MATLAB在_信号与系统_课程教学中的应用.(精选合集)

时间:2019-05-15 04:43:13下载本文作者:会员上传
简介:写写帮文库小编为你整理了多篇相关的《MATLAB在_信号与系统_课程教学中的应用.》,但愿对你工作学习有帮助,当然你在写写帮文库还可以找到更多《MATLAB在_信号与系统_课程教学中的应用.》。

第一篇:MATLAB在_信号与系统_课程教学中的应用.

“信号与系统” 是电子信息类专业非常重要的一门专业基础 课, 该课程的前续课程为 “高等数学” 和 “电路理论” , 后续课程为 “数字信号处理”、“通信原理” 和 “数字图像处理” 等, 在教学环 节中起着承上启下的作用。该课程的大部分概念都以数学推导为 基础, 学生在学习这门课时, 普遍感到概念抽象, 对其中的分析方 法和基本理论不能很好地理解和掌握。为了帮助学生理解和掌握 课程中的基本概念、基本原理、基本分析方法, 提高综合应用所学 知识解决实际问题的能力, 同时考虑到电子信息类专业学生开设 过MATLAB课程, 已经具备MATLAB的一些基本编程能力, 所以在 “信号与系统” 课程教学中引入M ATLAB软件。利用M ATLAB软件 提供的强大数值运算函数库, 可以将课堂教学从繁重的运算与推导 过程中解脱出来, 让学生学会用计算机辅助分析方法解决问题, 帮 助学生将视线从数学计算的过程转向计算结果所对应的物理含义 上, 将学习重点放在对基本概念的分析、理解和应用上, 提高教学 效果。

[1]

一、MATLAB 语言的特点

MATLAB是一套用于科学工程计算的可视化高性能软件, 是一 种交互式的以矩阵为基本数据结构的系统, 具有强大的矩阵运算 能力。MATLAB中的工具箱和图形显示功能, 有利于直观、方便地 进行分析、计算和设计工作。MATLAB的信号处理工具箱为信号分 析与处理提供了强大的应用处理函数库, 已成功地用于 “信号与系 统” 课程的问题分析、实验、滤波器设计 及计算机模拟等工作中。

针对 “信号与系统” 课程内容的特点, 利用MATLAB的信号处理 工具箱和图形处理及数据可视化, 教师可以将结论直接用图形来演 示, 从而让学生对抽象的概念和定理以及结论有直观的认识, 并加 深对一些重要概念的理解;同时, 学生也可以亲自动手进行课题设 计 , 从而激发学习兴趣和增强借助计算机解决实际问题的能力。

二、信号与系统仿真实验设计 1.针对课程中难点的实验范例

在 “信号与系统” 课程的教学中, 信号的傅里叶级数的概念可 以说是学生遇到的第一个难点。为 了让学生更好地理解周期信号可 以分解成N次谐波分量的叠加, 我们以周期矩形脉冲为例来说明取 有限次谐波分量合成逼近周期矩形脉冲信号。[2] 周期矩形脉冲信号 如图1所示。这里A=1, T

0=2, τ=1, ω0=π, 根据傅里叶级数公式 由前N次谐波合成的信号近似波形为

则可以利用M ATLA B程序画出前N次谐波合成的信号近似波 形, 如图2所示(图中N分别为3, 7, 30。

从结果中可以看出当所取谐波次数足够多时, 合成结果与周期 矩形脉冲逐渐逼近;同时, 图中间断点处始终出现约9%的过冲, 也 很好地反映了吉布斯现象。

2.信号与系统仿真实验设计

在传统的 “信号与系统” 教学过程中缺乏实验环节, 学生很难 将学习到的理论知识与实际结合。针对这一问题, 我们根据 “信号与 系统” 课程的特点设计了8个基于MATLAB的仿真实验。仿真实验内 容有:信号波形绘制及基本运算;信号的卷积运算;周期信号的频 谱分析;非周期信号的频谱分析;信号调制与解调;系统的频率响 应;连续系统的复频域分析;离散系统的Z域分析。这些实验内容是 按照由浅入深的原则安排的, 既有基本概念、基本理论的验证性实 验也有设计性实验。

三、信号与系统虚拟实验平台设计

笔者借助MATLAB交互式工具GUIDE 制作GUI图形用户界面。

[3] 在与传统教学相结合的基础上改善教学环节, 使用户能够灵活、细致、直观、充分地利用计算机的优势, 解决信号与系统以及数字 信号处理本身具有的诸多难题, 如概念抽象, 算法理论性很强, 运 算量大且繁琐, 学习者难以亲手验证等。实验平台的总体界面如图 3所示。

主界面主要是 “DSP(数字信号处理 虚拟实验系统” 的简介及 进入某一特定实验的三个按键。对于信号的频谱分析和滤波器的 设计两个实验项目, 依据信号处理的一般模式需要, 又可以具体分 为离散时间信号的频谱分析、连续时间信号的频谱分析、模拟滤波 器的设计和数字滤波器的设计。这些实验都以独立菜单的形式设

MATLAB在 “信号与系统” 课程教学中的应用 张国琴

摘要:针对 “信号与系统” 课程的特点, 将MATLAB软件引入教学中, 激发了学生学习“信号与系统” 课程的兴趣, 加深了学生对抽象理论、概念的理解。同时设计 了基于MATLAB的信号与系统仿真实验系统, 取得了良好的教学效果。

