设两滑块与小车间的动摩擦因数均为μ,其他阻力不计,当车突然停止时,以 下说法正确的是

()A.若μ=0,两滑块一定相碰 C.若μ≠0,两滑块一定相碰 答案 BD

B.若μ=0,两滑块一定不相碰

D.若μ≠0,两滑块一定不相碰

4.物块A1、A2、B1、B2的质量均为m,A1、A2用一轻杆连接,B1、B2用轻质弹簧连接.两个 装置都放在水平的支托物M上,处于平衡状态,如图所示.今突然迅速地撤去支托物M, 在除去支托物的瞬间,A1、A2所受到的合力分别为f1和f2,B1、B2所受到的合力分别为F1 和F2,则

()A.f1=0,f2=2mg;F1=0,F2=2mg C.f1=0,f2=2mg;F1=mg,F2=mg 答案 B

B.f1=mg,f2=mg;F1=0,F2=2mg D.f1=mg,f2=mg;F1=mg,F2=mg

5.如图所示,甲运动员在球场上得到篮球之后,甲、乙以相同的速度并排向同一方向奔跑,甲运 动员要将球传给乙运动员,不计空气阻力,问他应将球向什么方向抛出 A.抛出方向与奔跑方向相同,如图中箭头1所指的方向

()

B.抛出方向指向乙的前方,如图中箭头2所指的方向 C.抛出方向指向乙,如图中箭头3所指的方向 D.抛出方向指向乙的后方,如图中箭头4所指的方向 答案 C

6.在离坡底10 m的山坡上竖直地固定一长10 m的直杆AO(即BO=AO=10 m).A端与坡底B间 连有一钢绳,一穿于钢绳上的小球从A点由静止开始沿钢绳无摩擦地滑下,取g=10 m/s2,如图 所示,则小球在钢绳上滑行的时间为 A.2 答案 B 7.如图所示,自由下落的小球下落一段时间后,与弹簧接触,从它接触弹簧开始,到弹簧压缩到最短 的过程中,即弹簧上端位置由A→O→B,且弹簧被压缩到O位置时小球所受弹力等于重力,则小 球速度最大时弹簧上端位于

A.A位置

答案 C

8.如图所示,完全相同的容器E、F、G,小孔a与大气相通,容器口封闭, T为阀门,水面的高度相同.在E静止、F、G同时竖直向上和向下以 加速度a运动的同时打开三个容器的阀门,则以下说法中正确的是()A.从三个容器阀门流出的水速大小关系是vEvF>vG C.水有可能不从G容器的T阀门中流出

D.从三个容器阀门流出的水速大小关系可能是vF>vG>vE 答案 C

9.小车上固定有一个竖直方向的细杆,杆上套有质量为M的小环,环通过细绳与质量为m的小球 连接,当车向右匀加速运动时,环和球与车相对静止,绳与杆之间的夹角为α,如图所示.求杆对 环作用力的大小和方向.答案(M+m)g1tan()

D.3s

B.2 s C.4 s

()

D.OB之间某一位置

B.B位置

C.O位置

 方向沿右上方与杆间的夹角为α

10.如图所示,劲度系数为k的轻质弹簧一端与墙固定,另一端与倾角为θ的斜面体小车 连接,小车置于光滑水平面上,在小车上叠放一个物体,已知小车质量为M,物体质量为

m,小车位于O点时,整个系统处于平衡状态.现将小车从O点拉到B点,令OB=b,无初速度释放后,小车在水平面B、C间来

回运动,物体和小车之间始终没有相对运动.求:(1)小车运动到B点时物体m所受到的摩擦力大小和方向.(2)b的大小必须满足什么条件,才能使小车和物体在一起运动过程中,在某一位置时,物体和小车之间的摩擦力为零.答案(1)mgsinθ+kbmcosMm 沿斜面向上

(2)b=(Mm)gtan

k11.如图甲所示,质量分别为m1=1 kg和m2=2 kg的A、B两物块并排放在光滑水平面上,对A、B分别施加大小随时间变化的水平外力F1和F2,F1=(9-2t)N,F2=(3+2t)N,则:

(1)经多长时间t0两物块开始分离?此时两物块的加速度大小为多大?(2)通过计算,在同一坐标系(如图乙所示)中作出两物块分离后2 s内加速度a1和a2随时间变化的图象.(3)由题意和图象可知“a—t”图象下的“面积”在数值上应等于什么?(4)由加速度a1和a2随时间变化的图象可求得A、B两物块分离后2 s其相对速度为多大? 答案(1)2.5 s 4 m/s2

(2)依题意a1′=F1m192(t02)m1=0 a2′=F232(t02)m2m26 m/s2

两物块分离后2 s内的加速度a1、a2随时间的变化图象如右图所示.(3)等于速度的变化量Δv.(4)6 m/s 12.有一小铜块静止放置在倾角为α的方桌的桌布上,且位于方桌的中心.方桌布的 一边与方桌的AB边重合,如图所示.已知小铜块与方桌布间的动摩擦因数为μ1, 小铜块与方桌面间的动摩擦因数为μ2(μ1>μ2>tanα).现突然以恒定的加速度a将桌布沿桌面向上抽离,加速度的方向是沿桌面的且垂直于AB边向上.若小铜块最后恰好未从方桌面掉下,则加速度a满足的条件是什么?(以g表示重力加速度)答案 a≥(1cossin)(1cos22cossin)g

2cossin

第二篇:牛顿运动定律教案

三、牛顿运动定律

教学目标 1.知识目标:

(1)掌握牛顿第一、第二、第三定律的文字内容和数学表达式;(2)掌握牛顿第二定律的矢量性、瞬时性、独立性和对应性;(3)了解牛顿运动定律的适用范围. 2.能力目标:

(1)培养学生正确的解题思路和分析解决动力学问题的能力;(2)使学生掌握合理选择研究对象的技巧. 3.德育目标:

渗透物理学思想方法的教育,使学生掌握具体问题具体分析,灵活选择研究对象,建立合理的物理模型的解决物理问题的思考方法.

