第一篇:解方程教案-人教版数学五年级上第五章简易方程第8节
人教版
数学教案
五年级上册
人教版
数学教案
五年级上册
人教版
数学教案
五年级上册
人教版
数学教案
五年级上册
第五章 第8节
回答板书。
【板书:当x6时,方程左边x3
639
=方程右边】
小结:通过刚才解方程的过程,我们知道了在方程的左右两边同时减去一个相同的数,左右两边仍然相等。利用等式的基本性质,可以帮助我们解方程。
【注意】:在书写的过程中写的都是等式,而不是递等式。
(5)认识、区别方程的解和解方程。
①使方程左右两边相等的未知知数的值,叫做方程的解,刚才,x6就是方程x39的解。而求方程的解的过程叫做解方程,刚才,想出办法求出x39的过程就是解方程。
【板书:使方程左右两边相等的未知知数的值,叫做方程的解。求方程的解的过程叫做解方程。】
②方程的解和解方程这两个概念说起来差不多,但它们的意义却大不相同,它们之间的 有何不同?
在小组内议一议,明确,方程的解是一个具体的值,而解方程是一个求解的过程。
③刚才我们把x6代入方程中,得到方程左边=右边,说明x6是方程x39的解。8.2.2教学教材第68页例2。
(1)利用等式不变的规律,我们再来解一个方程。
出示例2:解方程3x18
第二篇:五年级数学简易方程教案
简 易 方 程
第一课时:用字母表示数
(一)教学内容:教材P44-P46例1-例3 做一做,练习十第1-3题 教学目的:
1、使学生理解用字母表示数的意义和作用。
2、能正确运用字母表示运算定律,表示长方形、正方形的周长、面积计算公式。并能初步应用公式求周长、面积。
3、使学生能正确进行乘号的简写,略写。教学重点:理解用字母表示数的意义和作用 教学难点:能正确进行乘号的简写,略写。教学准备:投影仪 教学过程:
一、初步感知用字母表示数的意义 教学例1。
1、投影出示例1(1):
引导学生仔细观察两行图中,数的排列规律。
问:每行图中的数是按什么规律排列的?(指名口答)
2、学生自己看书解答例1的(2)、(3)小题
提问请学生思考回答:这几小题中,要求的未知数表示的方法都有一个什么共同的特点?(都是用一些符号或字母来表示的)
师:在数学中,我们经常用字母来表示数。问:你还见过那些用符号或字母表示数的例子? 如:扑克牌,行程A、B两地,C大调…….二、新授:
1、学习用字母表示运算定律和性质的意义和方法。教学例2:
(1)学生用文字叙述自己印象最深的一个运算定律。
(2)如果用字母a、b或 c表示几个数,请你用字母表示这个运算定律。
(3)当用字母表示数的时候,你有什么感觉? 看书45页“用字母表示………….”这一段。(4)你还能用字母表示其它的运算定律和性质吗?
请学生在草稿本上能写几个写几个,体会用字母表示数的优越性。根据学生写的情况师逐一板书。(学生在表示时,一定要清楚表示的是哪一个运算定律)
加法交换律:a+b=b+a
加法结合律:(a+b)+c=a+(b+c)乘法交换律:a×b=b×a 乘法结合律:(a×b)×c=a×(b×c)乘法分配律:(a+b)×c=a×c+b×c 减法的性质:a-b-c=a-(b+c)
除法的性质:a÷b÷c=a÷(b×c)
2、教学字母与字母书写。
引导学生看书P45提问:在这些用字母表示的定律、性质中,哪一个运算符号可以省略不写?是怎样表示的?(请一生板演)
a×b=b×a
(a×b)×c=a×(b×c)可以写成:a·b=b·a或ab=ba
(a·b)·c=a·(b·c)或(ab)c=a(bc)
(a+b)×c=a×c+b×c 可以写成:(a+b)·c=a·c+b·c或(a+b)c=ac+bc
其它运算符号能省略吗?数字与数字之间的乘号能省略吗?为什么?(小组同学之间互相说说)师强调:只有字母与字母、数字与字母之间的乘号才可以省略不写。
3、教学用字母表示计算公式的意义和方法。教学例3(1):
师:字母不但可以表示运算定律还可以表示公式、及数量关系。用S表示面积,C表示周长,a表示边长你能写出正方形的面积和周长公式吗?
学生先自己试写,然后小组交流,看书讨论。
问:(1)两个相同字母之间的乘号不但可以省略,还可怎样写?怎样读?表示的含义是什么?
(2)字母和数字之间的乘号省略后,谁写在前面?
师强调:a 表示两个a相乘,读作a的平方;
省略数字和字母之间的乘号后,数字一定要写在字母的前面。
4、练习:省略乘号写出下面各式。
x×x
m×m
0.1×0.1
a×6
3×n
χ×8
a×c 教学例3(2):
学生自学并完成相关练习。两生板演。师强调书写格式。
三、巩固练习:
1、完成做一做1、2题。
要求:第1题在书上完成。第2题先写出字母公式,再应用公式计算。
2、练习十:第1-3题 先独立解答后,再集体评议。
四、总结:今天你学到什么知识,你体会到什么?(让学生自由畅谈)板书: 用字母表示数
(一)乘法交换律:a×b=b×a
S=a×a
C=a×4
可以写成:
a·b=b·a或ab=ba
S= a C=4a 2
课后记:
第二课时:用字母表示数
(二)教学内容:教材P47-P48例4 做一做,练习十第4-6题 教学目的:
1、使学生进一步理解用字母表示数的意义和作用。
2、能正确运用字母表示常用数量关系。
3、能较熟练地利用公式、常用数量关系求值。教学重、难点:能正确运用字母表示常用数量关系。教学准备:投影仪 教学过程:
一、复习。
1、用字母表示数,有哪些好处?但要注意什么?
2、用字母a、b、c表示加法结合律、乘法交换律、乘法分配律等。请学生结合字母表示的运算定律说说其含义。
3、用S表示面积,C表示周长,a表示边长,b表示宽,写出长方形、正方形的面积和周长公式。
4、下面各式中,哪些运算符号可以省略?能省略的就省略写出来。2×3 a×7 14+b a÷7 a×a 5-x 0.6×0.6
二、新授。
1、教学例4(1):
(1)引导学生看书提问:从图、表中你了解到哪些信息? A、爸爸比小红大30岁。B、当小红1岁时,爸爸()岁,„„ 师:这些式子,每个只能表示某一年爸爸的年龄。
(2)启发学生:你能用一个式子表示出任何一年爸爸的年龄吗?(可让同桌的两个同学小声讨论)结合讨论情况师适时板书:
法1:小红的年龄+30岁=爸爸的年龄 法2:a+30 提问:比一比,你比较喜欢哪一种表示方法,为什么?让学生发表各自意见。在式子a+30中,a表示什么?30表示什么?a+30表示什么?
(a表示小红的年龄,30表示爸爸比小红大的年龄,a+30即表示爸爸的年龄)
想一想:a可以是哪些数?a能是200吗?为什么?
(3)结合关系式解答:当a=11时,爸爸的年龄是多少?学生把算式和 结果填在书上。
2、小结:用含有字母的式子不仅可以表示运算定律、公式,也可以表示数量。
3、教学例4(2):
引导学生看书讨论:(可分成四人小组进行讨论)(1)从图、表中你了解到哪些信息?
(2)你能用含有字母的式子表示出人在月球上能举起的质量吗?(3)式子中的字母可以表示哪些数?
(4)图中小朋友在月球上能举起的质量是多少? 请小组派代表回答以上问题。
4、总结:今天你学会了什么?有哪些收获?
三、巩固练习:
1、独立完成P48做一做 集体评议。
2、请学生结合自己的身高、体重情况,算算自己的标准体重,并讨论:比标准体重轻说明什么?如果比标准体重重,又说明什么?
3、独立解答P49 第4题 做完后在投影仪上展示评议。(问问字母、式子表示的含义)
四、作业
1、独立完成P50 第5题
2、独立完成P50 第6题
解答第6题时可提问:u = t = 让学生掌握三种量之间的数量关系。
注意巡视指导求式子值的书写格式。
即:S=ut=150×30=4500(注:这里求出来的值不带单位名称)
板书: 用字母表示数
(二)例4(1):
例4(2):
法1: 小红的年龄+30岁=爸爸的年龄 人在月球上能举起的质量是:6a 法2: a+30 小朋友在月球上能举起的质量是: 当a=11时,爸爸的年龄是: 6a=6×15=90 a=30=11+30=45 课后记:
第三课时:用字母表示数
(三)教学内容:练习课,教材P51-P52 练习十第7-13题
教学目的:
1、能较熟练的掌握用字母表示数的方法。
2、能正确运用字母表示常用数量关系、数量。
3、会利用公式、常用数量关系求值。教学重、难点:能熟炼地运用字母表示数。教学准备:投影仪 教学过程:
一、基本练习:
1、填空:(1)a+a=()
a×a=()
(2)当a=5时,2a=(),a的平方=()
2、同学们在操场上做操,五年级站了x列,平均每列20人,六年级有a人。说出下面各式所表示的意义:
(1)30x
(2)30x+a
(3)a—30x
3、小结;用含有字母的式子不仅可以表示数量关系,也可以表示数量。
二、综合练习:
1、独立解答P51 第7题 师巡视指导个别学困生。
投影展示,集体评议,注意评讲求值的书写格式。
2、讨论口答P51 第8题 注意指导学生理解(3)小题,3x表示投中3分球得的
总分数。
3、分小组完成P51 第9题 请几个小组派代表说说式子表示的含义。
4、独立完成P52 第10-12题 师注意巡视指导学困生。
三、全课总结:通过练习,你还有什么疑困?你觉得你掌握得比较好的知识是什么?有困难需要帮助的地方是什么?
