第一篇:高中数学概念教学设计教案
篇一:新课程理念下的高中数学概念教学设计
新课程理念下的高中数学概念教学设计
《普通高中数学课程标准(试验)》(以下简称新课标)强调:数学教学的最终目的是培养学生的数学能力,数学教学应当使学生对数学概念本质达到理性认识。同时《高中数学教学大纲》指出:正确理解数学概念是掌握基础知识的前提。高中数学概念是高中数学知识基础的核心,是学生学好数学知识和培养数学能力的基础,是学生解题的出发点和突破口,所以数学概念也应该成为教学的着眼点和落脚点。
同时,教师在进行教学设计时,要充分考虑学生的真实感受,真正实现以学生为主体,激发学生的学习热情,让他们主动去探索,篇二:高中数学概念课型及其教学设计
高中数学概念课型及其教学设计
谭国华
【专题名称】高中数学教与学
【专 题 号】g312 【复印期号】2014年02期
【原文出处】《中学数学研究》(广州)2013年6上期第4~8页
【作者简介】谭国华,广州市教育局教研室(510030).在我国高中数学教学中,有按课型特点设计和组织教学的传统.但是,对于如何划分课型以及如何认识每一类课的一般结构特点等问题,一直以来都未得到很好的解决.究其原因,主要是我们过去对高中数学课型的研究基本上是依据广大教师的教学实践经验,对课型结构特点的归纳总结,或者只是泛泛而谈,提出一些基本原则,缺乏可操作性;或者因人而异,不同人的观点有很大的不同.因此,原有的课型理论对课堂教学的指导作用有限.在过去,由于受教育心理学特别是教学心理学发展所限,要想用心理学的研究成果来指导中小学课堂教学的研究也是心有余而力不足,更别说是用来指导课型的研究.但现在的情况大不相同了.从1980年代以来,教育心理学与中小学课堂教学的关系越来越紧密,对中小学课堂教学的指导作用越来越直接而有力.近几年,我们借助教育心理学的研究成果,特别是学习心理学和教学心理学的研究成果指导课型的研究,取得较为可喜的成效.具体做法是,一方面使高中数学课型的理论保持我国传统课型理论中课型的整体性与综合性特点,以方便操作;同时,融入现代学习理论关于学习分类的观点,对每一种课型中涉及的主要知识的类型及其学习的过程、有效学习的条件进行深入的分析,以此为高中数学教学设计奠定坚实的科学基础.本文仅对有关高中数学概念课型及其教学设计的研究成果作简要介绍.一、高中数学概念课型的基本特点
我国传统的课型概念有两种含义:一是指课的类型,它是按某种分类基准(或方法)对各种课进行分类的基础上产生的.例如,《中国大百科全书。教育卷》(1985年版)中关于课的类型,是指根据不同的教学任务或按一节课主要采用的教学方法来划分课的类别.二是指课的模型,它是在对各种类型的课在教学观、教学策略、教材、教法等方面的共同特征进行抽象、概括的基础上形成的模型、模式.在这种意义下,课型可以看作是微观的课堂教学模式.本文所指的课型主要是指课的类型,是根据一节课(有时是连续的两节或三节课)承担的主要教学任务来划分的,但是同时它也兼具课的模型的含义.这是因为根据教学心理学的有关理论,不同的教学任务分属不同的知识类型,而不同类型知识的学习过程与学习所需的内、外部条件是不同的,这就导致了不同的课堂教学结构.具有某种特点的课堂教学结构实际上就是微观的课堂教学模式,也即是课的模型.在高中数学教学中,数学概念可以划分为原始概念和定义性概念.原始概念一般是通过对一系列的例证直接观察和归纳而习得,这类概念一般不需单独设课讲授,只需结合其他概念或规则的学习附带进行即可习得.而定义性概念中的那些次要的和易学的数学概念往往也不单独设课讲授.但是,在高中数学概念中,有许多重要的定义性概念往往是要单独设课讲授的,这一类课是具有共同的课堂教学结构特点的,于是,我们将这一类需要单独设课讲授的、重要的定义性概念课统称为高中数学概念课型.1.教学任务分析