教学重点、难点分析

1.在高

一、高二的学习中,学生较系统地学习了有关动力学问题的知识,教师也介绍了一些解题方法,但由于学生掌握物理知识需要有一个消化、理解的过程,不能全面系统地分析物体运动的情境,在高三复习中需要有效地提高学生物理学科的能力,在系统复习物理知识的基础上,对学生进行物理学研究方法的教育.本单元的重点就是帮助学生正确分析物体运动过程,掌握解决一般力学问题的程序.

2.本单元的难点在于正确、合理地选择研究对象和灵活运用中学的数学方法,解决实际问题.难点的突破在于精选例题,重视运动过程分析,正确掌握整体—隔离法.

教学过程设计

一、引入

牛顿运动定律是经典力学的基础,应用范围很广.

在力学中,只研究物体做什么运动,这部分知识属于运动学的内容.至于物体为什么会做这种运动,这部分知识属于动力学的内容,牛顿运动定律是动力学的支柱.我们必须从力、质量和加速度这三个基本概念的深化理解上掌握牛顿运动定律.这堂复习课希望学生对动力学的规律有较深刻的理解,并能在实际中正确运用.

二、教学过程 教师活动

1.提问:叙述牛顿第一定律的内容,惯性是否与运动状态有关? 学生活动

回忆、思考、回答:

一切物体总保持匀速直线运动状态或静止状态,直到有外力迫使它改变这种状态为止. 教师概括.

牛顿第一定律指明了任何物体都具有惯性——保持原有运动状态不变的特性,同时也确定了力是一个物体对另一个物体的作用,力是改变物体运动状态的原因.

应该明确:

(1)力不是维持物体运动的原因;

(2)惯性是物体的固有性质.惯性大小与外部条件无关,仅取决于物体本身的质量.无论物体受力还是不受力,无论是运动还是静止,也无论是做匀速运动还是变速运动,只要物体质量一定,它的惯性都不会改变,更不会消失,惯性是物体的固有属性.

放投影片:

[例1]某人用力推原来静止在水平面上的小车,使小车开始运动,此后改用较小的力就可以维持小车做匀速直线运动,可见:

A.力是使物体产生运动的原因 B.力是维持物体运动速度的原因 C.力是使物体产生加速度的原因 D.力是使物体惯性改变的原因 讨论、思考、回答: 经讨论得出正确答案为:C. 2.提问:牛顿第二定律的内容及数学表达式是什么? 学生回忆、回答:

物体受到外力作用时,所获得的加速度的大小跟外力大小成正比,跟物体的质量成反比,加速度的方向与合外力方向相同.

ΣF=ma

理解、思考. 教师讲授: 牛顿第二定律的意义

(1)揭示了力、质量、加速度的因果关系.(2)说明了加速度与合外力的瞬时对应关系.(3)概括了力的独立性原理

提问:怎样应用牛顿第二定律?应用牛顿第二定律解题的基本步骤如何? 讨论:归纳成具体步骤.

应用牛顿第二定律解题的基本步骤是:(1)依题意,正确选取并隔离研究对象.

(2)对研究对象的受力情况和运动情况进行分析,画出受力分析图.(3)选取适当坐标系,一般以加速度的方向为正方向.根据牛顿第二定律和运动学公式建立方程.

(4)统一单位,求解方程组.对计算结果进行分析、讨论. 在教师的引导下,分析、思考. 依题意列式、计算.

[例2]有只船在水中航行时所受阻力与其速度成正比,现在船由静止开始沿直线航行,若保持牵引力恒定,经过一段时间后,速度为v,加速度为a1,最终以2v的速度做匀速运动;若保持牵引力的功率恒定,经过另一段时间后,速度为v,加速度为a2,最终也以2v的速度做匀速运动,则a2=______a1.

放投影片,引导解题: 牵引力恒定:

牵引力功率恒定:

提问:通过此例题,大家有什么收获?随教师分步骤应用牛顿第二定律列式. 学生分组讨论,得出结论:

力是产生加速度的原因,也就是说加速度与力之间存在即时直接的因果关系.被研究对象什么时刻受力,什么时刻产生加速度,什么时刻力消失,什么时刻加速度就等于零.这称做加速度与力的关系的同时性,或称为瞬时性.

放投影片:

[例3]已知,质量m=2kg的质点停在一平面直角坐标系的原点O,受到三个平行于平面的力的作用,正好在O点处于静止状态.已知三个力中F2=4N,方向指向负方向,从t=0时起,停止F1的作用,到第2秒末物体的位置坐标是(-2m,0).求:(1)F1的大小和方向;(2)若从第2秒末起恢复F1的作用,而同时停止第三个力F3的作用,则到第4秒末质点的位置坐标是多少?(3)第4秒末质点的速度大小和方向如何?(4)F3的大小和方向?

读题,分析问题,列式,求解. 画坐标图:

经启发、讨论后,学生上黑板写解答.

(1)在停止F1作用的两秒内,质点的位置在x轴负方向移动,应

所以F1=-Fx=-ma=2(N)F1的方向沿X轴方向.