四、发展练习:
1、讨论P52 第13题 请学生先独立思考,再集体讨论。
2、在下面算式中,a、b、c、s各代表什么数?
a b c s × 9 s c b a
2.解简易方程
第一课时 方程的意义
教学内容:数学书P53-54及“做一做”,练习十一1-3题。教学目标:
1、初步理解方程的意义,会判断一个式子是否是方程。
2、会按要求用方程表示出数量关系。
3、培养学生观察、比较、分析概括的能力。
教学重难点:会用方程的意义去判断一个式子是否是方程。教具准备:天平、空水杯、水(可根据实际变换为其它实物)教学过程:
一、导入新课
今天我们上课要用到一种重要的称量工具,它是什么呢?对,它是天平。同学们对天平有哪些了解呢?天平由天平称与砝码组成,当放在两端托盘的物体的质量相等时,天平就会平衡,根据这个原理,从而称出物体的质量。
二、新知学习
1、实物演示,引出方程。
操作天平:第一步,称出一只空杯子重100克,板书:1只空杯子=100克; 第二步,往往空杯子里倒入约150毫升水(可在水中滴几滴红墨水),问:发现了什么?天平出现了倾斜,因为杯子和水的质量加起来比100克重,现在还需要增加砝码的质量。
第三步,增加100克砝码,发现了什么?杯子和水比200克重。现在,水有多重,知道吗?如果将水设为x克,那么用一个式子该怎么表示杯子和水比200克重这个关系呢?100+x>200。
第四步,再增加100克砝码,天平往砝码这边倾斜。问:哪边重些?怎样用式子表示?让学生得出:100+x<300.第五步,把一个100克的砝码换成50克,天平出现平衡。现在两边的质量怎样?用式子怎样表示?让学生得出:100+x=250。
像这样含有求知数的等式,人们给它起了个名字,你们知道叫什么吗?对,叫方程。请大家试着写出一个方程。
2、写方程,加深对方程的认识。
学生试着写出各种各样的方程,再在全班展示,当然也有可能会出现一些不是方程的式子,教师应引导学生说出它不是方程的原因。
看书第54页,看书上列出的一些方程,让学生读一读。然后小结:一个式子要是方程需要具备哪些条件?两个条件,一要是等式,二要含有求知数(即字母),这也是判断一个式子是不是方程的依据。
3、反馈练习。
完成做一做,在是方程的式子后面打上“√”。对于不是方程的几个式子要说明其理由。
4、小结。
这节课学习了什么?怎么判断一个式子是不是方程? 提问:方程是不是等式?等式一定是方程吗? 看“课外阅读”,了解有关方程产生的数学史。
三、练习
1、完成练习十一第2题,先让学生说出图意,再根据图意再列出相应的方程。
2、独立完成第3题,评讲时,介绍什么叫数量关系要,然后让学生先说出各幅图中的数量关系,再说出相应的方程,同一幅图由于数量关系有不同的形式,因此方程形式也可能不同。
四、作业
练习十一第1题。板书:
第二课时
教学内容:数学书P55-56及“做一做”。教学目标:
1、通过天平演示保持平衡的几种变换情况,让学生初步认识等式的基本性质。
2、利用观察天平保持平衡所发现的规律能直接判断天平变化后能否保持平衡。
3、培养学生观察与概括、比较与分析的能力。
教学重难点:理解,并能用自己的话来阐述天平保持平衡的几种变换情况,进而发现等式保持不变的规律。
教具准备:天平及相关物品。(也可以将插图制作成课件让学生逐步观察思考)教学过程:
一、导入新课
同学们用天平做过实验吗?今天我们就要用天平去发现一些重要的规律,有信心吗?
二、新知探究
(一)探寻发现“天平保持平衡的规律1”。
第一步,出示天平,左盘放一茶壶,右盘放两茶杯,天平保持平衡。问:这说明什么?如果设一把茶壶重a克,1个茶杯重b克,则可以用一个等式来表示:即a=2b(板),第二步,问:想一想,怎样变换能使天平仍然保持平衡呢?待学生思考片刻,进而问:往两边各放一个茶杯,天平会发生什么变化?教师演示加以验证,在已平衡的天平两边同时增加一个相同的杯子,天平保持平衡。这个过程可以表示为a+b=2b+b。
第三步,问:如果两边各放上2个茶杯,天平还保持平衡?两边各放上同样的一个茶壶呢?学生回答后,老师一一演示验证。
第四步,想一想,怎样变换能使天平保持平衡?天平两边增加同样的物品,天平保持平衡。如果天平两边减少同样的物品,天平会保持平衡吗?
第五步,在第三步的基础上同时减少一个茶壶,天平保持平衡,用式子表示就是2a-a=2b+a-a。因此天平保持平衡的规律概括起来可以怎么说?天平两边增加或减少同样的物品,天平会保持平衡。(课件)
第六步,应用,进一步验证。展示数学书P55页第2幅图的场景,1个花盆和几个花瓶同样重呢?该怎么办?两边同时减少一个花瓶,天平保持平衡。
(二)探寻发现“天平保持平衡的规律2”。
第一步,出示天平,左盘放一瓶墨水,右盘放两个铅笔盒,天平保持平衡。一瓶墨水等于两个铅笔盒的质量,如果设一瓶墨水重c克,1个铅笔盒重d克,则可以用一个等式来表示:即c=2d(板),第二步,问:想一想,如果在左边再放上1瓶墨水,右边再放上2个铅笔盒,天平还保持平衡吗?验证,天平两边加的东西不同,数量也不同,为什么还能保持平衡呢?学生可能会说,因为两边增加的质量相同,肯定;同时引导,天平左边的质量在原来的基础上发生了什么变化?(扩大了2倍),右边呢?(也扩大了两倍)因此,天平两边尽管所增加的东西不同,数量不同,但两边质量所发生的变化是相同的,都扩大了2倍,所以天平仍然保持平衡。用式子表示就是c×2=2d×2。
第三步,刚才的演示反过来,就是天平两边同时缩小相同的倍数,天平保持平衡,用式子表示就是2c÷2=4d÷2。因此,天平除了在两边同时增加或减少同样的物品会保持平衡外,还可怎么变换也可以保持平衡?归纳得出:天平两边物品的质量同时扩大或缩小相同的倍数,天平保持平衡。
第四步,进一步验证,出示P56的情景,问要求1个排球和几个皮球同样重该怎么办?两边质量同时缩小2倍,即把两边的球都平均分成2份,保留其中的一份,按其操作,天平保持平衡,得出结论:1个排球和3个皮球同样重。
(三)小结天平保持平衡的变换规律,引出等式不变的规律。通过刚才的实验,我们发现了什么,谁来总结一下。
得出天平保持平衡的变换规律:(1)天平两边同时增加或减少同样的物品,天平保持平衡;(2)天平两边的质量同时扩大或缩小相同的倍数,天平保持平衡。
老师引导:我们可以发现,天平保持平衡时可以用一个等式来表示,当天平两边发生变化时,等式的两边也在发生变化,天平保持平衡,等式也保持不变。从天平保持平衡的规律,我们可以发现等式保持不变的规律吗?想一想,四人小组讨论。
交流,发现:等式保持不变的规律:(1)等式两边都加上或减去相同的数,等式保持不变;(2)等式两边都乘或除以相同的数(0除外),等式不变。
三、练习。
实物演示并判断:(准备8袋花生,4袋盐)
天平两端分别放有一袋500克的盐和两袋250克的花生。
1、当两边各增加3袋同样的花生(250克/袋)时,天平是否保持平衡?为什么?
2、在“1”的基础上,现在将把天平两端的东西减少,怎样变化?可使天平依
然保持平衡?怎么想的?(可抽学生上台动手操作。)
3、假如天平两端只能加与先前完全一样的东西,要保持平衡可以怎么做?怎么想的?
4、一端放有两袋1千克的白糖,另一端放有4袋500克的盐,问一袋白糖与几袋盐同样重,怎么想的?
五、小结。
有什么收获?还有什么问题? 课后记:
第三课时
教学内容:数学书P57,及“做一做”,练习十一第4题。教学目标:
1、结合具体的题目,让学生初步理解方程的解与解方程的含义。
2、会检验一个具体的值是不是方程的解,掌握检验的格式。
3、进一步提高学生比较、分析的能力。
教学重难点:比较方程的解和解方程这两个概念的含义。教学过程:
一、导入新课
上一节课,我们学习了什么?