高中数学概念课型的主要教学任务是使学生掌握概念所反映的一类事物的共同本质属性,以及运用概念去办事,去解决问题.因此,高中数学概念学习主要应作为程序性知识学习.根据学习心理学关于定义性概念的学习过程与条件的分析,高中数学概念教学有三项内容:一是要明确数学概念是什么,也就是要帮助学生习得概念,这将涉及前面提到的四个方面即概念的名称、定义、属性和例证的分析;二是要运用概念去办事,即将习得的数学概念运用到各种具体情境中去解决相应的问题;三是要辨明相关概念间的关系,形成概念系统.其中前两项内容完全属于高中数学概念课型的教学任务,第三项内容中一般只有部分内容属于概念课型的教学任务,形成完整的概念系统则属于高中数学复习课型的教学任务,我们将在复习课型中进行讨论.2.学与教的过程和条件
高中数学概念学与教的一般过程可以以我国教育心理学家皮连生创立的“六步三段两分支”教学模型为线索进行分析.(具体内容请参见参考文献[1])
第一阶段:习得阶段
主要教学任务是帮助学生习得数学概念,明确数学概念是什么,重点是促进学生对所学数学概念的理解.教学中,帮助学生习得数学概念一般需要做好下面四件事情.首先,揭示概念所反映的一类事物的本质属性,给概念下定义.其次,辨别概念的正例和反例,并结合定义给予恰当的说明.再次,用不同的语言形式对概念加以解释,如将概念的定义由文字语言表述转换为用符号语言或图形语言表述.最后,对概念做深入分析,着重在以下四点:
①辨明所学数学概念与原有相关数学概念之间的关系;
②分析所学数学概念的其他一些重要属性或特征;
③分析所学数学概念及其形成过程中蕴含的数学思想方法;
④分析所学数学概念及其形成过程中蕴含的情感教育内容.当然,并非每一个数学概念的教学都要完成所有这些事情.对于一些简单的、次要的数学概念,有时只需完成前三件事情就可以了.习得概念的基本形式有两种:一种叫概念形成,另一种叫概念同化.①概念形成这是一种从辨别概念的例证出发,逐渐归纳概括出概念的本质属性的学习方式,其心理机制可用奥苏贝尔的上位学习模式来解释.(具体内容见参考文献[1])学与教的基本过程:
知觉辨别(提供概念的正例,引导学生分析概念例证的特征)→提出假设(对概念例证的共同本质特征作出假设)→检验假设,使假设精确化→概括(给概念下定义)→辨别概念的正例、反例(正例应有助于证实概念的本质属性,反例应有助于剔除概念的非本质属性)→用不同的语言形式对概念加以解释→对概念做深入分析(分析与相关数学概念之间的关系,揭示概念的其他一些重要属性或特征).学习的内部条件(即学生自身应具备的条件):
学生必须能够辨别正、反例证.学习的外部条件(即教学应提供的条件):
第一,必须为学生提供概念的正、反例,正例应有两个或两个以上,正例的无关特征应有变化,以帮助学生更好地辨别概念的本质属性和非本质属性;正例应连续呈现,最好能同时 让学生意识到,以帮助学生形成概括.第二,学生必须能从外界获得反馈信息,以检验其所做的假设是否正确.第三,提供适当的练习,并给予矫正性反馈.采用概念形成的学习方式涉及如何给概念下定义的问题.明确概念的定义方式,对于教师更好地分析概念以及促进学生形成概括是有帮助的.在高中数学中,对于一些重要的数学概念大多数采用属加种差的定义方式.这里的属是指属概念,种是指种概念.属概念和种概念是指具有包含关系的两个概念,即如果概念a的外延真包含概念b的外延,则称概念a为概念b的属概念,而概念b即为概念a的种概念.通常,也称概念a为概念b的上位概念,而概念b即为概念a的下位概念.可用公式表示:
被定义概念=种差+最邻近的属概念.公式中,最邻近的属概念是指在被定义概念的所有上位概念中外延最小的上位概念(属概念),种差就是被定义概念在它的最邻近的属概念里区别于其他种概念的那些本质属性.例如,一元二次不等式的定义是:只含有一个未知数且未知数的最高次数是2的不等式叫做一元二次不等式.这个定义中,被定义概念是一元二次不等式;最邻近的属概念是不等式;种差是“只含有一个未知数且未知数的最高次数是2”,这是一元二次不等式独有的而且能够将一元二次不等式与其他不等式区别开来的本质属性.②概念同化概念同化是通过直接下定义来揭示一类事物的共同本质属性,从而习得概念的一种学习方式,其心理机制可用奥苏伯尔的下位学习模式来解释.学与教的基本过程:
呈现概念的定义
→分析定义,包括揭示概念的本质属性和构成定义的各部分的关系→辨别概念的正例、反例(正例应有助于证实概念的本质属性,反例应有助于剔除概念的非本质属性)→用不同的语言形式对概念加以解释→对概念做深入分析(分析与相关数学概念之间的关系,揭示概念的其他一些重要属性或特征).学习的内部条件:
学生的原有认知结构中应具有同化新概念的适当的上位概念(或结构),而且这一上位概念(或结构)越巩固、越清晰就越有利于同化新的下位概念.学习的外部条件:
第一,言语指导,以帮助学生更好地理解概念的本质属性.第二,提供符合概念定义的正例和不符合概念定义的反例.第三,提供适当的练习,并给以矫正性反馈.第二阶段:转化阶段
第一阶段习得的概念仍属于概念的陈述性形式.若要运用概念对外办事,则还需将它转化为程序性形式,也就是转化为办事的技能.这是本阶段的主要教学任务,重点是要明确运用概念办事的情境和程序,并在一些典型的情境中尝试运用概念.转化的关键条件是要提供变式练习.运用数学概念办事大致可分两种情况:一种是为数学概念自己办事,解决与数学概念本身有关的问题;另一种是运用概念的本质属性和一些重要的非本质属性去解决有关数学运算、推理、证明问题以及解决实际问题.例如,函数概念的运用,一种是为函数自己办事,如求函数的解析式、函数值、定义域、值域,作函数的图象,判定函数的单调性和奇偶性,求函数的最值等;另一种是运用函数的概念、图象、性质等解决与方程、数列、不等式等相关问题,或建立函数模型解决实际问题.函数概念教学及变式练习的重点就在于熟练掌握每一种情境中办事的程序和步骤.第三阶段:迁移与应用阶段
这是第二阶段的延伸.通过变式练习,学生已能在一些典型的情境中运用概念,已初步形成运用概念对外办事的技能.本阶段是要进一步提供概念应用的新情境,以促进迁移,其关键条件是提供综合练习.综合练习中问题的类型或情境应多样化,和第二阶段相比有类似的,也有新的呈现,以有效地帮助学生在不同情境中独立运用概念解决问题.这一阶段既可在课内完成,也可在课外完成,但通常都要反复多次才能完成.3.高中数学概念课教学的基本程序
根据上面的分析,结合广义知识学与教的“六步三段两分支”教学模型,我们可以将高中数学概念课型教学的基本程序简要归纳为:
第一阶段:习得阶段(习得数学概念)
(1)引起注意与告知目标,使学生对学习新概念产生一定的预期,从而激发学生的学习动机.(2)提示学生回忆原有知识,以便为同化新概念做好准备.(3)引入概念,使学生初步感知概念的本质属性.这里,既要从学生接触过的具体内容引入,也要注意从数学内部提出问题.(4)采用概念形成或概念同化的形式帮助学生习得概念的陈述性形式,即理解概念.第二阶段:转化阶段(将习得的概念转化为办事的技能)
(5)通过变式练习促进学生将习得的陈述性形式的概念转化为程序性形式,即转化为办事的技能.第三阶段:迁移与应用阶段(运用概念对外办事)