(2)当恢复F1的作用,而停止F3的作用的2秒内,因为F1在x轴正方向,F2在y轴负方向,直接用F1和F2列的动力学方程

所以第4秒末的位置坐标应是

其中v1x=a1t1=-2(m/s),t2=2s

(3)第4秒末质点沿x轴和y轴方向的速度分别为v2x和v2y,有

即第4秒末质点的速度为4m/s,沿y轴负方向.

限,设F3与y轴正向的夹角为θ,则有

对照解题过程理解力的独立作用原理. 教师启发、引深:

大量事实告诉我们,如果物体上同时作用着几个力,这几个力会各自产生自己的加速度,也就是说这几个力各自产生自己的加速度与它们各自单独作用时产生的加速度相同,这是牛顿力学中一条重要原理,叫做力的独立作用原理,即:

3.提问:叙述牛顿第三定律的内容,其本质是什么? 回忆,思考,回答:

两个物体之间的作用力和反作用力总是大小相等,方向相反,作用在一条直线上. 放投影片:

牛顿第三定律肯定了物体间的作用力具有相互作用的本质:即力总是成对出现,孤立的单个力是不存在的,有施力者,必要有受力者,受力者也给施力者以力的作用.这一对作用力和反作用力的关系是:等大反向,同时存在,同时消失,分别作用于两个不同的物体上,且具有相同的性质和相同的规律.

[例4] 如图1-3-2,物体A放在水平桌面上,被水平细绳拉着处于静止状态,则:

[

]

A.A对桌面的压力和桌面对A的支持力总是平衡的 B.A对桌面的摩擦力的方向总是水平向右的 C.绳对A的拉力小于A所受桌面的摩擦力

D.A受到的重力和桌面对A的支持力是一对作用力与反作用力 思考、讨论、得出正确结论选B,并讨论其它选项错在何处. 放投影片:

4.牛顿运动定律的适用范围

牛顿运动定律如同一切物理定律一样,都有一定的适用范围.牛顿运动定律只适用于宏观物体,一般不适用于微观粒子;只适用于物体的低速(远小于光速)运动问题,不能用来处理高速运动问题.牛顿第一定律和第二定律还只适用于惯性参照系.

理解,记笔记.

三、课堂小结

提问:你怎样运用牛顿运动定律来解决动力学问题? 组织学生结合笔记讨论并进行小结.

由牛顿第二定律的数学表达式ΣF=ma,可以看出凡是求瞬时力及作用效果的问题;判断质点的运动性质的问题,都可用牛顿运动定律解决.

解决动力学问题的基本方法是:

(1)根据题意选定研究对象,确定m.

(2)分析物体受力情况,画受力图,确定F合.(3)分析物体运动情况,确定a.

(4)根据牛顿定律,力的概念、规律、运动学公式等建立有关方程.(5)解方程.(6)验算、讨论.

四、教学说明

1.作为高三总复习,涉及概念、规律多.因此复习重点在于理解概念、规律的实质,总结规律应用的方法和技巧.

2.复习课不同于新课,必须强调引导学生归纳、总结.注意知识的连贯性和知识点的横向对比性.如一对作用力和反作用力与一对平衡力有什么不同?

3.复习课可以上得活跃些,有些综合题可以由学生互相启发,互相讨论去解决,这样既可以提高学生的学习兴趣又可提高学生分析问题的能力.

同步练习

一、选择题

1.如图1-3-3所示,物体A放在物体B上,物体B放在光滑的水平面上,已知mA=6kg,mB=2kg.A、B间动摩擦因数μ=0.2.A物上系一细线,细线能承受的最大拉力是20N,水平向右拉细线,下述中正确的是(g=10m/s2)

[

]

A.当拉力F<12N时,A静止不动 B.当拉力F>12N时,A相对B滑动 C.当拉力F=16N时,B受A摩擦力等于4N D.无论拉力F多大,A相对B始终静止

2.如图1-3-4所示,物体m放在固定的斜面上,使其沿斜面向下滑动,设加速度为a1;若只在物体m上再放上一个物体m′,则m′与m一起下滑的加速度为a2;若只在m上施加一个方向竖直向下,大小等于m′g的力F,此时m下滑的加速度为a3,则

[

]

A.当a1=0时,a2=a3且一定不为零 B.只要a1≠0,a1=a2<a3 C.不管a1如何,都有a1=a2=a3 D.不管a1如何,都有a1<a2=a3

3.如图1-3-5所示,在光滑的水平面上放着两块长度相等,质量分别为M1和M2的木板,在两木板的左端分别放有一个大小、形状、质量完全相同的物块.开始都处于静止状态,现分别对两物体施加水平恒力F1、F2,当物体与木板分离后,两木板的速度分别为v1和v2,若已知v1>v2,且物体与木板之间的动摩擦因数相同,需要同时满足的条件是

[

]

A.F1=F2,且M1>M2 B.F1=F2,且M1<M2 C.F1>F2,且M1=M2 D.F1<F2,且M1=M2

二、非选择题

4.如图1-3-6所示,一质量为M=4kg,长为L=3m的木板放在地面上.今施一力F=8N水平向右拉木板,木板以v0=2m/s的速度在地上匀速运动,某一时刻把质量为m=1kg的铁块轻轻放在木板的最右端,不计铁块与木板间的摩擦,且小铁块视为质点,求小铁块经多长时间将离开木板?(g=10m/s2)

5.一艘宇宙飞船飞近一个不知名的行星,并进入靠近该行星表面的圆形轨道,宇航员着手进行预定的考察工作.宇航员能不能仅仅用一只表通过测定时间来测定该行星的平均密度?说明理由.