关键词:信号与系统;MATLAB;仿真实验

作者简介:张国琴(1977-, 女, 内蒙古通辽人, 武汉纺织大学电子信息工程学院, 讲师。(湖北 武汉 430073 基金项目:本文系湖北省教育厅高等学校省级教学研究项目(鄂教高[2006]23号、立项编号:20060294 的研究成果。中图分类号:G642.3 文献标识码:A 文章编号:1007-0079(2011 07-0077-01 DOI编码:10.3969/j.issn.1007-0079.2011.07.037 图 1 周期矩形脉冲信号

图 2 有限次谐波分量合成周期矩形脉冲信号

(下转第 79页

法主要采取分组讨论的方法, 以4人为一个小组, 按题目要求完成实 验, 完成之后老师进行检查, 按完成情况给小组打分。

5.教学评价方案的设计

教学评价方案采取了课程考核的形式, 如表2所示。重点考查 学生知识掌握的情况、技能应用情况及学习态度问题, 应重点侧重 于技能和知识的掌握情况。

表 2 课程整体成绩表

考核类型 成绩 权重 课程整体成绩 课程考核平时成绩 +项目测试 +考试成绩 20%+30%+50%100%

三、通过技能大赛提高学生应用单片机的水平

现在很多学校开展各种技能大赛以提高学生的动手能力。单片 机这门课程非常适合开展这种比赛。在开展该项技能大赛时必须得 到学校的资金支持。如购买单片机电路板、各种电子元件、单片机 的芯片等等。但是单片机成本较为低廉, 总共算下来每个学生所需 的成本大概为30元左右, 大概1000元的经费就可以举办一次单片机 技能大赛。

在单片机技能大赛中, 每位选手不仅可以亲自动手焊接电路 板, 而且可以认识各种电子元件, 如晶振、电阻、电容和发光二极管 等, 掌握如何把程序下载到芯片当中, 如何调试程序等等, 从而让 学生真正体会到学习单片机的乐趣。

四、成立单片机兴趣协会

现在高校中有很多协会, 如英语协会、普通话协会等。由于单 片机在机电行业中的应用非常广泛, 所以在机电专业中有必要成立 单片机协会, 通过协会可以积累一些设备, 并且由协会组织开展一 些学习单片机的活动, 让学生增强对单片机的学习兴趣。学校可以 对类似的协会进行资金和场地等方面的支持, 让这种和学习相

关的 协会能够传承下去。学校通过技能大赛可以从协会中选拔人才 , 这 对培养高素质技能型人才是至关重要的。

五、结束语

总之, “单片机及接口技术” 课程的教学改革应该由学校、教师 和学生三方面齐抓共管, 而不是仅仅依赖教师改变教学方法。该门 课程在企业当中应用广泛, 只有从根源上进行彻底的教学改革, 高 校才能培养出真正合格的专业技能型人才。

参考文献: [1]程兴国.基于 Proteus 和 Keil 构建的单片机虚拟实验室 [J].福建电 脑 ,2009,(1:135-150.[2]马刚 ,李向仓.用 Proteus 与 Keil整合构建单片机虚拟仿真平台[J].现代电子技术 ,2006,(24:122-127.[3]李芳,李家庆.基于 Proteus+Keil的单片机实验仿真平台[J].中国教 育技术装备 ,2009,(4:60-72.[4]曹建树 ,曾林春 ,夏云生.基于 Proteus 和 Keil 接口的虚拟波形发生 器仿真 [J].北京石油化工学院学报 ,2008, 16(3:15-19.[5]周灵彬 , 张靖武.单片机应用产品的 PROTEUS 设计与仿真 [J].今日 电子 ,2008,(1:64-65.[6]陈朝元,鲁五一.Proteus软件在自动控制系统仿真中的应用[J].系统 仿真学报 ,2008,(2:310-315.(责任编辑 :麻剑飞

计在对应的实验标题下面。点击相应的子菜单就可以进入虚拟实验 中。下面以模拟滤波器的设计为例来说明。

图4是模拟滤波器设计的界面。其中阻带衰减、通带波纹、通带 边界频率和阻带边界频率都是可以自行设置的。在滤波器类型下 拉菜单中有巴特沃斯滤波器、切比雪夫滤波器和椭圆滤波器等可供 选择。当以上参数和滤波器选择好后, 就可以点击生成滤波器的按 钮, 在左端的图形框中就显示出滤波器的图形。

在本实验软件中, 利用MATLAB提供的信号处理工具箱函数, 用具体实例说明了用MATLAB处理数字信号的方法, 涵盖了信号的 运算、转换, 滤波器的设计等信号处理技术。通过该实验系统可帮 助学生加深对 “信号与系统” 理论知识的理解, 加深对MATLAB功 能的认识。

四、结束语

“信号与系统” 这门课程是电子信息类专业的一门重要的专业 基础课, 对这门课程理论的掌握程度直接影响到后续课程的学习。因此我们将MATLAB引入到 “信号与系统” 课程中, 学生可以直观 地理解和领会课本中抽象的内容, 提高了学生的积极性和兴趣, 从 而极大地改善了教学效果。同时由于MATLAB易学的特点, 可以通 过课程设计, 让学生自己动手编写程序进行更多的实验, 从而提高 对讲课内容的理解, 激发学生的学习热情和钻研精神。