复习天平保持平衡的规律及等式保持不变的规律。学习这些规律有什么用呢?从这节课开始我们就会逐渐发现到它的重要作用了。
二、新知学习。
1、解决问题。
出示P57的题目,从图上可以获取哪些数学信息?天平保持平衡说明什么?杯子与水的质量加起来共重250克。
能用一个方程来表示这一等量关系吗?得到:100+x=250,x是多少方程左右两边才相等呢?也就是求杯子中水究竟有多重。如何求到x等于多少呢?学生先自己思考,再在小组里讨论交流,并把各种方法记录下来。全班交流。可能有以下四种思路:
(1)观察,根据数感直接找出一个x的值代入方程看看左边是否等于250。
(2)利用加减法的关系:250-100=150。
(3)把250分成100+50,再利用等式不变的规律从两边减去100,或者利用对应的关系,得到x的值。
(4)直接利用等式不变的规律从两边减去100。
对于这些不同的方法,分别予以肯定。从而得到x的值等于150,将150代入方程,左右两边相等。
2、认识、区别方程的解和解方程。得出方程的解与解方程的含:
像这样,使方程左右两边相等的未知知数的值,叫做方程的解,刚才,x=150就是方程100+x=250的解。
而求方程的解的过程叫做解方程,刚才,我们用这几种方法来求100+x=250的解的过程就是解方程。
这两个概念说起来差不多,但它们的意义却大不相同,它们之间的区别是什么呢?
方程的解是一个具体的数值,而解方程是一个过程,方程的解是解方程的目的。
3、练习。(做一做)齐读题目要求。
怎么判断X=3是不是方程的解?将x=5代入方程之中看左右两边是否相等,写作格式是:方程左边=5x
=5×3
=15
=方程右边
所以,x=3是方程的解。
用同样的方法检查x=2是不是方程5x=15的解。
二、作业。
独立完成练习十一第4题,强调书写格式。
三、小结。
通过这节课学到了什么?还有什么问题?
课后记:第四课时
教学内容:数学书P58-P59及“做一做”,练习十一第5-7题。教学目标:
1、结合具体图例,根据等式不变的规律会解方程。
2、掌握解方程的格式和写法。
3、进一步提高学生分析、迁移的能力。教学重难点:掌握解方程的方法。教学过程:
一、导入新课
前面,我们学习了等式保持不变的规律,等式在哪些情况下变换仍然保持不变呢?等式这些规律在方程中同样适用吗?完全可以,因为方程就是等式,今天我们将学习如何利用等式保持不变的规律来解方程。板书:解方程。
二、新知学习
(一)教学例1 出示例1,从图中可以获取哪些信息?图中表示了什么样的等量关系?盒子中的皮球与外面的3皮个球加起来共有9个,方程怎么列?得到x+3=9 要求盒子中一共有多少个皮球,也就是求x等于什么,我们该怎么利用等式保持不变的规律来求出方程的解呢?
抽答。
方程两边同时减去一个3,左右两边仍然相等。板书:x+3-3=9-3 化简,即得:
x=6 这就是方程的解,谁再来回顾一下我们是怎样解方程的?
左右两边同时减去的为什么是3,而不是其它数呢?因为,两边减去3以后,左边刚好剩下一个x,这样,右边就刚好是x的值。因此,解方程说得实际一点就是通过等式的变换,如何使方程的一边只剩下一个x即可。
追问:x=6带不带单位呢?让学生明白x在这里只代表一个数值,因此不带单位。
要检验x=6是不是正确的答案,还需要验算。怎么验算呢?可抽学生回答。板书:方程左边=x+3
=6+3 =9 =方程右边
所以,x=6是方程的解。
小结:通过刚才解方程的过程,我们知道了在方程的左右两边同时减去一个相同的数,左右两边仍然相等。不过需要注意的是,在书写的过程中写的都是等式,而不是递等式。
(二)教学例2 利用等式不变的规律,我们再来解一个方程。
出示方程:3x=18,怎样才能求到1个x是多少呢?同桌的同学互相讨论,如有问题,可以出示书上的示意图帮助分析。
抽答,在方程两边同时除以3即可。为什么两边同时除以的是3,而不是其它数呢?刚好把左边变成1个x。让学生打开书59页,把例2中的解题过程补充完整。
展示、订正。
通过,刚才的学习,我们知道了在方程的两边同时减去一个相同的数或同时除以一个不为0的数,左右两边仍然相等。这是我们解方程常用的两种方法,想不想用它们来试一试呢?
(三)反馈练习
1、完成“做一做”的第1题,先找到等量关系,再列方程,解方程。集体评讲。
2、思考“想一想”:如果方程两边同时加上或乘上一个数,左右两边还相等吗?依据是什么?等式保持不变的规律。
试着解方程:x-2.4=6
x÷9=0.7
(强调验算)
(四)课堂作业:“做一做”第2题。
三、课堂小结。
这节课学习了什么?讨论:什么时候应该在方程的两边加,什么时候该减,什么时候该乘,什么时候该除呢?
四、作业:练习十一5—7题。
五、板书:
第五课时
教学内容:数学书P60:例
3、及61页的做一做,练习十一的第8题。教学目标:
1、初步学会如何利用方程来解应用题
2、能比较熟练地解方程。
3、进一步提高学生分析数量关系的能力。
教学重难点:找题中的等量关系,并根据等量关系列出方程。教学准备:课件 教学过程:
一、复习导入
解下列方程:
x+5.7=10
x-3.4=7.6
1.4x=0.56
x÷4=2.7 学习方程的目的是为了利用方程解决生活中的问题,这节课就来学习如何用方程来解决问题。板书:解决问题。
二、新知学习。
1、教学例3.(1)出示题目。(课件)
出示洪泽湖的图片,介绍到:洪泽湖是我国五大淡水湖之一,位于江苏西部淮河下游,风景优美,物产丰富。但每当上游的洪水来临时,湖水猛涨,给湖泊周围的人民的生命财产带来了危险。因此,密切注视水位的变化情况,保证大坝的安全十分重要,如果湖水到了警戒水位的高度,就要引起高度警惕,超出警戒水位越多,大坝的危险就越大。下面,我们来就来看一则有关大坝水位的新闻。谁来当主持人,为大家播报一下。
“今天上午8时,洪泽湖蒋坝水位达14.14m,超过警戒水位0.64m.” 我们结合这幅图片来了解一下,课件演示警戒水位、今日水位,及其关系。同学们想想,“警戒水位是多少米?”(2)分析,解题。
根据刚才所了解的信息,这个问题中有哪几个关键的数量呢?警戒水位、今
日水位、超出部分。
它们之间有哪些数量关系呢?(板)
警戒水位+超出部分=今日水位① 今日水位—警戒水位=超出部分② 今日水位—超出部分=警戒水位③
同学们能解决这个问题吗? 学生独立解决问题。
(3)评讲、交流。(侧重如何用方程来解决本题。)
学生展示,可能会是算术方法,也可能列方程。对于算术方法,给予肯定即可。
学生列出的方程可能有:
① x+0.64=14.14
②14.14﹣x= 0.64
③14.14﹣0.64= x 每一种方法,都需要学生说出是根据什么列出的方程。
如第一种,学生根据的是“警戒水位+超出部分=今日水位”这一数量关系(由于左右相等,也称等量关系)所得到的。解出方程,注意书写格式,并记着检验(口头检验)。
对于第二种,可以肯定学生所列的方程是正确的,但方程不容易解,为什么呢?因为x是被减去的,因此,在小学阶段解决问题,列的方程,未知数前最好不是减号。
对于第三种,可让学生让算术解法与之作比较,让其发现,大同小异,因此,在列方程的过程中,通常不会让方程的一边只有一个x。
(4)小结
在解决问题中,我们是怎样来列方程的?
将未知数设为x,再根据题中的等量关系列出方程。
三、练习。
(5)解决“做一做”中的问题。从题中知道哪些信息?有哪些等量关系?
用方程解决问题,四人小组交流方法,评讲,特别提醒:别忘了检验。(6)独立完成练习十一中的第8题。
四、课堂小结
这节课学习了什么?(板书课题:列方程解应用题)还有什么问题?
五、板书
列方程解应用题
解:警戒水位+超出部分=今日水位①
x+0.64=14.14 今日水位—警戒水位=超出部分② x+0.64-0.64=14.14-0.64 今日水位—超出部分=警戒水位③ x=13.5
答:警戒水位是13.5米。课后记:
《解方程》课堂实录 公安县第二实验小学 黄燕
一、复习导入
师:同学们,还记得我们玩过的天平游戏吗?(课件出示书中55页的天平游戏图)生:记得。
师:在天平的两边同时增加一个杯子,天平会怎样? 生:会保持平衡。生:天平仍然保持平衡!
师:那我们一起来看看。(课件演示动画过程)师:从天平的两边同时拿走一个花瓶,天平会怎样?
生:仍然保持平衡。生:天平保持平衡。
师:(课件演示动画过程)天平仍然保持平衡!师:通过这个游戏,你们知道了什么?