6.物体质量为m,以初速度v0竖直上抛.设物体所受空气阻力大小不变,已知物体经过时间t到达最高点.求:

(1)物体由最高点落回原地要用多长时间?(2)物体落回原地的速度多大?

7.如图1-3-7所示,质量均为m的两个梯形木块A和B紧挨着并排放在水平面上,在水平推力F作用下向右做匀加速运动.为使运动过程中A和B之间不发生相对滑动,求推力F的大小.(不考虑一切摩擦)

8.质量m=4kg的质点,静止在光滑水平面上的直角坐标系的原点O,先用F1=8N的力沿x轴作用了3s,然后撤去F1,再用y方向的力F2=12N,作用了2s,问最后质点的速度的大小、方向及质点所在的位置.

参考答案

1.CD

2.B

3.BD

4.2s

7.0<F≤2mgtanθ

第三篇:牛顿运动定律 机械能

牛顿运动定律 机械能

【教学结构】

牛顿运动定律

一、牛顿第一定律:一切物体总保持匀速直线运动状态或静止状态,直到有外力迫使它改变这种状态为止。又称为惯性定律。

惯性:物体有保持原来匀速直线运动状态或静止状态的性质。一切物体都有惯性。与运动状态无关,静止状态、匀速直线运动状态、匀变速运动等,物体都有惯性,且不变。惯性的大小是由质量量度的。物体的速度不需要力来维持。

二、牛顿第二定律

1.运动状态变化:物体运动速度发生变化,运动状态就变化。速度是矢量,有大小,有方向,大小和方向一个变化或同时都变,都叫速度变化,加速度描述物体运动状态变化快慢。

2.力的作用效果:改变物体运动状态,使物体形状或体积发生变化。

3.质量:质量是惯性的量度。质量越大,惯性越大,阻碍物体改变运动状态作用越大。

4.牛顿第二定律:物体的加速度跟物体所受外力成正比,跟物体质量成反比。∑F=ma 等号左边是物体所受的合外力,等号右边是物体质量和加速度的乘积。在使用牛顿第二定律时,(1)选择研究对象,(2)分析物体受力,(3)利用正交分解方法求物体的合力,建立xoy坐标系,根据解题方便确立x、y方向,(4)列牛顿第二定律方程,∑Fy=may,∑Fx=max(5)解方程。关键是正确分析物体受力,求合力。

5.力的平衡:当物体所受合外力为零时,物体为平衡状态,即静止状态或匀速直线运动状态。静止状态应是υ=0,a=0。单一速度为零不叫静止状态,使牛顿第二定律解题时,往往是一个方向运动状态不变化,需列平衡方程,另一方向有加速度列第二定律方程,然后联立求解。

6.牛顿第二定律的应用:(1)根据物体受力情况,使用牛顿第二定律求得加速度,然后结合运动学公式,求解位移,速度等。(2)根据运动学规律利用题给定的条件求出加速度再利用牛顿第二定律,求解力或质量。

三、牛顿第三定律:两个物体之间的作用力和反作用力总是大小相等,方向相反,作用在一条直线上。作用力和反作用力与二力平衡的区别:作用力与反作用力作用在两个物体上不能使物体平衡,二力平衡一定是作用在一个物体上。作用力与反作用力一定是同种性质的力,是摩擦力都是摩擦力,二力平衡则可是不同性质的力。在确定作用力的反作用力时,一定发生在两个物体之间,A给B的力为作用力,反作用力一定是B给A的力。

四、单位制:

基本单位:选定几个物理量的单位为基本单位。

导出单位:利用基本单位导出的单位,例如:基本单位位移m,时间s,速s度单位:根据υ=,速度单位为m/s,即为导出单位。

t单位制:基本单位和导出单位一起组成单位制。

国际单位制:基本单位:位移:m, 质量:kg, 时间:s。又称:米,千克,秒制。导出单位:加速度:m/s2,力:1牛顿(N)=1kgm/s2等。机械能

一、功:物体受力的作用,在力的方向上

发生位移,这个力对物体做了功。如图1所示:W=Fscosα,物体 在F1方向上发生位移S。

α<90°时,cosα>0,力对物体做正功

α=90°时,cosα=0,力对物体不做功,这是很重要的情况,必须重视;带电沿等势面移动,电场力不做功,洛仑兹力对运动电荷不做功。90°<α≤180°时,cosα<1,力对物体做负功,也可理解为物体克服某力做功。

功是标量只有大小而无方向,做正功、负功只反映做功的效果。功是能量转化的量度,做功过程是能量转化过程。功的单位:焦耳。1焦耳=1Nm。

w功率:描述做功快慢的物理量,定义:功跟完成这些功所用时间的比值,P=。

t功率的单位1瓦(W)=1J / S,1千瓦(KW)=1000 J / S,功率是标量。

P=Fυ,F大小方向不变,υ在变化,某时刻功率P=Fυt,称为即时功率。若

w时间t完成功为W,P=,又称为在t时间内的平均功率,或表示为PFV。

t额定功率:机械在正常工作时的最大功率。机械的实际功率可以小于额定功率。当机械在额定功率下工作:P额=Fυ,速度越大,牵引力越小,在汽车起动时,速度很小,牵引力很大,且大于阻力,汽车加速运动,υ增大,F减小,加速度随之减小,当F=f时,加速度为零,汽车有最大速度υm,汽车开始的υm做匀速运动,P额=F·υm=fυm。