参考文献: [1]廖延娜.MATLAB 在 《信号与系统》课程教学中的应用 [J].西安邮电 学院学报 ,2009,(5.[2]陈后金 ,胡健 ,薛健.信号与系统(第 2版 [M].北京:清华大学出版 社 ,2005:139-142.[3]张志涌.精通 MATLAB[M].北京 :北京航空航天大学出版社 ,2003: 493-502.(责任编辑 :麻剑飞 图 4 模拟滤波器设计(上接第 77

第二篇:信号与系统 MATLAB实验报告

院系:

年级:

姓名:

实验时间:

实验地点:

MATLAB实验报告

专业:

班号:

学号:

《信号与系统》

实验一 连续时间信号的表示及可视化

实验题目:

f(t)(t);f(t)(t);f(t)eat(分别取a0及a0); f(t)R(t);f(t)Sa(t);f(t)Sin(2ft)(分别画出不同周期个数的波形)。

解题分析:

以上各类连续函数,先运用t = t1: p:t2的命令定义时间范围向量,然后调用对应的函数,建立f与t的关系,最后调用plot()函数绘制图像,并用axis()函数限制其坐标范围。

实验程序:

(1)f(t)(t)

t=-1:0.01:3 %设定时间变量t的范围及步长 f=dirac(t)%调用冲激函数dirac()plot(t,f)%用plot函数绘制连续函数 axis([-1,3,-0.5,1.5])%用axis函数规定横纵坐标的范围(2)f(t)(t)

t=-1:0.01:3 %设定时间变量t的范围及步长 f=heaviside(t)%调用阶跃函数heaviside()plot(t,f)%用plot函数绘制连续函数 title('f(t)=heaviside(t)')%用title函数设置图形的名称 axis([-1,3,-0.5,1.5])%用axis函数规定横纵坐标的范围(3)f(t)eat

a=1时:

t=-5:0.01:5 %设定时间变量t的范围及步长 f=exp(t)%调用指数函数exp()

plot(t,f)%用plot函数绘制连续函数 title('f=exp(t)')%用title函数设置图形的名称 axis([-5,5,-1,100])%用axis函数规定横纵坐标的范围 a=2时:

t=-5:0.01:5 f=exp(2*t)%调用指数函数exp()plot(t,f)title('f=exp(2*t)')axis([-5,5,-1,100])a=-2时: t=-5:0.01:5 f=exp(-2*t)plot(t,f)title('f=exp(-2*t)')axis([-5,5,-1,100])(4)f(t)R(t)

t=-5:0.01:5 f=rectpuls(t,2)%用rectpuls(t,a)表示门函数,默认以零点为中心,宽度为a plot(t,f)title('f=R(t)')axis([-5 5-0.5 1.5])(5)f(t)Sa(t)

ω=1时: t=-20:0.01:20 f=sin(t)./t %调用正弦函数sin(),并用sin(t)./t实现抽样函数 plot(t,f)title('f(t)=Sa(t)')axis([-20,-20,-0.5,1.1])3

ω=5时: t=-20:0.01:20 f=sin(5*t)./(5*t)plot(t,f)title('f(t)=Sa(5*t)')axis([-20,-20,-0.5,1.1])(6)f(t)Sin(2ft)

ω=1时: t=-10:0.01:10 f=sin(t)%plot(t,f);title('f=sin(t)')axis([-10,10,-2,2])ω=5时: t=-10:0.01:10 f=sin(5*t)plot(t,f);title('f=sin(5*t)')axis([-10,10,-2,2])

实验结果;

(1)

调用正弦函数sin()4

1.510.50-0.5-1-0.500.511.522.532)

f(t)=heaviside(t)1.510.50-0.5-1-0.500.511.522.533)((a=1时:

f=exp(t)***3020100-5-4-3-2-1012345a=2时:

f=exp(2*t)***3020100-5-4-3-2-1012345

a=-2时:

f=exp(-2*t)***3020100-5-4-3-2-1012345(4)

f=R(t)1.510.50-0.5-5-4-3-2-1012345

(5)ω=1时:

f(t)=Sa(t)10.80.60.40.20-0.2-0.4-20-15-10-505101520ω=5时:

f(t)=Sa(5*t)10.80.60.40.20-0.2-0.4-20-15-10-505101520(6)ω=1时:

f=sin(t)21.510.50-0.5-1-1.5-2-10-8-6-4-20246810

ω=5时:

f=sin(5*t)21.510.50-0.5-1-1.5-2-10-8-6-4-20246810

实验心得体会:(1)在 MATLAB中,是用连续信号在等时间间隔点的样值来近似地表示连续信号的,当取样时间间隔足够小时,这些离散的样值就能较好地近似出连续信号。在 MATLAB 中t = t1: p: t2的命令定义时间范围向量,t1为信号起始时间,t2为终止时间,p为时间间隔。

(2)plot()函数可用于连续函数的绘制。

(3)用axis()函数限制坐标范围,可使图像更加匀称美观。

改进想法:

本题中函数的表示方法都不只一种。如阶跃函数可以借助符号函数来实现可视化。其程序和结果如下: t=-5:0.05:5 f=sign(t)%调用符号函数sign()axis([-5,5,-1.1,1.1])

ff=1/2+1/2*f %运用阶跃函数与符号函数的关系,表示出阶跃函数ff plot(t,ff)axis([-5,5,-0.1,1.1])

f=heaviside(t)10.80.60.40.20-5-4-3-2-1012345

实验二 离散时间信号的表示及可视化

实验题目:

f(n)(n);f(n)(n);f(n)ean(分别取a0及a0);

f(n)RN(n)(分别取不同的N值);f(n)Sa(n); f(n)Sin(n)(分别取不同的值);

解题分析:

以上各类离散函数,可仿照连续函数的可视化,先运用n =n1: p: n2的命令定义自变量的范围及步长,然后调用对应的函数,建立f与t的关系,最后调用stem()函数绘制图像,并用axis()函数限制其坐标范围。

实验程序:

(1)f(n)(n)

n=-5:0.5:5 %设定时间变量n的范围及步长 f=dirac(n)stem(n,f)%调用stem()绘制离散函数 title('f=dirac(t)')axis([-5,5,-3,10])%用axis函数规定横纵坐标的范围(2)f(n)(n)

n=-5:0.5:5 f=heaviside(n)stem(n,f)title('f=Heaviside(t)')axis([-5,5,-0.5,1.5])(3)f(n)ean

a=1时:

n=-5:0.5:5 f=exp(n)stem(n,f)title('f=exp(n)')a=2时: n=-5:0.5:5 f=exp(2*n)stem(n,f)title('f=exp(2*n)')a=-2时: n=-5:0.5:5 f=exp(-2*n)stem(n,f)title('f=exp(-2*n)')(4)f(n)RN(n)

n=-5:0.5:5 f=rectpuls(n,2)stem(n,f)title('f=R(n)')axis([-5,5,-0.5,1.5])(5)f(n)Sa(n)

ω=1时: n=-20:0.5:20 f=sin(n)./(n)stem(n,f)title('f=Sa(n)')axis([-20,-20,-0.5,1.1])ω=5时: n=-20:0.5:20 f=sin(5*n)./(5*n)13

stem(n,f)title('f=Sa(5*n)')axis([-20,-20,-1,5])(6)f(n)Sin(n)

ω=1时: n=-5:0.5:5 f=sin(n)stem(n,f)title('f=sin(n)')axis([-5,5,-2,2])ω=5时: n=-5:0.5:5 f=sin(5*n)stem(n,f)title('f=sin(5*n)')axis([-5,5,-2,2])

实验结果;

(1)

f=dirac(t)1086420-2-5-4-3-2-10123452)

f=Heaviside(t)1.510.50-0.5-5-4-3-2-10123453)((a=1时:

f=exp(n)150100500-5-4-3-2-1012345a=2时:

2.5x 104f=exp(2*n)21.510.50-5-4-3-2-1012345

a=-2时:

4f=exp(-2*n)2.5x 1021.510.50-5-4-3-2-1012345(4)

f=R(n)1.510.50-0.5-5-4-3-2-1012345

(5)ω=1时:

f=Sa(n)10.80.60.40.20-0.2-0.4-20-15-10-505101520ω=5时:

f=Sa(5*n)0.250.20.150.10.050-0.05-0.1-0.15-0.2-20-15-10-505101520(6)ω=1时:

f=sin(n)21.510.50-0.5-1-1.5-2-5-4-3-2-1012345

ω=5时:

f=sin(5*n)21.510.50-0.5-1-1.5-2-5-4-3-2-1012345

实验心得体会: 用plot()函数可以绘制离散序列,但是与连续序列有所不同,需要在括号内加上'.'。但是plot()画出来的函数图像不直观,显得很凌乱。

改进想法:

(1)对于离散函数,如果使用stem(n,f, '.')函数,绘图效果更好。如抽样函数的程序: n=-20:0.5:20 f=sin(n)./(n)stem(n,f,'.')title('f=Sa(n)')axis([-20,-20,-0.5,1.1])绘图结果如下:

f=Sa(n)10.80.60.40.20-0.2-0.4-20-15-10-505101520

对比可知此法做出的图像更加清晰美观。

(2)MATLAB 可以自动地根据曲线数据的范围选择合适的坐标系,从而使得曲线尽可能清晰地显示出来,一般情况下不必选择坐标系。但是,如果对 MATLAB自动产生的坐标轴不满意,可以利用 axis 命令对坐标轴进行调整。

实验三 系统的时域求解

实验题目:

1.设h(n)(0.9)nu(n),x(n)u(n)u(n10),求y(n)x(n)*h(n),并画出x(n)、h(n)、y(n)波形。

y(n)0.81y(n2)x(n)x(n2)的单位

j2.求因果线性移不变系统抽样响应h(n),并绘出H(e)的幅频及相频特性曲线。

解题分析:

1.用heaviside()和exp()函数 表示出x(n)和h(n),然后调用conv()函数实现x(n)和h(n)的卷积y(n)。并且分别将三个函数图像绘出。

2.通过给矩阵a,b赋值,建立系统差分方程,然后调用impz()函数求系统的冲激响应,再用函数freqs(b,a)进行系统频率响应的分析。

实验程序:

(1)

n=-10:20 %设置变量范围,默认步长为1 f=heaviside(n)x=heaviside(n)-heaviside(n-10)%阶跃函数直接相减 figure(1)%产生图像窗口1 stem(n,x)%绘制函数x title('x(n)')h=0.9.^n.*f %函数h的表达式 figure(2)%产生图像窗口2 stem(n,h)%绘制函数h title('h(n)')n1=-20:40 y=conv(h,x)%调用conv()函数求h和x的卷积

figure(3)%产生图像窗口3 stem(y)%绘制函数y title('y(n)=x(n)*h(n)')(2)

a=[1 0-0.81] %描述系统的差分方程的系数 b=[1 0-1] %描述系统的差分方程的系数 figure(1)h=impz(n,m,-10:10)%调用impz()函数求系统的冲激响应 stem(h)%绘制函数h的离散序列 title('h(n)')figure(2)freqs(b,a)%对连续系统频率响应H(jw)进行分析的函数freqs()

实验结果;

(1)

x(n)10.90.80.70.60.50.40.30.20.10-10-505101520

h(n)0.90.80.70.60.50.40.30.20.10-10-505101520y(n)=x(n)*h(n)***05060702)

(h(n)1.210.80.60.40.20-0.20510152025

100.09udeti100.05agnM100.0110-210-1100101Frequency(rad/s)1)s0.5reeeg(d0e hasP-0.5-110-210-1100101Frequency(rad/s)

实验心得体会:

(1)计算离散序列的卷积时,应考虑其结果的横坐标范围的改变。(2)向量相乘时,注意用‘.’。

(3)借助MATLAB的内部函数conv()可以很容易地完成两个信号的卷积运算,并且其完成的是两个多项式的乘法运算,在MATLAB中它们的系数构成一个行向量来表示。

(3)表示系统的方法是用系统函数分子和分母多项式系数行向量来表示。

改进想法:

(1)n=-10:20 %f=heaviside(n)x=heaviside(n)-heaviside(n-10)%figure(1)%axis([-10,20,0,1])stem(n,x)%title('x(n)')h=0.9.^n.*f %figure(2)%stem(n,h)%axis([-10,20,0,1])title('h(n)')n1=-20:40 y=conv(h,x)%figure(3)%stem(y)%axis([0,62,0,7])title('y(n)=x(n)*h(n)')

运行结果:

设置变量范围,默认步长为1

阶跃函数直接相减 产生图像窗口1 绘制函数x 函数h的表达式 产生图像窗口2 绘制函数h 调用conv函数求h和x的卷积 产生图像窗口3 绘制函数y 26

x(n)10.90.80.70.60.50.40.30.20.10-10-505101520h(n)10.90.80.70.60.50.40.30.20.10-10-505101520

y(n)=x(n)*h(n)***405060

实验四 信号的DFT分析

实验题目:

计算余弦序列x(n)cos(8n)RN(n)的DFT。分别对N=10、16、22时计算DFT,绘出X(k)幅频特性曲线,分析是否有差别及产生差别的原因。

解题分析:

用矩阵代替门函数给变量n赋值,并设定不同的N值,然后调用fft()函数实现函数的傅里叶变换,然后用subplot()和stem()函数绘图。

实验程序:

(1)N=10时:

N=10 %设定N的值为10 n=[0:N-1] %用矩阵代替门函数给n赋值 x=cos((pi/8).*n)%调用cos()函数

y=fft(x)%调用fft()函数求x的傅里叶变换 subplot(2,1,1),stem(n,y)%绘制y的离散图 title('DFT[cos((pi/8)*n]')subplot(2,1,2),stem(n,abs(y))%绘制y的幅频特性曲线 title('X(k)')(2)N=16时:

N=16 %设定N的值为16 n=[0:N-1] %用矩阵代替门函数给n赋值 x=cos((pi/8).*n)%调用cos()函数

y=fft(x)%调用fft()函数求x的傅里叶变换 subplot(2,1,1),stem(n,y)%绘制y的离散图 title('DFT[cos((pi/8)*n]')subplot(2,1,2),stem(n,abs(y))%绘制y的幅频特性曲线

title('X(k)')(3)N=22时:

N=22 %设定N的值为22 n=[0:N-1] %用矩阵代替门函数给n赋值 x=cos((pi/8).*n)%调用cos()函数

y=fft(x)%调用fft()函数求x的傅里叶变换 subplot(2,1,1),stem(n,y)%绘制y的离散图 title('DFT[cos((pi/8)*n]')subplot(2,1,2),stem(n,abs(y))%绘制y的幅频特性曲线 title('X(k)')

实验结果;

(1)N=10时:

DFT[cos((pi/8)*n]3210-10123456789X(k)64200123456789(2)N=16时:

DFT[cos((pi/8)*n]1050-5051015X(k)864200510153)N=22时:

DFT[cos((pi/8)*n]6420-20510152025X(k)***1(实验结果分析:

由图可知,不同的N值所对应的DFT序列和幅频响应不同,是因为N代表DFT的变换区间长度,当N取不同的值时,函数所对应的离散傅里叶变换和幅频特性曲线也不同。

实验心得体会: MATLAB是计算机运算,无法实现无限时间信号和无限大数量的计算,故而周期信号只能取有限个谐波分量近似合成,即N值有限,且N值越大,仿真结果越接近。所以手工求取的傅里叶变换系数与MATLAB求取存在差别。