生:天平两边同时增加或减少同样的物品,天平保持平衡。师:还有谁说一说?
生:天平两边同时增加或减少同样的物品,天平保持平衡。师:说的很好!这个天平游戏,让我们知道了天平保持平衡的道理。今天,我们就用这个道理来学习解方程!(板书课题:解方程)
二、探究新知(课件出示例1图)师:这幅图是什么意思?
生:盒子里有χ个球,盒子外面有3个球,合起来有9个。师:谁能根据这幅图,列出方程? 生:χ+3=9 师:(学生回答后板书:χ+3=9)怎样解这个方程呢?我们请天平来帮忙!
师:(课件出示第一幅天平图)用木块代替皮球,在天平的左边放上χ和3个木块,右边放上9个,天平保持平衡。它能不能表示χ+3=9? 生:能!
师:要想求出χ的值,就是要知道盒子里有多少个?你们想一想:怎样才能使天平左边只剩“χ”,而保持天平平衡?
生:从天平两边同时拿走3个。
生:从天平两边同时拿走3个,天平仍然平衡。师:你们俩的办法一样。大家同意这个办法吗? 生:同意!
师:好,我们就像这样做!从天平的两边同时拿走3个。一起来看拿走变化的过程。(课件动画演示)师:看清楚了吗? 生:看清楚了。
师:现在能一眼看出χ等于多少了吗? 生:χ=6 师:天平刚才变化的过程,把它记录下来,就是解方程的过程。我们一起来解这个方程!
师:解方程时,首先要写上“解”字,打上冒号!解方程的第一步,是写出使方程左边只剩“χ”,而方程两边仍然相等的过程。你们看一看,应该对照第几幅天平图来写? 生:第二幅。
师:好,我们边看边写!
师:天平的左边是χ+3(板书χ+3),拿走3个,该怎样表示? 生:减去3。
师:(用红色粉笔板书-3)减去3。右边也拿走了3个,该怎样写? 生:9-3 师:(板书:9-3)方程两边同时减去一个数,左右两边还相等吗?
生:还相等。
师:他认为还相等。那你们认为呢? 生:也认为还相等!
师:是从哪里看出来还相等的?哪位同学说一说? 生:从天平上看出来的,天平仍然保持平衡!
师:天平仍然平衡,说明方程左边仍然等于方程右边。(板书:=)师:方程两边为什么要同时减去3,而不是减去其他数呢? 生:因为天平两边同时拿走了3个。师:为什么要同时拿走3个? 生:使天平的左边只剩下“χ”。师:也就是让方程左边只剩下“χ”
。解方程,就是要想办法,使方程左边只剩“χ”。
师:解方程的第二步,方程两边同时进行计算,得出χ的值。左边χ+3-3,等于什么? 生:等于χ。
师:(板书:χ)右边9-3呢? 生:等于6。
师:(板书:=6)天平在变化的过程中,始终保持平衡,说明解方程时,得到的每一步都是等式,要求大家把所有的等号对整齐。为了把等号对整齐,一般要把“解”写到前面一点。
师:χ=6是不是这个方程的解?验算一下就知道了!把χ=6代入方程中,看方程的两边是否相等。我们一起来写验算过程。
师:先看方程左边,(板书:方程左边=χ+3)把χ=6代入方程中,χ+3就变成了几加3? 生:6+3 师:(板书:=6+3)6+3等于9。(板书:=9)方程左边等于9。再看看方程右边等于几? 生:等于9。
师:也是等于9。方程左边等于9,方程右边也等于9,说明了什么? 生:方程左边等于方程右边,χ=6是这个方程的解。
师:(板书:=方程右边)最后,下结论:所以,χ=6是方程的解。(板书:所以,χ=6是方程的解。)师:验算的过程就写完了。现在,请同学们把课本打开,翻到58页,请小组的同学一边对照书中解方程的过程,一边讨论:解方程需要注意什么?(小组讨论)师:现在,请同学们说一说:解方程需要注意什么? 生:……
师:还有没有要补充的? 生:……
师:把刚才几位同学说的,合起来就很完整了。会解方程了吗? 生:会了。
师:那就试一试!(解方程χ+7=10)
师:哪位同学愿意到黑板上来做?请你来吧!(学生做题)
师:都做完了吗?一起来看看这位同学做的!你们觉得他做得好不好? 生:他全部都做对了。
生:我觉得有一点不好,他把等号没有对整齐!…… 师:刚才这位同学给你提的意见能接受吗? 生:能!
师:有错就改就是好孩子!解方程不仅要注意方法,还要注意书写格式。做完后还要养成验算的好习惯。师:老师还有一个问题想请教一下:为什么要在方程的两边同时减去7?
生:左边减去7是为了是方程左边只剩χ,右边减去7是为了使方程两边仍然相等!师:说得很好!这道题你们都解对了吗? 生:解对了!
师:你们真聪明!一下子都学会了!老师还想考考大家,出一个和它们不一样的方程:χ-3=9 你们会做吗? 生:会!
师:这题也会呀!那好,试试看吧!请同学们先独立完成,然后在小组内进行交流。(点一名学生板演)师:一起来看看黑板上的作业!他做得怎样? 生:做得很好,……
师:谁来说说:为什么要在方程的两边同时加上3? 生:是为了使方程左边只剩χ而有保持两边仍然相等!师:你们同意他的说法吗? 生:同意!
师:看来,你们已经掌握解方程的方法了!
三、拓展应用
师:解方程还能帮助我们解决很多生活中的问题呢!请看大屏幕:(课件出示)能解决吗? 师:能!
师:开始吧!(注意:可以不写出演算的过程,但是要进行口头验算。)学生做题后汇报交流!
四、课堂小结
师:同学们真不了不起,不但学会了解方程,还学会了用解方程的方法解决问题!今天的课就上到这里,下课!
第三篇:五年级上册数学简易方程教案
用字母表示数
教学目标
1、使学生进一步理解用字母表示数的意义和作用。
2、能正确运用字母表示常用数量关系。
3、能较熟练地利用公式、常用数量关系求值
知识重点、难点
能正确运用字母表示常用数量关系
教学过程
教学方法和手段
教学过程
一、复习。
1、用字母表示数,有哪些好处?但要注意什么?
2、用字母a、b、c表示加法结合律、乘法交换律、乘法分配律等。请学生结合字母表示的运算定律说说其含义。
3、用S表示面积,C表示周长,a表示边长,b表示宽,写出长方形、正方形的面积和周长公式。
4、下面各式中,哪些运算符号可以省略?能省略的就省略写出来。
2×3a×714+ba÷7a×a5-x0.6×0.6
二、新授。
1、教学例4(1):
(1)引导学生看书提问:从图、表中你了解到哪些信息?
A、爸爸比小红大30岁。B、当小红1岁时,爸爸()岁,......师:这些式子,每个只能表示某一年爸爸的年龄。
(2)启发学生:你能用一个式子表示出任何一年爸爸的年龄吗?(可让同桌的两个同学小声讨论)
结合讨论情况师适时板书:
法1:小红的年龄+30岁=爸爸的年龄
法2:a+30
提问:比一比,你比较喜欢哪一种表示方法,为什么?让学生发表各自意见。
在式子a+30中,a表示什么?30表示什么?a+30表示什么?
(a表示小红的年龄,30表示爸爸比小红大的年龄,a+30即表示爸爸的年龄)
想一想:a可以是哪些数?a能是200吗?为什么?
(3)结合关系式解答:当a=11时,爸爸的年龄是多少?学生把算式和
结果填在书上。
2、小结:用含有字母的式子不仅可以表示运算定律、公式,也可以表示数量。
3、教学例4(2):
引导学生看书讨论:(可分成四人小组进行讨论)
(1)从图、表中你了解到哪些信息?
(2)你能用含有字母的式子表示出人在月球上能举起的质量吗?
(3)式子中的字母可以表示哪些数?
(4)图中小朋友在月球上能举起的质量是多少?
请小组派代表回答以上问题。
4、总结:今天你学会了什么?有哪些收获?
课堂练习
1、独立完成P48做一做集体评议。
2、请学生结合自己的身高、体重情况,算算自己的标准体重,并讨论:比标准体重轻说明什么?如果比标准体重重,又说明什么?