(6)通过课外作业、复习、间隔练习和在后续课程内容中应用概念等多种形式,为学生提供概念应用的情境,促进保持与迁移.根据高中数学教学的特点,第一、二两个阶段的5步通常是在课内完成.第三阶段即第6步为概念的巩固、迁移和应用阶段,通常是在课外和后续的课程中完成.对于以学案自学为主的教学则需考察其学案编写以及教师课堂上提供的帮助是否有助于学生完成学习的三个阶段.二、高中数学概念课型教学设计举例
下面以《对数函数及其性质》(具体内容见参考文献[2]第2.2.2节)的教学过程分析为例,具体说明高中数学概念课型的教学设计过程.1.教学任务分析
本节教材有两项学习内容:
(1)对数函数的概念;
(2)反函数的概念.第(1)项内容属于定义性概念学习,需达到掌握水平.对对数函数概念的学习需采用数形结合方法从数和形两个方面展开.第(2)项内容也属于定义性概念学习.高中数学课程标准对反函数的学习要求已经降低.本课学习反函数的概念,主要为了帮助学生明确对数函数和指数函数间的关系,从而深化对数函数概念的理解.因此,本节教材主要是对数函数概念的学习,反函数概念的学习只需达到了解水平即可.本节教材的主要教学任务是对数函数概念的教学,属于概念课型,需按高中数学概念课的课型特点来设计整个教学过程.具体教学要做到三点:
第一,要帮助学生明确对数函数概念是什么,包括四个方面:对数函数的定义、名称、例 证和属性.根据函数的特点,对对数函数属性的讨论应包括形和数两个方面.第二,要运用对数函数概念去办事,教材主要要求能解决三方面问题:求对数型函数的定义域,比较两个对数值的大小,解决简单的实际问题.第三,要明确对数函数与指数函数及函数的关系.其中,辨明对数函数概念与指数函数概念的关系需要先介绍反函数概念.本节教材一般应安排2课时.第1课时学习对数函数的概念、图象与性质.第2课时学习运用对数函数解决简单的两数大小比较、运用对数函数模型解决简单实际问题和反函数概念.为了帮助学生形成运用对数函数概念去办事的能力,需要补充适量的变式练习题.2.教学的基本过程
第一阶段:习得阶段.习得对数函数的概念.第一步 引起注意与告知目标.通过本课的学习,学生应能做到:
(1)初步掌握对数函数的概念.包括:
①能陈述对数函数的定义,并能列举正例、反例加以说明;
②能用描点法画出具体对数函数的图象,并能用自己的话描述一般对数函数的图象特征和基本性质;
③能根据对数函数的单调性比较两个对数值的大小.(2)了解反函数的概念,进一步明确对数函数和指数函数之间的关系.(3)通过对实际问题的分析,能初步认识到对数函数模型与现实生活以及与其他学科的密切联系和应用价值,提高数学应用的意识.第二步 复习原有知识.对本课学习影响较大的原有知识,一是函数概念和指数函数概念,二是描点法画函数的图象.对数函数的定义是属加种差的定义方式,函数是其上位概念,也是其最邻近的属概念.因此,在学习新课之前,应帮助学生回忆函数和指数函数的定义,以及函数图象的画法.第三步 采用概念同化方式习得对数函数的定义.习得对数函数的定义可以采用概念形成的方式,也可以采用概念同化的方式.如采用概念形成方式则需列举两至三个正例.我们这里是采用概念同化方式.(1)引入概念
教材提供了一个引例:通过碳14的含量测量出土文物的年代.这个引例能起两方面的作用:一是使学生初步感知对数函数的概念;二是使学生认识对数函数的应用价值,激发学生的学习动机.教师应引导学生观察教材中给出的t和p的取值的对应表,体会“对每一个碳14的含量p的取值,通过对应关系的函数.(2)呈现并分析定义