二、机械能

11.动能:物体动能等于它的质量跟它的速度平方乘积的一半。Ek=m2,动

2能是标量,动能单位:焦耳(J),静止物体动能量为零。动能大小由m、2共同决定。

2.重力势能:物体的重力势能就等于物体所受重力和它的高度的乘积。EP=mgh。势能是标量,单位:焦耳。在研究物体重力势能时,首先要确定重力势能0势能参考平面。h是相对零势能参数面的高度,物体在“0”势能面上面h为正,重力势能为正表示比零重力势能大。在0势能面下面h为负,重力势能为负,表示0重力势能小。零势能面的选择是任意的,在解决具体问题时,以方便为选零势能面的原则。

重力功与重力势能的关系:重力做正功重力势减小,做多少正功重力势能减少多少。重力做负功,重力势能增加,重力做多少负功,重力势增加多少。

3.弹性势能:被拉伸或压缩的弹簧,内部各部分之间的相对位置发生变化,而具有的势能。其它弹性物体形变时也能产生弹性势能。我们主要考虑弹簧的形变势能。

势能:指弹性势能和重力势能。机械能:动能和势能的总和。

三、机械能守恒定律:如果没有摩擦和介质阻力(空气阻力、水的阻力等),物体只发生动能和势能的相互转化,机械能总量保持不变。

对于机械能守恒条件可以理解为:只有重力和产生弹性势能弹力做功,其它力都不做功或其它力做功总和为零,能量转化过程中,机械能守恒。重点要求会用机械能解释一些比较简单的物理过程。例如:单摆在忽略空气阻力情况下,机械能守恒,竖直上抛物体机械能守恒,它们都是动能与势能之间的转化。

【课余思考】

1.牛顿三定律内容是什么?第一定律与第二定律关系?在使用牛顿第二定律时应注意什么?物体的平衡条件是什么?

2.什么叫机械能守恒?机械能守恒条件是什么?

【解题要点】

一、下面说法正确的是()A.物体受的合外力越大,动量越大 B.物体受的合外力越大,动量变化量越大

C.物体受的合外力越大,动量变化率越大 D.物体动量变化快慢与合外力没关系

解析:运动物体的质量与运动速度的乘积叫做物体动量,是矢量,用P表示。P=mυ,其单位为:kgm/s,其方向与速度方向相同,设物体受的合外力F合作用

t0时间为t,在此时间内物体速度由υ0变到υt,其加速度a,代入牛顿第tt0二定律式F合=ma=m

tmtm0PtP0PtP0==,PtP0为动量变化量,为动量变化率。可知C选ttt项正确。

牛顿第二定律又可表述为:作用在物体上的合外力等于单位时间动量的变化。

二、质量为10kg的物体,原来静止在水平面上,当受到水平拉力F后开始沿直线做匀加速运动,设物体经过时间t位移为x,且x、t的关系为x=t2,物体所受合外力大小为 第4S末的速度是 当4S末时撤去F,则物体再经过10S停止,运动物体受水平拉力F =,物体与平面摩擦因数=。

1解析:依题意,物体做初速度为零的匀加速运动,位移公式为S=at2,与

2x=2t2比较可知a=4m / s2,F合=ma=10×4=40N。4S末的速度υ 4=4×4=16 m / s。撤掉F后在水平方向上受摩擦力f,物体做初速为16m / s的匀减速运动,经10S

2停止运动,υ ′t,a′=1.6m / s,f=ma=10×1.6=16N,F-f=40,F=40+16=56N,4=υ 0-af又f=mg,== mg16 / 100=0.16。

三、如图2所示,质量为m的工件,随传送带运动,工件与传送带间无滑动,求下列情况下工件所受静摩擦力,(1)传送带匀速上升,(2)以a=g / 2的加速度向下加速运动,(3)以a=g的加速度向下

加速运动。解析:选工件为研究对象,分析工件受力,如图3所示,受重力、斜面支持力N,斜面给的静摩擦力f,其方向

可设为沿斜面向上,建立xoy坐标,x平行斜面向上 为正,y与斜面垂直,向上为正,分解mg为

1Gx=mgsin30°=mg,沿-x方向,23Gy=mgcos30°=mg沿-y方向。

2(1)物体处于平衡状态,合外力为零,13即f-mg=0 N-mg=0,解方程

221可得f=mg沿斜面向上。第二个方程可不解。

(2)物体以a=g / 2沿斜面向下加速运动,在x方向列牛顿第二定律方程

1f-mg=-ma,y方向方程可不列,但在很多题目中列y方向方程也是必要2的。方程中的正、负是以x轴方向而决定的,a方向向-x,故为负,将a=g / 2代入方程解得:f=0。

1(3)当a=g时,其它情况同于(2),f=-mg此负号表示与原设定方向相

21反,f大小为mg,方向沿斜面向下。

2例

四、在某次实验中获得的纸带上 每5个点取为一个计数点0、1、2、3、4、5,每个计数点相对于起点距离 如图4所示,由纸带测量数据可知,从起点O到第5个计数点的时间间隔为

S,这段时间里小车的平均速度为

cm / s,在连续相等的时间内位移差均为

,所以小车运动可看作为

,小车的加速度为

计数点4处小车的速度为

cm / s。

解析:打点计时器每打两个点所用时间t0=0.02S,所以每两个计数点之间的时间间隔T=0.1S,从O点到第5个计数点所时间t=0.5S。这段时间内小车位移

s14.30为14.30 cm,平均速度V=28.6 cm / s。

t0.5第一个T内位移S1=12.6 mm,第二个T内位移S2=33.2-12.6=20.6 mm,S3=61.8-33.2=28.6 mm,S4=98.4-61.8=36.6 mm,S5=143.0-98.4=44.6 mm,连续相等时间位移差S=20.6-12.6=28.6-20.6=36.6-28.6=44.6-36.6=8mm。根据匀加速直SnSn1线运动:a=,可知aT2为恒量,连续相等时间内位移差一定时,此运动2T便为匀加速直线运动。