3、独立解答P49第4题做完后在投影仪上展示评议。(问问字母、式子表示的含义)
课后追记
本课让学生熟悉用字母来表示数,以及熟悉用线段图来表示未知和已知的数量十分重要,这是写出表达式和方程的基础,老师一定要让学生尽快熟悉这种表达方式并利用这样的方式来表示一定的量。
方程的意义
教学内容:数学书P53-54及“做一做”,练习十一1-3题。
教学目标
1、初步理解方程的意义,会判断一个式子是否是方程。
2、会按要求用方程表示出数量关系。
3、培养学生观察、比较、分析概括的能力。
教学重难点:会用方程的意义去判断一个式子是否是方程。
教学过程
一、导入新课
今天我们上课要用到一种重要的称量工具,它是什么呢?对,它是天平。同学们对天平有哪些了解呢?天平由天平称与砝码组成,当放在两端托盘的物体的质量相等时,天平就会平衡,根据这个原理,从而称出物体的质量。
二、新知学习
1、实物演示,引出方程。
操作天平:第一步,称出一只空杯子重100克,板书:1只空杯子=100克;
第二步,往往空杯子里倒入约150毫升水(可在水中滴几滴红墨水),问:发现了什么?天平出现了倾斜,因为杯子和水的质量加起来比100克重,现在还需要增加砝码的质量。
第三步,增加100克砝码,发现了什么?杯子和水比200克重。现在,水有多重,知道吗?如果将水设为x克,那么用一个式子该怎么表示杯子和水比200克重这个关系呢?100+x>200。
第四步,再增加100克砝码,天平往砝码这边倾斜。问:哪边重些?怎样用式子表示?让学生得出:100+x<300.第五步,把一个100克的砝码换成50克,天平出现平衡。现在两边的质量怎样?用式子怎样表示?让学生得出:100+x=250。
像这样含有求知数的等式,人们给它起了个名字,你们知道叫什么吗?对,叫方程。请大家试着写出一个方程。
2、写方程,加深对方程的认识。
学生试着写出各种各样的方程,再在全班展示,当然也有可能会出现一些不是方程的式子,教师应引导学生说出它不是方程的原因。
看书第54页,看书上列出的一些方程,让学生读一读。然后小结:一个式子要是方程需要具备哪些条件?两个条件,一要是等式,二要含有求知数(即字母),这也是判断一个式子是不是方程的依据。
3、反馈练习。
完成做一做,在是方程的式子后面打上“√”。对于不是方程的几个式子要说明其理由。
4、小结。
这节课学习了什么?怎么判断一个式子是不是方程?
提问:方程是不是等式?等式一定是方程吗?
看“课外阅读”,了解有关方程产生的数学史。
三、练习
1、完成练习十一第2题,先让学生说出图意,再根据图意再列出相应的方程。
2、独立完成第3题,评讲时,介绍什么叫数量关系要,然后让学生先说出各幅图中的数量关系,再说出相应的方程,同一幅图由于数量关系有不同的形式,因此方程形式也可能不同。
四、作业
练习十一第1题。解简易方程
教学内容:义务教育课程程标准实验教科书数学(人教版)小学数学第9册57-58页的内容。
教学目标:
1、根据等式的性质,使学生初步掌握解方程及检验的方法,并理解解方程及方程的解的概念。
2、培养学生的分析能力应用所学知识解决实际问题的能力。
3、帮助学生养成自觉检验的良好习惯。
重点、难点:理解并掌握解方程的方法。
教具准备:多媒体课件
教学过程:
一、复习铺垫
1、方程的意义
师:同学们我们前一段时间学了方程的意义,你还记得什么叫方程吗?
生:含有未知数的等式叫方程。
2、判断下面哪些是方程
师:你能判断下面哪些是方程吗?
(1)a+24=73(2)4x<36+17(3)234÷a>12
(4)72=x+16(5)x+85(6)25÷y=0.6
生:(1)(4)(6)是方程。
师:你为什么说这三个是方程呢?
生:因为它含有未知数,而且是等式。
二、探究新知
(一)理解方程的解和解方程
1、看图写方程
师:同学们真厉害把学过的知识全都记得,请同学观察这幅图(出示57页天平图)从图中你知道了什么?
生:我知道杯子重100克,水重X克,合起来是250克。
师:你能根据这幅图列出方程吗?
生:100+X=250.2、求方程中的未知数
师:那么方程中的x等于多少呢?请同学们同桌交流,说说你是怎么想的?(交流后汇报)
生1:根据加减法之间的关系250-100=150,所以X=150.生2:根据数的组成100+150=250,所以X=150.生3:100+X=250=100+150,所以X=150.生4:假如在方程左右两边同时减去100,那么也可得出X=150.3、验证方程中的未知数,引出方程的解和解方程两个概念。
师:同学们都很聪明用不同的方法算出X=150,研究对不对呢?
生:对,因为X=150时方程左边和右边相等。
师:这时我们说x=150是方程100+X=250的解,刚才我们求X的过程叫解方程。这两个概念具体是怎样的呢?请同学们自学课本57页找出什么叫方程的解?什么叫解方程?
学生自学后汇报。(板书)齐读两个概念。
4、辨析方程的解和解方程两个概念
师:方程的解是未知数的值它是一个数,怎样判断一个数是不是方程的解呢?
生:要看这个数能不能使方程左右两边相等。
师:而解方程是求未知数的过程,是一个计算过程它的目的是求出方程的解。同学们要注意两个概念之间的区别与联系。
5、巩固练习,加深理解。
师:完成做一做:X=3是方程5X=15的解吗?X=2呢?(完成后汇报)
生:X=3是方程5X=15的解,因为X=3时方程左右两边相等。
生:X=2不是方程5X=15的解,因为X=2时左边5×2=10,右边是15,左边和右边不相等,所以X=2不是方程5X=15的解。
(二)解简易方程
1、复习等式的性质
师:前两天我们学会了等式的性质,请根据等式的性质完成填空吗?
(1)如果5+3=8,那么5+3-3=8()
(2)如果50-13=37,那么50-13+13=50()
(3)如果a-7=8,那么a-7+7=8()
(4)如果X+9=45,那么X+9-9=45()
师:你是根据什么填空的?
生:等式的性质。
师:等式有什么性质呢?我们齐来说一遍。
2、理解方程与等式的联系,引出课题。
师:(3)(4)题不但是等式而且是方程,我们知道方程是等式的一部分,所以等式的性质对方程同样适用,今天我们将应用等式的性质来帮我们解方程。(板书课题:解简易方程)
3、出示例1图,列出方程。
师:图上画的是什么?你能列出方程吗?
生:X+3=9
师:这个方程用天平怎么表示呢?
生:天平左边放X个和3个球,右边放9个球。(电脑显示)
4、引导学生思考怎样解方程。
师:我们解方程的目的是求X,怎样使天平一边只剩x呢?
生:天平两边同时减去3个球。(电脑显示)
师:天平两边还平衡吗?怎样反映在方程上呢?
生:方程两边同时减3。(结合学生回答板书)
师:为什么同时减3而不是其它数呢?
生:方程两边同时减3就可以使方程一边只剩X。
5、检验方程的解。
师:X=6是不是方程的解呢?
生:是,因为X=6是方程左边是6+3=9,右边是9,左右两边相等,所以X=6是方程X+3=9的解。
6、强调解方程的格式步骤
电脑显示:解方程要注意:
(1)先写“解”,等号要对齐。
(2)做完后要注意检验。
7、看书质疑
8、学生练习
师:你会学老师这样解方程吗?请同学们解方程X+3.2=4.6,x+19=30。
9、学生板书练习集体订正
师:你是怎样解这个方程的,为什么方程两边要同时减19.生:使方程一边只剩X。
师:在这个过程中哪些是解方程,哪些是方程的解。
生:我们计算的过程是解方程,而x=11是方程的解。
10、小组讨论怎样解方程X-2=15,X-1.8=4
师:请同学们小组讨论怎样解方程X-2=15,X-1.8=4说出你这样做的根据
生:我根据方程两边同时加上一个数,方程两过仍然相等来解这两个方程的。
三、实践应用,加深理解
1、下面的方程你打算怎样算。
①X+0.3=1.8
②X-1.5=4
③X-6=7.6
④X+5=
322、我会填。
(1)含有()的()叫方程。
(2)使方程左右两边相等的()叫方程的解。
(3)求()叫做解方程。
(4)x-15=20这个方程的解是()
3、我会选
(1)χ+32=76的解是()
A、χ=42B、χ=144C、χ=44
(2)χ-12=4的解是()
A、χ=8B、χ=16C、χ=23
(3)χ+8=60的解是()
A、χ=480B、χ=52C、χ=7.5
(4)χ-3.5=1.5的解是()
A、χ=5B、χ=20C、χ=2
4、看图列方程并解答
5、解决问题
师:请同学们认真观察图,你能根据题意列出方程并解方程吗?
学生练习
四、全课小结,课外延伸
师:这节课你有什么收获?
师:请同学们思考生活中哪些问题可以运用解方程和知识帮我们解决问题,把你想到的和同伴一起分享。
五、布置作业
1、复习本节课的内容。
2、完成课本63页练习十一第5、6题第1、2横行。
稍复杂的方程 这部分内容共有三道例题。它们的共同点是每道例题都担负着教学列方程和教学解方程的双重任务。这是本单元学习的难点。1.例1。
编写意图
例1的题材源于足球的构成,即一个现代足球是由12块正五边形的黑色皮和20块正六边形的白色皮制成的。这种完美的球形结构,令一些数学家、建筑学家和化学家着迷。教材呈现给同学们的问题是:已知白色皮有20块,比黑色皮的2倍少4块,问黑色皮有多少块?