根据对数函数的定义方式,分析时要讲清两点:一是最邻近的属概念,二是种差.在对数函数的定义中,最邻近的属概念是函数,函数与对数函数构成了上下位关系,即对数函数是一种函数;种差是指两个变量间的对应关系为(a>0,且a≠1),种差也就是对数函数,都有唯一的生物死亡年数t与之对应”,从而说明t是p区别于其他函数的本质属性,即对数函数是一类特殊的函数.分析定义的目的是为了帮助学生形成对定义的深入理解.教师可以提出一些问题供学生思 篇三:高一数学集合的概念教学设计
课 题:1.1集合-集合的概念
教学目的:
(1)使学生初步理解集合的概念,知道常用数集的概念及记法
(2)使学生初步了解“属于”关系的意义
(3)使学生初步了解有限集、无限集、空集的意义 教学重点:集合的基本概念及表示方法
教学难点:运用集合的两种常用表示方法——列举法与描述法,正确表示一些简单的集合 授课类型:新授课
课时安排:1课时
教 具:多媒体、实物投影仪
内容分析:
1.集合是中学数学的一个重要的基本概念,在小学中,就渗透了集合的初步概念,到了初中,更进一步应用集合的语言表述一些问题。例如,在代数中用到的有数集、解集等;在几何中用到的有点集,至于逻辑,可以说,从开始学习数学就离不开对逻辑知识的掌握和运用。基本的逻辑知识在日常生活、学习、工作中,也是认识问题、研究问题不可缺少的工具。这些知识可以帮助认识学习本章的意义,也是本章学习的基础。
把集合的初步知识与简易逻辑知识安排在高中数学的最开始,是因为在高中数学中,这些知识与其他内容有着密切联系,它们是学习、掌握和使用数学语言的基础。例如,下一章讲函数的概念与性质,就离不开集合与逻辑
本节首先从初中代数与几何涉及的集合实例入手,引出集合与集合的元素的概念,并且结合实例对集合的概念作了说明然后,介绍了集合的常用表示方法,包括列举法、描述法,还给出了画图表示集合的例子。
这节课主要学习全章的引言和集合的基本概念学习引言是引发学生的学习兴趣,使学生认识学习本章的意义本节课的教学重点是集合的基本概念。
第二篇:高中数学教学论文 函数概念教案
【中学数学教案】
函数概念教案
一、教材分析
1、教材的地位和作用:
函数是数学中最主要的概念之一,而函数概念贯穿在中学数学的始终,概念是数学的基础,概念性强是函数理论的一个显著特点,只有对概念作到深刻理解,才能正确灵活地加以应用。本课中学生对函数概念理解的程度会直接影响数学其它知识的学习,所以函数的第一课时非常的重要。
2、教学目标及确立的依据:
教学目标:
(1)教学知识目标:了解对应和映射概念、理解函数的近代定义、函数三要素,以及对函
用心
爱心
专心 1
数抽象符号的理解。
(2)能力训练目标:通过教学培养学生的抽象概括能力、逻辑思维能力。(3)德育渗透目标:使学生懂得一切事物都是在不断变化、相互联系和相互制约的辩证唯物主义观点。教学目标确立的依据:
函数是数学中最主要的概念之一,而函数概念贯穿整个中学数学,如:数、式、方程、函数、排列组合、数列极限等都是以函数为中心的代数。加强函数教学可帮助学生学好其他的数学内容。而掌握好函数的概念是学好函数的基石。
3、教学重点难点及确立的依据:
教学重点:映射的概念,函数的近代概念、函数的三要素及函数符号的理解。教学难点:映射的概念,函数近代概念,及函数符号的理解。重点难点确立的依据:
映射的概念和函数的近代定义抽象性都比较强,要求学生的理性认识的能力也比较高,对于刚刚升入高中不久的学生来说不易理解。而且由于函数在高考中可以以低、中、高挡题出现,所以近年来高考有一种“函数热”的趋势,所以本节的重点难点必然落在映射的概念和函数的近代定义及函数符号的理解与运用上。
二、教材的处理:
将映射的定义及类比手法的运用作为本课突破难点的关键。函数的定义,是以集合、映射的观点给出,这与初中教材变量值与对应观点给出不一样了,从而给本身就很抽象的函数概念的理解带来更大的困难。为解决这难点,主要是从实际出发调动学生的学习热情与参与意识,运用引导对比的手法,启发引导学生进行有目的的反复比较几个概念的异同,使学生真正对函数的概念有很准确的认识。