S0.8a=2280cm/s2。在匀加速直线运动中,时间中点的即时速度即等于T01.S4S536.644.6这段时间的平均速度,V4==40.6 cm / s。2T201.例

五、如图5所示,质量为m的物体静止在水平面上,物体与平面间摩擦因数为,在与水平成

角的恒力F作用下,做直线运动,当

位移为S时,F对物体做功为

,摩擦力做功为

,重力做功为。

解析:WF=F·Scos直接可求得F做功。摩擦力 的做功,首先分析物体受力,如图6所示,在 竖直方向上无加速度处于平衡

N+F2-mg=0,N=mg-F sin,f=N=(mg-F sin)摩擦力功Wf=(mg-F sin)S。重力功W重=0重力与

位移方向垂直。解决功的问题关键是确定力的大小

和方向,位移的大小和方向,然后根据功的定义计算功。

六、自高为H处,以速度υ0抛出一个质量为m的小球,在不计空气阻力的情况下,小球落地时速度大小为多少?若以相同的速度向不同方向抛出不同质量的小球,它们落地时速度大小关系是什么

解析:在忽略空气阻力情况下,小球自抛出点落地过程机械能守恒,抛出时11机械能为E1=mgH+m02,落地时只有动能而无重力势能,机械能E2=m2。

221

1mgH+m02=m2 022gh

22从上式知物体落地时的速度与物体的质量无关,与抛出的方向无关,只要抛出时速度大小相等,抛出高度相同,落地时速度应相等。

【同步练习】

1.如图7所示,把质量为m的物体沿倾角不同斜面拉至 同一高度,若物体与不同斜面摩擦系数相同,倾角 θ1<θ2<θ3

(1)拉m从坡底到坡顶过程中,克服重力做 功为W1、W2、W3则()

A.W1>W2>W3、B.W1<W2<W

3C.W1=W2=W3

D.无法确定

(2)在此过程中克服摩擦力的功为W1、W2、W3则()

A.W′′′B.W′′′1>W2>W1<W2<W3

C.W′′′ D.不知运动状态无法确定。1=W2=W3

2.在有空气阻力情况下,竖直上抛一物体,到达最高点又落回原处,若过程中阻力不变,则()

A.上升过程中重力对物体做功的大小大于下降过程中重力做功的大小

B.上升过程和回落过程阻力做功相等

C.上升过程和回落过程合力做功前者大于后者

D.上升过程重力做功平均功率大于回落过程重力做功的平均功率

3.质量为m的物体,受到位于同一平面内的共点力F1、F2、F3、F4的作用,并处于平衡状态,当其中F2变为F2+F,且方向不变时,则()

A.物体一定做匀加速直线运动 B.物体一定做变加速直线运动

C.物体的加速度一定是F/m D.在任何相等时间内物体速度变化一定相同

4.如图8所示,升降机静止时弹簧伸长8cm,运动时弹簧伸长4cm,则升降机运动状态可能是()

A.a=1m/s2,加速下降

B.以a=1m/s2,加速上升

C.以a=4.9m/s2,减速上升

2D.以a=4.9m/s,加速下降

5.对于质量相同的甲、乙两个物体,下列说法正确 的是()

A.当甲、乙两物体的速度相同时,它们所受的合外力一定相等

B.当它们受到合外力相同时,它们的动量改变得快慢相同

C.当甲、乙两物体的加速度相同时,它们所受的合外力一定相等

D.当甲、乙两物体的位移相等时,它们所受的合外力一定相等 6.以υ=5m/s的速度匀速上升的气球,吊篮连同重物的质量为10kg,在500m的高空,从吊篮中落下一重物为2kg,经过10S钟,气球离开地面高度为多少?(g取10m/s2)

[参考答案] 1.(1)C(2)A 2.B C D 3.C D 4.C D 5.B C 6.675m

第四篇:牛顿运动定律典型习题.

1、如图所示,在一辆表面光滑的小车上,放有质量分别为m1、m2的两个小球,随车一起作匀速直线运动.当车突然停止

运动,则两小球(设车无

限长,其他阻 力不计(A.一定相碰 B.一定不相碰 C 不一定相碰 D 无法确定

2.火车在长直水平轨道上匀速行驶,门窗紧闭的车厢内有一人向上跳起,发现仍落回到车上原处,这是因为

A.人跳起后,车厢内给他以向前的力,带着他随同火车一起向前运动

B.人跳起的瞬间,车厢的地板给他一个向前的力,推动他随同火车一起向前运动 C.人跳起后,车在继续向前运动,所以人落下后必定偏后一些,只是由于时间很短,偏后距离太小,不明显而已

D.人跳起后直到落地,在水平方向上和车始终具有相同的速度 思考:若火车以加速度a匀加速运动,则人落到起跳点的什么位置? 若火车以加速度a匀减速运动,则人落到起跳点的什么位置? 3.如图所示,一个劈形物体A,各面均光滑,放在固定斜面上,上面成水平,水平面上放一光滑小球B,劈形物体从静止开始释放,请分析说明小球在碰到斜面前的运动轨迹

4.如图(俯视图所示,以速度v匀速行驶的列车车厢内有一水平光滑桌面,桌面上的处有一小球.若车厢中旅客突然发现小球沿图中虚线从A运动到B,则由此可判断列车(A速行驶,向南转弯