这道题的数量关系,学生容易想到的有以下三种形式
黑色皮的块数×2-白色皮的块数=4 黑色皮的块数×2-4=白色皮的块数
黑色皮的块数×2=白色皮的块数+4 比较而言,前两种形式的数量关系,更容易理解,而且都能引入形如ax±b=c的方程,有利于达成既学列方程,又学解方程的教学目标。因此,教材的解答,选用了第一种形式的等量关系,即把黑色、白色皮的块数关系看成一个数的几倍与另一数比大小的关系。与其相应的顺思考问题,就是求比一个数的几倍多(或少)几的数是多少。
例1若用算术方法解,需要逆思考,思维难度较大,学生容易出现先除后减的错误。通常不作教学要求。这里用方程解,思路比较顺,体现了列方程解实际问题的优越性。
从这里开始,教材要求学生自己写出用字母x表示未知数的设句。
列出方程之后,怎样解这样的方程呢?实际上,形如ax±b=c的方程,是由ax=d与y±b=c综合而成的。因此,教材介绍的解法,先把ax作一个整体,求出ax等于多少,再求x等于多少。
最后,提示学生交流不同解法,并继续提醒“记住验算”。教学建议
(1)教学前,可以组织两个内容的准备性练习,为新授做好铺垫。一是针对几倍多(少)几的数量关系,进行列方程的练习。如:
公鸡x只,母鸡30只,比公鸡只数的2倍少6只。
二是解方程的练习。如:y-20=4,2x=24等。
(2)出示例题后,首先引导学生审题,识别哪些信息是解决“求黑色皮块数”这个数学问题所需要的。然后分析白色皮块数与黑色皮块数之间的关系,如有必要,可画线段图帮助分析。
然后提问:
①怎样把x表示什么写清楚? ②怎样列方程?
应当允许学生得出不同的数量关系式,列出不同的方程。
教师选择2x-20=4讨论它的解法。强调先把2x看作一个整体,先求出2x等于多少,再求出x等于多少。然后让学生自己检验。
接下去,就可以请列出不同方程的学生说出自己所列的方程,如2x-4=20,或2x=20+4。这时就完全可以让学生自己陈述解方程的过程了。教师应注意引导学生观察解的过程中,发现它们“殊途同归”,都能转化为2x=24。
最后,可以引导学生总结列方程解决问题的步骤: ①弄清题意,找出未知数,用x表示; ②分析、找出数量之间的相等关系,列方程; ③解方程; ④检验,写出答案。
2.关于练习十二中一些习题的说明和教学建议。
第1题,练习解形如ax±b=c方程。最后一小题4x-3×9=29略有变化,一般学生能自己解决。对确感困惑的学生,可指导他们先算3×9。
第2~10题都是实际问题,其中第3、4、5、6、9、10题,虽然题材各异,但它们的数量关系都与例1类似,都是一个量比另一个量的几倍多(少)几,都是求作为比较标准(即看作“一倍”)的那个量。
这些问题,都可以让学生独立解答。练习后,教师应引导学生注意它们的共同点,并总结解决问题的经验。
第6题,其中亚洲的面积(包括岛屿)约为4400万平方千米。第7题,题材与表现形式富有趣味。题目中提供了华氏温度与摄氏温度的关系,这个关系也可以说成华氏温度比摄氏温度的1?8倍还多32度。
练习时,可以让学生自己代入关系式解答,再引导他们用几倍多几的语言表达两种温度之间的关系。
第2题与第8题的数量关系相类似,都是某一总数由两部分组成,其中一部分为两个数的积。第11*题,可让学有余力的学生选做。可以这样想:(36-4a)÷8是一个除法算式,当它的结果是0时,说明被除数是0,即36-4a=0;当它的结果是1时,说明被除数与除数相等,即36-4a=8。这样的方程前面尚未出现过,可以利用加减法关系,推得4a=36与4a=36-8。
最后一题为思考题。容易看出,和的最高位是
1、即t=1,代入原式,得
个位上a+1=1,说明a=0。观察十位与千位,v+s=11,因此百位上v=1+1+1=3,代入v+s=11,得s=8。3.例2。
编写意图
例2创设了购买两种水果的现实问题情境。如果撇开各数量的具体内容,就它的数学意义来讲,可抽象为两积之和的数量关系。这种数量关系在生活中经常能遇到。而且,理解了两积之和的数量关系,也就容易理解两积之差、两商之差的数量关系。在例2中组成两积的四个因数,有两个是相同的,这就可以根据分配律,得到含小括号的方程。这些都使例2具有举一反三的典型意义。
教材给出了两种方程,其一为两积之和等于已知的总数,让学生自己解答。其二为含小括号的方程,介绍了把小括号内的式子看作一个整体求解的思路和方法,并留有空白让学生自己解完。教学建议
(1)教学例题前,可以先复习两积之和的实际问题,如:
妈妈买了2 kg苹果和3 kg梨,已知梨每千克2.8元,苹果每千克2.4元,妈妈一共要付多少钱?让学生独立列式计算,并说出数量关系: 苹果的总价+梨的总价=总钱数 2.4×2+2.8×3=13.2(元)
(2)教学例题时,可以先把复习题改为:妈妈买了2 kg苹果和3 kg梨,共付13.2元钱,已知梨每千克2.8元,苹果每千克多少钱?
学生容易看出前后两题的数量关系没变,只是已知数和未知数交换了位置。因此,完全可以让学生自己列出方程并解答。
解:设苹果每千克x元。2x+2.8×3=13.2 然后,出示例2,即把梨的数量由3 kg改为2 kg,让学生审题后,教师可提出问题:除了像上题那样列方程之外,还可以怎样列方程?有了上面的铺垫,学生不难想到:
(苹果的单价+梨的单价)×2=总钱数
并根据这个等量关系列出方程。
接下去就可以引导学生把小括号内的2.8+x看作一个整体,先求出2.8+x=?,剩下的解题过程可以让学生在课本上完成。
(3)作为补充练习可以给出一个方程,如:(26+x)×3=150让学生口头编出具有现实意义的问题,在小组内交流。这样的练习既有助于学生掌握数量关系,又能使学生初步体会这一数量关系广泛的现实意义。4.例3。
编写意图
例3的内容是关于地球表面海洋面积和陆地面积的计算。它的特点是问题含有两个未知数,一般通常用两个已知条件说明两个未知数的关系。如给出两个未知数的和与差,或给出两个未知数的倍数关系与两个未知数的和(或差)。
具有这种数量关系的问题,在算术中称为“和差”、“和倍”、“差倍”问题。若用算术方法解,思路特殊,需要分别教学。改用方程解,都可归结为解形如ax±bx=c的方程,思路统一,解法一致,学会其中之一的解法,其他几种就很容易类推解决。
在实际生活中,也常常会遇到一些具有这种数量关系的问题。特别是当两个数的倍数关系用分数、百分数表示时,这样的问题就更常见了。
像这样含有两个未知数的问题,在本单元之前,学生还没接触过。但它与学生以前学过的不少内容有关。比如,已知两数,可以求出它们的和、差及倍数关系,这是小学低年级的小学内容。现在,从两数的和、差及倍数关系中选取两项作已知条件,反过来求两数各是多少,这就是我们在这里讨论的问题。可见,所谓的“和差”、“和倍”、“差倍”问题,实际上是已知两数,求它们的逆思考问题。
在小学中年级,曾出现过只有两个已知条件,却要两步计算解决的实际问题。如,舞蹈队有男生20人,女生人数是男生的2倍,舞蹈队共有学生多少人?女生比男生多多少人?这类问题的特点是选取两数之一作一个条件,再从两数的和、差及倍数关系这三个量中选取一个为另一个条件,然后求三个量中的其他两个量。不难看出,例3也是这类两步计算问题的逆思考问题。
解答例3,首先碰到的第一个问题是设未知数。学生已有的经验是“求什么设什么”。现在面临一道题中要求两个未知数各是多少,究竟设哪个为x,另一个又怎样表示?这是必须突破的一个难点。就数学本身来说,和差倍关系的两个未知数,任选一个设为x都是可行的。同样,另一个未知数的表示方法也有两种,即选用两个已知条件中的任何一个都能表示。比较而言,在各种解法中,把作为比较标准的未知数设为x,则用含x的式子表示另一个未知数就比较容易。
教材采用的就是这种方法。设陆地面积为x亿平方千米,根据两个量的倍数关系这个条件表示海洋面积,再根据另一个已知条件(两部分面积的和即地球表面积),列出方程。
这里第一次出现了形如ax±bx=c的方程。考虑到学生的知识水平和接受能力,教材没有出现合并同类项等术语,而是启发学生运用乘法分配律,将原方程转化为学生已会解的形式(a±b)x=c。这与合并同类项的方法实质上是一致的。
求出陆地面积后,接下去怎样求海洋面积?有两种选择。即任选两个已知条件中的任何一个都可以。教材以两个同学互相交流的形式,对两种算法都作了介绍。教学建议
(1)教学例3前,可以采用口答形式进行一些写出含有字母式子的填空练习。如:学校科技组有女同学x人,男同学是女同学的3倍,男同学有()人,男女同学一共有()人,男同学比女同学多()人。还可以给出复习题:
地球上的陆地面积为1.5亿平方千米,海洋面积约为陆地面积的2.4倍。地球的表面积是多少亿平方千米?让学生列式计算出地球表面积是5.1亿平方千米,作为新授的铺垫和过渡。(2)教学例3时,可以先让学生说出已知条件,并根据已知条件画出线段图(暂不标出“x”)。再让学生说出所求问题,明确要求的未知数有两个。然后利用线段图启发学生思考,先设哪一个未知数为x,根据已知条件,另一个未知数该怎样用含有字母的式子来表示。根据学生的回答在线段图上标注x和2.4x。然后引导学生想:一个条件已经用来表示第二个未知数了,还可以根据哪个条件找出等量关系列方程?由此列出课本介绍的方程。然后将方程和复习题的算式进行对比: 1.5+1.5×2.4=5.1 x+2.4x=5.1 帮助学生沟通新旧知识的联系,进一步理解数量关系。
如果学生提出不同的方法,可酌情加以比较,如:
让学生观察这些方程,容易看出解方程都比较麻烦。如果学生求出陆地面积后,怎样求海洋面积,有两种方法。学生喜欢用哪一种都可以,不必强求一律。
(3)例3的检验,应予以重视。可以提出问题:除了代入方程检验之外,还有没有其他的验算方法?学生一般能够想到,验算两个得数的和与商,看是否等于已知数。教师可以指出,在解决实际问题时,这样验算比先检查方程,再把x的值代入方程检验,更有效,也更简便。(4)引导学生小结时,可以着重明确以下三点:第一,两个未知数怎么办?可以先选择其中一个设为x,列方程解,再求另一个;第二,两个已知条件怎么用?可以把其中一个用来写出含有字母的式子,表示另一个未知数,另一个用来列方程;第三,怎样验算?可以通过列式计算,检验两个得数的和及倍数关系是否符合已知条件。5.关于练习十三中一些习题的说明和教学建议。
第1题,练习解含有小括号的方程。熟练之后,允许学生简化解方程过程的书写。如:
x= 11.4 x=11.4 第2题,数量关系为两积之和的实际问题。已知四张门票共11元。从插图中可以看出,成人票、儿童票各2张。
第3题,数量关系为两积之差的实际问题。如学生理解题意有困难(特别是农村学校),教师有必要作些说明。如水表有什么用处,收取的水费是怎样计算出来的。还可以从已知的101室入手,先让他们列式计算,101室第二季度的水费是不是80元。即 2.5×2788-2.5×2756=2.5×(2788-2756)=80(元)
然后再设102室上次读数为x吨,并列出方程,这样就不会感到困难了。
第4题的数量关系仍为两积之和,但两个积都含未知因数x,所以列出的方程形如ax±bx=c。把它作为例2与例3配套练习的过渡比较合适。
第5题,练习解形如ax±bx=c的方程。熟练以后,允许学生简化解方程的书写过程。如: 解5.4x+x=12.8 6.4x=12.8 x=2 第6题,含两个未知数,已知条件是两数的和与差(两个相邻自然数的差是1),它与已知“和倍”、“差倍”关系的问题略有不同的是,设两个数中的任何一个为x都可以,不存在解方程时简便或麻烦的问题。
第7题,为鸡兔同笼问题的变式。题中的隐蔽条件是鸡有2条腿,兔有4条腿。由于鸡兔数量相同,所以列出的方程形如ax+bx=c。
第8题,含两个未知数,已知条件为两数之差与倍数关系。可以让学生选用自己喜欢的方法,列出方程。
第9、10题都是两积之和数量关系的实际问题,而且两个积中都有相同的数,所以都能转化为或直接列出含小括号的方程。区别只是第9题的相同因数是未知数,第10题的相同因数是已知数。
第11*、12*题为选做题。两题难度都不大,一般学生都能解决。第11*题只要把□里填入的相同数设为x,就转化为熟悉的方程24x-15x=18。第12*题可先从方程的两边同时减去x,即得2x=100。
最后一题是思考题。设一共取了x次,也就是乒乓球、羽毛球都各取了x次。由于乒乓球、羽毛球的数量相等,得方程 5x=3x+6 解:x=3。
所以原来乒乓球有5×3=15(个),羽毛球也有3×3+6=15(个)。
简易方程总复习
教学要求
使学生能准确、熟练地用字母表示数(定律、公式、数量关系),并能正确地代人求值。进一步理解和掌握求简易方程的解的算理和算法,并正确地求简易方程的解和列方程解文字叙述题。
教学步骤
一、复习用字母表示数
1.用含有字母的式子表示:
⑴订阅《中国少年报》五年级订了320份,比四年级多订了X份,四年级订了()份。
⑵比X的5倍少1.2的数是()。
⑶路程S、速度V、时间t三者的关系,可以表示为S=,当V=32(千米)t=5(小时)S=;当S=120(千米)t=1。8小时,V=小结:含有字母的式子表示数时具有很强的概括性,它不具体回答是多少,但是一旦字母数值确定了,它就可以得到具体的值了。
二、巩固
教材第136页总复习第6题第(1)一(3)题。
三、复习简易方程
1.等式与方程,下列各式中是等式的打上“√”,是方程的打上“△”。
①3+5X()②2X一1=0()
③1+2.7=3.7()④15<1十X()
第②题同时出现了“√”和“△”记号,说明了什么?
2.方程的解和解方程。
(1)先说说什么叫方程的解?什么叫解方程?
(2)怎样解简易方程?根据什么?怎样检验?又根据什么?
3.解下列方程,先口述第一步转化的思路。
①54-X=48②54-3X=48③13X+2X=9.9
④6×9+3X=70。⑤6(l一X)=5.4⑥3.5X+X=1.7
小结:解简易方程,一步的问题根据四则计算的关系求解;多步的问题要进行转化处理,如把aX并作一个数或把(a十X)看作一个数处理,问题就容易解决了。
4.列方程解文字叙述题。
列方程解文字叙述题时,首先应“设要求的数为X(题目中出现了未知数X的,可以不设)”,再把文字叙述的形式“翻译”成含有未知数X的等式(即方程),题中怎样叙述等式就怎样写,顺序一般不要改动,列出方程后按简易方程的解法才解,如:
(板书)一个数的5倍减去37等于18,求这个数。
解:设要求的数为X。
5X一37=18
5X=18十37
5X=55
X=11
四、练习
教材第139页练习三十四第9-11题。
作业辅导
1.解方程〔第⑴、⑵要写出检验〕
⑴2X一5.5×6=⑵3X十1.5X=13.5
⑶(X十2)×0.5=1.l
⑷(7.2-4.8)÷X=0.4
⑸6X-6=4X-4
⑹7X一4.2-5.8=1.9
2.列方程,并解方程。
(1)某数增加5倍后与3的差等于117,求某数。
(2)15加上一个数的2信等于38的一半,求这个数。
(3)5的3倍比一个数的一半多8,求这个数。
(4)某数的8倍加上10,等于它的10倍减去8,求这个数。
(5)4.9减去4.9与0.5的积,比X的5倍少1.65,求X。
找规律 教学目标:
1.理解和掌握分数的基本性质。
2.理解分数的基本性质与商不变规律的关系。
3.培养学生观察比较,抽象概括的能力及初步的逻辑推理能力。
4.鼓励学生敢于发现问题,培养学生勇于解决问题的学习品质。
教学重点:掌握分数的基本性质。
教学难点:抽象概括分数的基本性质。
教具学具准备:投影仪、投影片、学生每人三张同样大小的纸条、彩笔。
教学步骤:
一、铺垫孕伏
1.口算。(读题说得数)
3.5×31.8×54.8÷1.28+3.74.5×2.5×43÷0.50.8+1.50.8×0.50.14×6
2.根据分数与除法的关系填空。
3.根据120÷30=4在□里填数。
(120×3)÷(30×3)=□
(12÷□)÷(30÷10)=(1)学生填空。
(2)你是怎样想的?(回忆除法中商不变性质)
二、探究新知:
1.新课导入:刚才我们复习了除法中商不变的性质,在分数中有没有类似的性质呢?
2.实际操作,初步感知。
(1)请同学们每人拿出三张形状大小相同的纸条。
①把第一张纸条平均分成2份,其中1份涂上颜色并用分数表示出来;
②把第二张纸条平均分成4份,其中2份涂上颜色并用分数表示出来;
③把第三张纸条平均分成6份,其中3份涂上颜色并用分数表示出来。
(2)说说这三个分数的意义。
(3)把三张纸条上下对齐,观察阴影部分:你发现了什么?说明了什么?
3.启发引导,总结规律。
(1)从左往右观察总结。
①观察手中第一、第二张纸条。
知道平均分的份数由2份变成4份,表示的份数由1份变成2份。
学生分组讨论然后填书,一人板演。
④观察上面两个式子,分数分子、分母的变化有什么规律?结果怎样?
引导学生分组讨论:分数的分子、分母同时乘以相同的数,分数的大小不变。
(2)从右往左观察又知道了什么?
启发学生知道:
(3)观察上面两组式子中,分数的分子、分母的变化,你发现了什么规律?
引导学生分组讨论:分数的分子、分母同时除以相同的数,分数的大小不变。
(4)总结归纳:
①引导学生讨论有什么规律?