三、教学方法和学法
教学方法:讲授为主,学生自主预习为辅。依据是:因为以新的观点认识函数概念及函数符号与运用时,更重要的是必须给学生讲清楚概念及注意事项,并通过师生的共同讨论来帮助学生深刻理解,这样才能使函数的概念及符号的运用在学生的思想和知识结构中打上深刻的烙印,为学生能学好后面的知识打下坚实的基础。
用心
爱心
专心 2
第三篇:高中数学概念教学例谈
高中数学概念教学例谈
陕西省延安市子长县职教中心 杨东红
摘 要:数学概念教学是数学教学的第一环节,是学生学习和探究知识的基础。学生是否兴趣盎然,是否印象深刻,是概念教学成功的关键。因此,如何设计概念教学,如何引导学生探究和学习,如何提升学生对概念教学的认识,是每一个教师迫切需要解决的问题。当前,由于受应试教育的影响,在数学概念教学中教师们普遍有这样的看法,就是与其在概念教学中花费时间,不如教师多讲一些题,学生多做一些题,在做题的过程中学生们自然就会理解和掌握好概念。在这种思想支配下的教学结果是:数学教学缺乏必要的根基,学生对数学概念理解不准,大量的机械、盲目的做题起不到应有的效果,常常事倍功半,反而使学生对数学逐渐失去兴趣。那么,针对数学概念教学中存在的这些问题,如何抓住有限的概念教学的契机,进行有效教学呢?
一、重视对概念有效的导入
在实际的数学概念教学中,教师只注重概念的严密性,导入方式过于学术化。教学过程一般是先引进概念,再加几点注意,然后进行大量的解题练习,这样的教学机械、死板、千篇一律,挫伤了学生对概念学习的积极性。因此,在数学概念教学中,不应简单给出定义,让学生机械背诵定义,而应注重对概念导入的研究,注重对适宜情景的创设,激发学生学习的兴趣,调动学生参与的热情。
1、关注学生的知识和经验,建立概念
学生数学知识的学习,是一个由易到难,逐步延伸和提高的过程,前面的知识是后续知识学习的基础。正因如此,奥苏伯尔曾经说过:“影响学习的唯一最重要的因素,就是学习者已经知道了什么,要探明这一点,并应据此进行教学。”同时,学生已有的生活经验及熟悉的生活情景,都是数学概念教学的重要切入点。例如,函数的概念,初中是用变量之间的对应来描述的,高中函数的概念是在初中的基础 上进行了拓展和提高,是用集合与对应的语言来描述的,是初中函数概念的进一步深化。再如,在周期函数的教学中,可从自然界中日出日落、寒来暑往等周而复始的现象和天文地理、化学物理以及人类社会中的一些周期现象引入,使抽象的概念变得浅显易懂。
2、创设数学实验,引入概念
《普通高中数学课程标准》指出:“学生的数学学习活动不应只限于接受、记忆、模仿和练习,高中数学课程还应倡导自主探索、动手实践、合作交流、阅读自学等学习数学的方式。”教师创设适宜的数学实验,让学生通过动手操作,观察比较,体验数学的直观性,更易于理解数学概念。例如,在讲指数函数定义前,让学生做这样的实验:拿一张纸来对折,观察折纸的次数与纸叠的层数之间的关系,得出折一次为2层,折两次为4层……以此类推可得出折纸的次数x与所得纸的层数y=2x的关系。
3、利用实际问题引入数学概念
波利亚说过,对数学特征的直观表征,往往能根植进学生的心灵。事实上,数学来源于生活,生活中的道理和数学中的道理是相通的。因此,如果利用生活中的实际问题,把数学概念的空间形式直观化,无疑会提高学生理解概念,应用概念的能力。例如:可用地面上直立的旗杆引入直线与平面垂直的定义;用“萝卜的集合”和“坑的集合”来讲映射的概念;用“照镜子”引入对称;用“芭蕾舞”导入旋转体等。
二、重视对概念本质的理解