B.减速行驶,向北转弯 C.加速行驶,向南转弯 D.加速行驶,向北转弯

5.如图所示,一个劈形物体A,各面均光滑,放在固定斜面上,上面成水平,水平面上放一光滑小球B,劈形物体从静止开始释放,请分析说明小球在碰到斜面前的运动情况如图所示,重球系于线DC下端,重球下再系一根同样的线BA,下面说法中正确的是(A.在线的A端慢慢增加拉力,结果CD线拉断 B.在线的A端慢慢增加拉力,结果AB线拉断

C.在线的A端突然猛力一拉,结果AB线拉断 D.在线的A端突然猛力一拉,结果CD线拉断

6.一物体放在光滑水平面上,初速度为0,先对物体施加一向东的恒力,历时1s钟;随即把此力改为向西,大小不变,历时1s钟;接着又把此力改为向东,大小不变,历时1S钟;如此反复,只改变力的方向,共历时1分钟.在此一分钟内关于物体的运动,下列说法正确的是

A.物体时而向东运动,时而向西运动,在1分钟末静止于初始位置之东 B.物体时而向东运动,时而向西运动,在1分钟末静止于初始位置 C.物体时而向东运动,时而向西运动,在1分钟末继续向东运动 D.物体一直向东运动,从不向西运动,在一分钟末静止于初始位置之东.7.某物体做直线运动的v-t图象如图甲所示,据此判断图乙(F表示物体所受合力,x表示物体的位移四个选项中正确的是(图甲

第五篇:牛顿运动定律解决问题说课稿

牛顿运动定律解决问题

(二)说课稿

主要内容包括

1.通过分析教材和学生说三维教学目标的确定

2.说教学的组织方式、教学程序及体现的教育科学理论依据 3.说板书、教学评价及教学效果

一.说结合教材和课程标准,针对学生的心理特点和认知水平,确定三维教学目标

1.说教材:《牛顿运动定律解决问题

(二)》是必修一第四章牛顿运动定律第7节内容,是本章的重点内容。本节内容有五个特点:一是物体的平衡和超重、失重问题具有一定的代表性,课本以例题的形式呈现,反映出教科书新的基本知识观,因此本节内容知识性与分析问题的过程与方法并重;二是自由落体运动是从受力确定运动情况,超重和失重是从运动情况确定受力,所以说本节内容即是《牛顿运动定律解决问题

(一)》的延续又是牛顿运动定律的进一步应用;三是共点力作用下物体的平衡是牛顿第二定律中加速度为0,合外力为0时的特例,要通过列平衡方程进行求解;四是本节内容涉及牛顿三条定律,尤其是牛顿第二定律和牛顿第三定律的内容。还涉及到物体的受力分析尤其是共点力物体平衡的受力分析;五是本节内容涉及运用数学知识(建立坐标系)分析和处理物理问题。

2.说学生:高一学生刚刚接触动力学知识,思维具有单一性和不确定性;受力分析还不熟练甚至出错;对超重和失重尽管在电视上见过,或日常生活中听说过,但基本没有亲身感悟,还存在着某些错误的认识;利用运动学公式解决竖直上抛运动因存在往复现象,有一定的难度,空间想象能力较差。

3.重点:共点力物体的平衡;超重和失重现象. 4.难点:物体的受力分析;竖直上抛运动的理解.

5.教学目标:知识与技能―――知道共点力作用下物体的平衡及平衡条件;知道物理学中超重和失重现象的含义,能利用牛顿运动定律进行定性分析和定量计算;能解答以自由落体运动为基础的竖直方向的运动学问题;能运用牛顿运动定律解答较复杂的问题。过程与方法―――让学生领会如何从受力分析入手,学会分析复杂问题的过程与方法;让学生合作探究、研讨交流解决问题。情感态度与价值观―――让学生亲身感悟超失重现象,激发学生学习物理的兴趣;让学生观察力传感器实验,培养学生科学意识。

二.说教学程序、教法、学法及教育科学理论依据

设计思想:运动学是描述物体做什么运动,而动力学是研究物体为什么这样运动的问题,从动力学角度研究物体的平衡,超失重现象和自由落体运动,既有知识性,又有分析问题、探究过程的方法性。结合本节内容的三个“独立知识点”,结合高一学生的认知水平,结合与前一节内容的连续性,结合市要求的“三课型五环节”和“三案教学”。确定主要采用教师演示观察,学生体验感悟,问题驱动,以学生为主体合作研讨、教师引领下点评矫正的评研法,多媒体辅助教学,使知识主动构建,使能力得到提升。

教学方法:整个教学过程中,以教师引领,学生自主探究合作学习为主线的评研法;以实验为基础,逐步深入的诱思法;体现新课程改革所倡导的新的学习理念。

教学程序、教法、学法及教育科学理论依据: 1.任务一:研究超重和失重――从运动情况确定受力(12分钟)教师活动:(1)演示两种超失重现象,引导学生观察现象;(2)利用力的传感器演示超失重中拉力的大小,引导学生思考;(3)引领评研“课前预习案”上系列问题(超失重中速度方向、加速度方向、两同学黑板展示两道计算题)让学生展示自己的预习成果,给予鼓励性评价;(4)归纳超失重特点,给出超失重和完全失重定义。

学生活动:(1)观察教师的演示实验并认真思考;(2)亲身感悟超失重现象;(3)回扣研讨预习案上系列问题;(4)完成“课中导学案”任务(5)理解超失重定义及其内涵知识。