实验五 系统时域解的快速卷积求法

实验题目:

用快速卷积法计算系统响应

y(n)x(n)*h(n),已知:

x(n)sin(0.4n)R15(n),h(n)0.9nR20(n)。要求取不同的L点数,并画出x(n)、h(n)、y(n)波形,分析是否有差别及产生差别的原因。

解题分析:

根据离散序列卷积及傅里叶变换的性质,可先求出两函数x(n)和h(n)的L点傅里叶变换,分别得到Xk和Yk,然后求Xk和Yk之积Hk的傅里叶反变换,即得到了x(n)和h(n)的卷积y(n)。

实验程序:

L=10时:

n1=[0:14] %用矩阵代替门函数给n1赋值 x=sin(0.4.*n1)%写出x的表达式 n2=[0:19] %给n2赋值 y=0.9.^n2 %写出y的表达式

Xk=fft(x,10)%调用fft()函数求x的L(=10)点傅里叶变换 Yk=fft(y,10)%求y的L点傅里叶变换 Hk=Xk.*Yk %写出Hk的表达式

h=ifft(Hk)%调用ifft()函数求Hk的傅里叶反变换 subplot(3,1,1),stem(x)%绘制x的离散图 title('x(n)')subplot(3,1,2),stem(y)%绘制y的离散图 title('y(n)')subplot(3,1,3),stem(h)%绘制h的离散图 title('h(n)')xlabel('L=10')%横坐标处做标注

(2)L=18时: n1=[0:14] x=sin(0.4.*n1)n2=[0:19] y=0.9.^n2 Xk=fft(x,18)Yk=fft(y,18)Hk=Xk.*Yk h=ifft(Hk)subplot(3,1,1),stem(x)title('x(n)')subplot(3,1,2),stem(y)title('y(n)')subplot(3,1,3),stem(h)title('h(n)')xlabel('L=18')(3)L=28时: n1=[0:14] x=sin(0.4.*n1)n2=[0:19] y=0.9.^n2 Xk=fft(x,28)Yk=fft(y,28)Hk=Xk.*Yk h=ifft(Hk)subplot(3,1,1),stem(x)title('x(n)')subplot(3,1,2),stem(y)title('y(n)')subplot(3,1,3),stem(h)title('h(n)')34

xlabel('L=28')(4)L=35时: n1=[0:14] x=sin(0.4.*n1)n2=[0:19] y=0.9.^n2 Xk=fft(x,35)Yk=fft(y,35)Hk=Xk.*Yk h=ifft(Hk)subplot(3,1,1),stem(x)title('x(n)')subplot(3,1,2),stem(y)title('y(n)')subplot(3,1,3),stem(h)title('h(n)')xlabel('L=35')

实验结果;

(1)L=10时:

x(n)10-1051015y(n)10.***1820h(n)42012345678910L=102)L=18时:

x(n)10-1051015y(n)10.***1820h(n)50-***8L=183)L=28时:

36((x(n)10-1051015y(n)10.***1820h(n)50-5051015202530L=284)L=35时:

x(n)10-1051015y(n)10.***1820h(n)50-***L=35

37(实验结果分析:

由图可知,当L取不同的值时,对应的y(n)波形形状相似,但是有所不同,产生这种差别的原因是L代表傅里叶变换区间长度,当L取不同的值时,所对应的函数波形也有所差别。

实验心得体会:(1)计算离散序列的卷积,虽然本实验的快速卷积方法看上去多次变换了变量的域,使过程变复杂了,但实际上减少了计算量,是一种快速而简单的方法。(2)用subplot绘图函数可将图形窗口分成若干等份,便于将多个图像进行分组或者比较。

改进想法:

当L取不同的值时,matlab自动生成的图像的横纵坐标范围不同,不便于相互比较,因此可以自己规定坐标轴范围,这样可以更加直观地看出各波形间的差别。

第三篇:信号与系统课程总结

《信号与系统》课程总结

《信号与系统》是电子信息工程专业在复变函数和电路分析基础后所必修的又一门重要的专业基础课。它主要讨论确定信号的特性,线性时不变系统的特性,信号通过线性系统的基本分析方法。其后续课程主要有通信原理、自动控制理论、数字信号处理、信号检测与信息处理等。

通过本课程的学习,要求学生牢固掌握信号与系统的基本概念、理论和基本分析方法。掌握信号与系统的时域、变换域(频域和s域)分析方法,理解傅里叶变换、拉普拉斯变换和z变换的基本内容、性质与应用,特别要建立信号与系统的频域分析的概念以及系统函数的概念。为学生进一步学习后续课程打下坚实的基础。要求学生树立从不同的域(时域、频域)来观察信号的特点,尤其是要了解周期信号的频谱特点;掌握线性时不变系统的不同分析方法。在具体的教学过程中,除讲授基本知识点外,加入这些基本知识在日常生活中的应用,提高学习的积极性;课后布置一定数量的习题练习加深对各种分析方法的理解与掌握;并及时批改讲解作业中存在的问题。

通过本次考试可以看出学生对信号与系统的有关基本知识点掌握的较好,但应在今后的教学过程中加入信号与系统的实验练习,应注重培养学生分析问题的能力,能够理论联系实际,把所学的知识灵活的运用到实践中。

总结人签字:

2011年12月31日

第四篇:信号与系统课程学习体会

.心得体会

本学期我们专业不仅开设了信号与系统的理论课,让我们的课内知识得以丰富,而且还设有相关的实验和实训课,使我们的动手能力得到锻炼。尤其是最近的实训课。首先,我学会了MATLAB的使用,这个软件对我们这次的实训提供了很大的帮助,很多需要大量计算的公式,在MATLAB的帮助下,很快的得以实现。我们的信号与系统的实训基本都是利用MATLAB实现的。利用MATLAB进行仿真模拟计算,为我们更好的了解信号与系统这门课程做了很大的贡献。

经过此次实训,我对信号的很多知识都得以充分了解。例如,熟悉MATLAB软件及基本命令,通过仿真理解信号运算的波形变换结果;对于任务二,通过仿真实验深刻理解冲激响应、阶跃响应和零状态响应,验证理论上得出的有关冲激响应、阶跃响应和零状态响应和有关信号卷积的结果;任务三,离散系统时域仿真分析,通过仿真实验深刻理解单位序列响应、零状态响应和卷积和公式及结果,并且掌握MATLAB提供的单位序列响应IMPZ、求零状态响应函数filter、卷积命令CONV和产生全1的ones()命令及产生全0的zeros()命令;任务四,学会用MATLAB提供的标准函数法和数学近似法来求傅里叶变换;任务五,s域的仿真分析,学会了部分分式展开,拉氏变换及其的反变换,学会如何判断系统的稳定性;对于任务六,z域仿真分析,学会了简单的z变换及逆z变换,求单位序列响应,及零极点的分析。在这次的实训中,并不是都是顺利的,在s域的仿真和离散系统时域仿真分析时,也遇到了困难,但我并没气馁,和自己小组的人一起讨论,一起把问题顺利的解决了。并从中深深体会到了团队的力量,让我知道了以后不管在学习中还是生活中,我们应当相互团结,共同帮助,共同进步,才能取得真正的成功。

这次宝贵的实训即将结束,但我从中受益颇深,不仅把自己所学的知识得以运用,还加强了自己的动手能力,还懂得了团队的重要性。我感谢这次的实训,因为它让我在以后参加工作时又提供了有利的条件,我深信以后我会更加努力学习,并更好地展示在以后的工作中。

第五篇:信号与系统课程教学大纲

信号与系统(II)课程教学大纲

一、课程名称:信号与系统(II)

二、英文名称:Signal and System(II)

三、课程负责人:杨浩

四、学时与学分:46学时,2.5学分

五、适用专业:电气工程与自动化

六、课程教材:

姜建国、曹建忠、高玉明,信号与系统分析基础(第2版),清华大学出版社,2006年7月。

七、参考教材:

a)郑君里等,信号与系统,上册,高等教育出版社,2000 b)董绍平等,数字信号处理基础,哈尔滨工业大学出版社,1996 c)V.奧本海姆等,刘树棠译,《信号与系统》,西安交通大学出版社,1998

八、开课单位:电气工程学院电工理论与新技术系

九、课程的目的、性质和任务

信号处理基础课程是电气工程学科的一门重要的技术基础课.本课程的教学旨在使学生掌握连续时间与离散时间信号与系统的表示与分析方法,两类信号与系统间的相似关系,它们间的内在联系或转换关系,建立信号与系统这一极为普遍的概念,以及掌握偏重于信号处理的较完善的一套基本方法和基本理论,从而为学生进一步学习后续有关课程,或将来从事信号处理与系统分析的研究工作和工程实际应用打下良好的基础。

十、课程的主要内容:

1.信号与系统的基本概念

确定性信号与随机信号,连续时间信号与离散时间信号,周期信号与非周期信号,能量信号与功率信号,基本的连续时间信号与奇异信号。连续时间系统与离散时间系统,分布参数系统与集中参数系统,静态系统与动态系统,线性系统与非线性系统,时变与非时变系统,因果系统与非因果系统。连续时间信号的时域分解与正交分解。

2.连续时间系统的时域分析

线性常系数微分方程,经典解法,零输入响应和零状态响应解法,线性非时变系统的冲激响应。卷积积分,用卷积积分计算线性非时变系统的(零状态)响应。卷积代数,卷积的微分与积分。

3.连续时间系统的频域分析

三角傅里叶级数,复指数形式的傅里叶级数,三角函数形式与复指数函数形式级数间的关系,周期信号的频谱,周期性矩形脉冲信号的频谱。基本的非周期信号的傅里叶变换,冲激信号与阶跃信号的傅里叶变换,傅里叶变换的基本性质,时域卷积定理与频域卷积定理,帕斯瓦尔关系,连续时间周期信号的傅里叶变换。

4.离散时间信号与系统

基本序列,序列的基本运算,用延时单位取样序列的加权和表示离散时间信号。离散时间系统的数学定义,离散时间系统的基本性质,包括线性、非移变性、稳定性和因果性;卷积和及其计算方法。线性常系数差分方程,递归与非递归解,经典解法、零输入响应和零状态响应解法。频率响应,离散时间(序列的)傅里叶变换的基本性质。周期抽样,抽样的频域表示,抽样定理,连续时间信号的重建。5.Z变换