概念是客观事物的本质属性在人脑中的反映。学生学习数学概念,贵在掌握概念的本质属性。如果对概念的理解不深刻,就会在平时的做题中出现这样或那样的错误,导致数学学习效率低下,成绩徘徊不前。因此,教师要利用多种方式,多种途径帮助学生深刻理解概念,让学生深刻感受到数学学习中概念的重要性。
1、抓住关键字词,全面理解概念。
数学概念历经前人不断地总结、概括和完善,表达已十分精炼。因此,在讲解概念时,要字斟句酌,特别是对其中的关键词语,要仔细推敲,深刻领会其中的深意,只有这样才能全面理解概念,避免产生不必要的误差。例如异面直线的定义是这样的:不同在任何一个平面内的两条直线,这里要引导学生理解“不同在任何一个平面”表达的意义;再如函数的概念中:对于集合A中的任意一个元素,在集合B中有唯一确定的元素与之对应。这里要重点讲清楚“任意”与“唯一”包含的意义。
2、利用对比和反例,有效理解概念
数学中许多概念具有一定的抽象性和相似性,使得学生对这些概念的理解容易产生混淆。例如频率与概率、映射与函数、对数与指数、子集与真子集、相互独立事件与互斥事件等。教师要引导学生讨论辨析这些概念的异同,推敲它们之间的区别与联系,深刻理解这些概念。另一方面,许多概念学生从正面理解比较困难,容易产生一些不正确的认识,而反例是推翻错误认识的有效手段,有时能起到意想不到的效果。例如:“异面直线”的概念,学生往往理解为“在不同平面内的两条直线”。这时可用书本作为反例:翻开的书本,书脊两侧页面的底边,可以近似地看做分别位于两个页面上的线段,符合“在不同平面内”,但它们所在直线却是相交于一点的,显然不是异面直线。
三、重视概念的形成过程
概念的形成是概念教学的基础和重点,有时也是一个难点。在具体教学中,教师可以根据教材和学生实际,精心设计问题串,为学生搭建脚手架,给学生预留一定的时间自主探究、合作交流、讨论反馈,学生在问题的解决过程中,建构概念。例如“向量”概念的教学,可设计如下问题:(1)举一些物理中既有大小又有方向的物理量;(2)请再举一些生活中既有大小又有方向的量;(3)数学中的向量与物理中的矢量有何区别;(4)你愿意怎样表示一个向量;(5)有向线段与向量有何异同。这样让学生依据问题逐步探究,既能体现学生的主体性,又让学生参与概念产生的过程。教学上确实花费了较多时间,但学生对这一概念却达到了真正掌握。
总之,数学概念的教学,是高中数学教学的重要环节,是基础知识和基本技能教学的核心。广大教师一定要走出轻视概念教学的误区,精心设计,大胆尝试,和学生一起参与到概念的形成过程中,达到对概念本质的理解。
第四篇:高中数学概念课型及其教学设计
高中数学概念课型及其教学设计
谭国华
【专题名称】高中数学教与学 【专 题 号】G312 【复印期号】2014年02期
【原文出处】《中学数学研究》(广州)2013年6上期第4~8页 【作者简介】谭国华,广州市教育局教研室(510030).在我国高中数学教学中,有按课型特点设计和组织教学的传统.但是,对于如何划分课型以及如何认识每一类课的一般结构特点等问题,一直以来都未得到很好的解决.究其原因,主要是我们过去对高中数学课型的研究基本上是依据广大教师的教学实践经验,对课型结构特点的归纳总结,或者只是泛泛而谈,提出一些基本原则,缺乏可操作性;或者因人而异,不同人的观点有很大的不同.因此,原有的课型理论对课堂教学的指导作用有限.在过去,由于受教育心理学特别是教学心理学发展所限,要想用心理学的研究成果来指导中小学课堂教学的研究也是心有余而力不足,更别说是用来指导课型的研究.但现在的情况大不相同了.从1980年代以来,教育心理学与中小学课堂教学的关系越来越紧密,对中小学课堂教学的指导作用越来越直接而有力.近几年,我们借助教育心理学的研究成果,特别是学习心理学和教学心理学的研究成果指导课型的研究,取得较为可喜的成效.具体做法是,一方面使高中数学课型的理论保持我国传统课型理论中课型的整体性与综合性特点,以方便操作;同时,融入现代学习理论关于学习分类的观点,对每一种课型中涉及的主要知识的类型及其学习的过程、有效学习的条件进行深入的分析,以此为高中数学教学设计奠定坚实的科学基础.本文仅对有关高中数学概念课型及其教学设计的研究成果作简要介绍.一、高中数学概念课型的基本特点