教学设计说明:通过演示实验创设物理情景,变抽象为亲身感悟,在实验研究的基础上解决物理问题,即帮助学生掌握基本知识,又培养学生观察、分析和探究的能力。

教育科学理论依据:教师的职责现在已经越来越少的传递知识,而越来越多的激励思考(《新课程与教学改革》)

2.任务二:从动力学看自由落体运动――从受力确定运动情况(12分钟)

教师活动:(1)描述自由落体运动的条件,引导学生受力分析;(2)演示竖直上抛运动,学生仔细观察;(3)引领评研“课前预习案”上系列问题(竖直上抛运动上升过程的加速度、下落过程的加速度、到达最高点的时间等问题)。

学生活动:(1)积极思考,明确自由落体运动的性质及其原因;(2)观察演示实验现象;(3)结合“课中导学案”明确竖直上抛运动过程的特点及其运动性质。

教学设计说明:“课前预习案”上系列问题,目的是一步步的引导学生明确比较复杂的竖直上抛运动过程。

教育科学理论依据:突出独立获取物理知识,探究物理规律,体现以揭示规律为重点的原则。(《高中物理课程标准教师读本》)

3.任务三:共点力的平衡条件(11分钟)

教师活动:(1)演示三种平衡现象,学生观察平衡的特点;(2)回扣“课前预习案”从牛顿运动定律得出平衡条件;(3)展示三角支架,分析结点“O ”的受力情况;(4)引领学生列出平衡方程,求出弹力大小。

学生活动:(1)观察平衡现象,积极寻找平衡状态;(2)理解三角支架上“O”点的受力情况;(3)在教师引导下列出平衡方程,求出弹力大小,完成“课中导学案”任务。

教学设计说明:平衡态是具体的一种状态,从观察到得出结论顺理成章。三角支架的受力和施力情况易于混淆,出示模型化难为易。

教育科学理论依据:教学应以人的全面发展为本。因此:师者,所以引路、开窍、促进也。(《诱思探究学科教学论》)

4.任务四:总结本节课学习的主要知识内容和物理方法,布置“课后提升案”任务(5分钟)

三.说板书:多媒体及导学案辅助下,主要板书课题,任务环节,共点力平衡的条件,超失重概念等内容。

四.说教学评价及教学效果:适时恰当的运用激励评价机制,促进学生的合作交流、点评学生的展示、激发学生的思维、提高学生的能力,构建和谐的课堂氛围,完成教学任务。但本节课内容较多,也有一定的难度,在教学中对外开发的有一定限度,练习也不够充分,需要在“课后提升案”中加以巩固和提高。

下载牛顿运动定律--2011届高三物理教案及练习题word格式文档
下载牛顿运动定律--2011届高三物理教案及练习题.doc
将本文档下载到自己电脑,方便修改和收藏,请勿使用迅雷等下载。
点此处下载文档

文档为doc格式


声明:本文内容由互联网用户自发贡献自行上传,本网站不拥有所有权,未作人工编辑处理,也不承担相关法律责任。如果您发现有涉嫌版权的内容,欢迎发送邮件至:645879355@qq.com 进行举报,并提供相关证据,工作人员会在5个工作日内联系你,一经查实,本站将立刻删除涉嫌侵权内容。

相关范文推荐

    牛顿运动定律典型题

    牛顿运动定律常见题型例1. 如图所示,轻弹簧下端固定在水平面上。一个小球从弹簧正上方某一高度处由静止开始自由下落,接触弹簧后把弹簧压缩到一定程度后停止下落。在小球下落......

    牛顿运动定律全套教案

    超重和失重 一、教学目标 1.了解超重和失重现象; 2.运用牛顿第二定律研究超重和失重的原因; 3.培养学生利用牛顿第二定律分析问题和解决问题的能力。 二、重点、难点分析 1.超重和......

    02牛顿运动定律·牛顿第二定律·教案

    牛顿运动定律·牛顿第二定律·教案 一、教学目标 1.在学生实验的基础上得出牛顿第二定律,并使学生对牛顿第二定律有初步的理解。 2.通过学生分组实验,锻炼学生的动手实验能力。......

    牛顿运动定律单元教学设计

    牛顿运动定律单元教学设计 作者: 沈宇芳(高中物理 赤峰物理五班 ) 评论数/浏览数: 1 / 199 发表日期: 2011-06-30 08:31:59 牛顿第一定律,实验:探究加速度与力、质量的关系,牛顿第......

    “牛顿第一运动定律”教学设计

    “牛顿第一运动定律”教学设计 “牛顿第一运动定律”--江苏高邮市赞化学校 盛荣湖【教学内容】 高中《物理》(必修)第一册第三章“牛顿第一运动定律”。 【教学媒体】 网络教......

    牛顿第三定律 牛顿运动定律的运用

    知识点8 牛顿第三定律 牛顿运动定律的运用 一、牛顿第三定律 1、 内容:两个相互作用物体间的作用力和反作用力总是大小相等、方向相反、作用在同一条直线上。即FF'. 2、 理解......

    11牛顿运动定律的应用

    §4.4牛顿运动定律的应用(4) 教学目标: 1、掌握应用牛顿运动定律解决动力学问题的基本思路方法。 2、学会如何已知受力情况求解运动情况 3、学会如何已知运动情况求受力情况......

    高三物理三轮基础知识精品教案3:牛顿运动定律

    高三物理三轮基础知识精品教案3:牛顿运动定律 牛顿三个运动定律是力学的基础,对整个物理学也有重大意义。本章考查的重点是牛顿第二定律,而牛顿第一定律和第三定律在牛顿第二定......