Z变换的定义及其收敛域的定义,序列类型与收敛域的对应关系,Z变换与序列的傅里叶变换间的关系。围线积分法,长除法,部分分式展开法。Z变换的基本性质。用Z变换分析与表征线性非时变系统。单边Z变换,用单边Z变换求解差分方程。Z变换、拉普拉斯变换和傅里叶变换间的关系。

6.课程的实践教学环节

信号处理理论内容比较抽象,本课程设置8学时的实验。要求学生运用Matlab语言完成四个实验:无源滤波器幅频特性的测试实验,信号的产生、时域变换及卷积计算,模拟信号的取样与重构,信号的频谱计算及分析。

十一、课程的教学基本要求:

(1)信号与系统的概念:掌握信号与系统的基本概念,熟悉基本信号的性质,熟悉线性时不变系统的概念,了解系统的基本部件及组成。

(2)连续系统的时域分析:了解线性系统数学模型的建立及系统的初始状态,掌握系统的零输入响应与零状态响应,掌握冲激函数的性质及冲激响应,熟悉卷积的主要性质及卷积积分,熟悉连续系统时域分析。

(3)连续时间信号与系统的频域分析:掌握周期信号频谱的概念和常用非周期信号的频谱,掌握信号频带宽度的概念,熟悉傅立叶变换的主要性质,熟悉抽样定理,了解信号的无失真传输和信号通过理想滤波器的概念。

(4)离散时间信号与系统的时域分析:掌握离散信号的概念,熟悉离散系统的模拟框图,掌握简单线性移不变离散系统的差分方程,掌握单位样值响应,掌握卷积计算方法。

(5)离散系统的Z域分析:掌握Z变换与Z反变换的计算方法,熟悉Z变换的主要性质,掌握离散系统的Z域分析,掌握系统函数H(z),了解系统函数的零、极点与系统频率响应的关系,了解离散系统稳定性的概念和频率特性的概念。

(6)实验要求:通过实验加深理解信号与系统的理论知识,对信号的采样、信号频谱有一个感性认识。

十二、说明:

学习本课程的学生除了应先修电路原理与复变函数本科课程外,还应具有线性常系数微分方程、积分变换和线性代数等数学基础知识。

十三、学时分配建议:

1.信号与系统的基本概念(6学时)2.连续时间系统的时域分析(8学时)3.连续时间信号的傅里叶分析(10学时)4.离散时间信号与系统(10学时)5.Z变换(8学时)

6.实验(软件模拟计算)(8学时)

下载MATLAB在_信号与系统_课程教学中的应用.(精选合集)word格式文档
下载MATLAB在_信号与系统_课程教学中的应用.(精选合集).doc
将本文档下载到自己电脑,方便修改和收藏,请勿使用迅雷等下载。
点此处下载文档

文档为doc格式


声明:本文内容由互联网用户自发贡献自行上传,本网站不拥有所有权,未作人工编辑处理,也不承担相关法律责任。如果您发现有涉嫌版权的内容,欢迎发送邮件至:645879355@qq.com 进行举报,并提供相关证据,工作人员会在5个工作日内联系你,一经查实,本站将立刻删除涉嫌侵权内容。

相关范文推荐

    MATLAB在电磁场教学中的应用

    MATLAB在电磁场课程中的应用 摘要:电磁场课程理论性强,概念抽象,需要较强的多维空间想象能力和逻辑思维能力,不能直观的进行观察和研究,难以很好地掌握。文中简要介绍了MATLAB语......

    Matlab在控制工程中的应用

    Matlab在控制工程中的应用 摘要: 简要介绍MATLAB软件及其控制系统工具箱的功能,并通过具体实例说明MATLAB软件在《机械控制工程基础》课程教学中的优越性,从多方面探讨在教学过......

    信号与系统的课程感想

    信号与系统的课程感想 转眼间一学期已经过去了,我们也学习了一学期的《信号与系统》,虽然老师和同学们一致认为,学校给安排的学时实在是太少了,记得刚开学的时候董老师说的是课......

    信号与系统

    问题4:单侧可导与单侧连续、单侧极限的关系?单侧极限存在 并且极限值=函数值 可以推出单侧连续可导必连续,连续未必可导那么 单侧可导是否可以推出单侧连续?请证明;反之,单侧极限......

    Matlab在“函数的极限”教学中的应用举例

    Matlab在“函数的极限”教学中的应用举例 摘要:极限是微积分的基本工具和重要思想。该文利用Matlab画图工具,画出几个函数图形。借助于图形分析函数的极限,使学生印象深刻,更加......

    投稿 MATLAB在大学物理教学中的应用示例

    应用于大学物理教学的MATLAB图示模拟的示例 王明美1 李冬鹏2 (合肥师范学院电子信息工程学院,安徽,合肥,230061) 摘要:针对大学物理教学中理论性较强、概念抽象等特点,利用MATLAB强......

    信号与系统课程期末总结(范文)

    信号与系统课程期末总结本学期历时一学期的《信号与系统》课程快要结束了,感触良多,在此特作如下总结: 首先说说刚接触这门课程时的感受吧!《信号与系统》,顾名思义,就是研究信号......

    信号与系统课程总结(大全5篇)

    信号与系统总结 一信号与系统的基本概念 1信号的概念 信号是物质运动的表现形式;在通信系统中,信号是传送各种消息的工具。 2信号的分类 ①确定信号与随机信号 取决于该信号是......