汇报交流:分数的分子和分母同时乘以或者除以相同的数,分数的大小不变。
②这就是分数的基本性质。(板书课题)
③根据分数与除法的关系,以及整数除法中商不变的性质,你能说明分数的基本性质吗?
④学生读书中分数的基本性质。
⑤为什么“零除外”?
因为分母不能是0,所以分数的分子、分母不能同时乘以0;又因为除法里,零不能作除数,所以分数的分子、分母也不能同时除以0。
4.反馈练习。(投影出示)
在下列各图中,画出阴影,表示图下面的分数再比较它们的大小:
5.看书
(2)学生阅读课本并填书,一人板演。
(3)说说你是怎样想的?根据是什么?
6.反馈练习:
(1)填空。(投影出题,一人在投影片上做,其他同学填书,再集体订正。)
三、巩固发展:
1.指出下面每组中的两个分数是相等的还是不相等的,为什么?
2.口答(由学生提问,并指名回答)
3.同桌根据分数的基本性质互相编题、提问。
四、课堂小结:
这节课学习了什么?
第四篇:五年级上册数学《简易方程》教案
简易方程
1、用字母表示数
1、方程意义
一、用字母表示
2、用字母表示运算定律A、等式的基本性质
3、用字母表示计算公式
二、解简易方程
2、解方程B、方程的解
4、用字母表示数量关系C、解方程
3、稍复杂的方程
一、用字母表示
1.用字母表示数
A、注意的地方:(1)乘号的改写和省略出示练习:3×9n+k×ja×nc×41×ba×a
(2)a2与2a的区别:(3)引入:b×b×b怎样表示
B、【练习】①图书角原来有x本书,被同学借走10本后还有()本。②小芳今年y岁,妈妈的年龄是小芳的6倍,妈妈今年()岁。
③与整数m相邻的两个整数分别是()、()④X的5倍少1.2的数是()。
⑤老师买了5个篮球和6个足球,每个篮球价x元,每个足球y元,一共花了()元
2.用字母表示运算定律和计算公式
加法交换律:长方形的面积:长方形的周长:
加法结合律:正方形的面积:正方形的周长:
乘法交换律:平行四边形的面积:
乘法结合律:三角形的面积:
乘法分配律:梯形的面积:
3用字母表示计算公式
4用字母表示数量关系
二、解简易方程
1、等式?方程?等式和方程有什么区别和联系?
2、方程的解?解方程?表示左右两边相等的式子叫()。含有未知数的等式叫()。
3、【练习】A、下列各式中是等式的打上“√”,是方程的打上“△”
①3+5X()②2X一1=0()③1+2.7=3.7()④15<1十X()
B、判断①4+X>9是方程。()②方程一定是等式。()③x+5=4×5是方程。()
3、怎样解方程?根据什么?怎样验算?要注意哪些?
4、列方程解决问题的一般步骤:审清题意-----找出数量关系——确定未知数——列出方程(或算式)——解答(检验)
5、列方程解决问题和算术方法解决问题有什么区别和联系?
【练习】(1)妈妈买了8米的窗帘布,付了150元,找回42元。每米窗帘布多少元?、(2)学校有排球30个,比足球的3倍少3个,足球有多少个?
(3)小红和小明二人共有科技书62本,小红的科技书比小明的2倍还多2本,二人各有科技书多少本?
第五篇:五年级数学上册《简易方程》教案
课 时 教 案
教师:周世维
课
题: 新人教版五年级数学上册第五单元:简易方程—用字母表示数
课
时: 第 1 课时
课
型: 新授
编写时间:2014 年 10月10 日
执教时间:2014 年 10 月 15日
教学内容:教材P52~53例1及练习十二第1、2、4题。教学目标:
1、知识与技能:理解用字母表示数的意义和作用。
2、过程与方法:能正确掌握含有字母的式子的简写。
3、情感、态度与价值观:①在探索现实生活数量关系的过程中,体验用字母表示数的简明性。②通过列1的图片,渗透国家计划生育知识教育。教学重点:理解用字母表示数的意义和作用。教学难点:掌握含有字母的式子的简写。教学方法:观察、比较、思考、交流 教学准备:PPT。
教学过程
一、情境导入
1.导入:同学们已经学习了很多首古诗,你们知道宋朝诗人王安石写的《梅花》吗?(出示)《梅花》。
2.引导读诗,并思考:该诗与我们即将要学习的数学知识有什么联系? ① 通过读诗,从诗的语句中找出那个词语和今天学习的知识有联系? ② “数枝”表示多少枝?
③ 这个n枝大概在什么范围之内呢?
④ 刚才你们用那么多的字母表示了“数枝”,此处你们用字母表示的是怎样的一个数?(未知数)
3.引导复习整数的加法、减法、乘法、除法的运算定律,(出示运算定律)。4.揭题:今天咱们就来研究用字母表示数。(板书课题:用字母表示数)
二、互动新授
(一)合作交流 探究新知 1.出示:()÷6=()„„m 质疑:
①1.m是几?
② 它是3的同时还能是4吗?
(二)教学用含字母的式子表示数量关系。1.出示教材第52页例1。
引导:图中小红和爸爸也在探讨年龄的问题。(渗透法制教育:计划生育)①.我们仅仅通过看图,可以知道爸爸比小红大30岁。从这点可以和我们国家的计划生育工作有什么关系呢?(独立思考)
师:(晚婚晚育)。在我们国家的计划生育政策中规定:男方22周岁,女方20周岁,才能是法定结婚年龄,国家还鼓励晚婚晚育。所以通过图中我们可以看到,爸爸比小红大30岁,说明了小红的爸爸执行了国家的计划生育政策(晚婚晚育)。2.再次看图,从中你了解了哪些信息?
学生可能回答:小红1岁时爸爸31岁;爸爸比小红大30岁。3.让学生尝试用算式表示爸爸的年龄。
出示教材第52页的表格,引导学生列式表示爸爸的年龄,并集体完成表格。4.质疑:这些式子,每个只能表示某一年爸爸的年龄。你能用一个式子简明地表示出任何一年爸爸的年龄吗?
通过表格,学生能很快列出式子:小红的年龄+30=爸爸的年龄
师追问:“小红的年龄”写起来有些麻烦,谁能想个办法让我们的书写更简便? 小组交流讨论,有些学生可能会想到用“小红”“红”代替小红的年龄,也有些学生可能会想到用一个字母或一个符号来代替。5.重点引导学生用字母来代替。
引导学生说一说你是怎么写的?为什么这样写?
学生可能用n+ 30表示,n表示小红的年龄,n+30就表示爸爸的年龄;也有可能用a+30,用a代表小红的年龄,因为爸爸比小红大30岁,所以用a+30就是爸爸的年龄。(根据学生的回答板书代数式)
思考:大家都用一个含有字母的式子代替上面所有的算式,既简洁又方便。这些式子中的字母n、a……都表示什么?(a+30)又表示什么?(都表示小红的年龄。)(板书:小红的年龄)
追问:是不是只能用这些字母表示?还能用其他字母表示吗? 引导学生理解:可以用任意字母来表示小红的年龄。质疑:这些字母可以表示哪些数呢?能表示200吗?
先让学生讨论,然后汇报:这里的字母能表示从1开始的自然数,但是不能表示太大的数,不能表示200,因为人不可能活到200岁。
引导学生小结:用字母表示数时,在特定的情况下,字母表示的数是有一定取值范围的,比如表示年龄时。
6.质疑:这些含有字母的式子都表示什么呢?(表示爸爸的年龄,也表示小红比爸爸小30岁。)
(三)合作交流 探究新知 1.再次感知含有字母的式子
问题:①.如果爸爸的年龄用a表示,那女儿的年龄应该怎样表示?
②.这里的a与前面的a相同吗?既然两个a表示的含义不相同,在同一事件中为了避免混淆我们可以用不同的字母表示不同的含义。
(四)巩固练习
1.我国青少年(7~17 岁)在1980 年平均身高x cm,到2000 年,平均身高增长了6cm。2000年我国青少年平均身高
x+6(cm。
2.已知火龙果的单价比香蕉的单价多2.5元,如果用X表示香蕉的单价,则火龙果的单价为(2.5+X)元。
3.如果用a表示小红的年龄,当a=11时,爸爸的年龄是多少? 学生自主计算,汇报:a+30=11+30=41(岁)当a=12时呢?学生汇报:a+30=12+30=42(岁)
(五).沟通联系 提升总结
1.小结:通过前面的学习我们可以发现,我们可以尝试着用字母或含有字母的式子来表示一个数或表示数量关系。含有字母的式子不仅可以表示数量之间的关系还可以表示一个量,这种表示的方法简单而且概括
2..归纳:含有字母的式子,不但可以表示数,还可以表示两个数量之间的关系。(多媒体出示)
(六)课堂作业:第55页练习十二,第2题(1)(2)。
第56页练习十二,第4题。
(七)预习提示: 板书设计:
小红的年龄/岁
x
a
用字母表示数
爸爸的年龄/岁
y
1+30
a+30
(a+30)表示爸爸的年龄
1.