我国传统的课型概念有两种含义:一是指课的类型,它是按某种分类基准(或方法)对各种课进行分类的基础上产生的.例如,《中国大百科全书。教育卷》(1985年版)中关于课的类型,是指根据不同的教学任务或按一节课主要采用的教学方法来划分课的类别.二是指课的模型,它是在对各种类型的课在教学观、教学策略、教材、教法等方面的共同特征进行抽象、概括的基础上形成的模型、模式.在这种意义下,课型可以看作是微观的课堂教学模式.本文所指的课型主要是指课的类型,是根据一节课(有时是连续的两节或三节课)承担的主要教学任务来划分的,但是同时它也兼具课的模型的含义.这是因为根据教学心理学的有关理论,不同的教学任务分属不同的知识类型,而不同类型知识的学习过程与学习所需的内、外部条件是不同的,这就导致了不同的课堂教学结构.具有某种特点的课堂教学结构实际上就是微观的课堂教学模式,也即是课的模型.在高中数学教学中,数学概念可以划分为原始概念和定义性概念.原始概念一般是通过对一系列的例证直接观察和归纳而习得,这类概念一般不需单独设课讲授,只需结合其他概念或规则的学习附带进行即可习得.而定义性概念中的那些次要的和易学的数学概念往往也不单独设课讲授.但是,在高中数学概念中,有许多重要的定义性概念往往是要单独设课讲授的,这一类课是具有共同的课堂教学结构特点的,于是,我们将这一类需要单独设课讲授的、重要的定义性概念课统称为高中数学概念课型.1.教学任务分析
高中数学概念课型的主要教学任务是使学生掌握概念所反映的一类事物的共同本质属性,以及运用概念去办事,去解决问题.因此,高中数学概念学习主要应作为程序性知识学习.根据学习心理学关于定义性概念的学习过程与条件的分析,高中数学概念教学有三项内容:一是要明确数学概念是什么,也就是要帮助学生习得概念,这将涉及前面提到的四个方面即概念的名称、定义、属性和例证的分析;二是要运用概念去办事,即将习得的数学概念运用到各种具体情境中去解决相应的问题;三是要辨明相关概念间的关系,形成概念系统.其中前两项内容完全属于高中数学概念课型的教学任务,第三项内容中一般只有部分内容属于概念课型的教学任务,形成完整的概念系统则属于高中数学复习课型的教学任务,我们将在复习课型中进行讨论.2.学与教的过程和条件
高中数学概念学与教的一般过程可以以我国教育心理学家皮连生创立的“六步三段两分支”教学模型为线索进行分析.(具体内容请参见参考文献[1])
第一阶段:习得阶段
主要教学任务是帮助学生习得数学概念,明确数学概念是什么,重点是促进学生对所学数学概念的理解.教学中,帮助学生习得数学概念一般需要做好下面四件事情.首先,揭示概念所反映的一类事物的本质属性,给概念下定义.其次,辨别概念的正例和反例,并结合定义给予恰当的说明.再次,用不同的语言形式对概念加以解释,如将概念的定义由文字语言表述转换为用符号语言或图形语言表述.最后,对概念做深入分析,着重在以下四点:
①辨明所学数学概念与原有相关数学概念之间的关系;
②分析所学数学概念的其他一些重要属性或特征;
③分析所学数学概念及其形成过程中蕴含的数学思想方法;
④分析所学数学概念及其形成过程中蕴含的情感教育内容.当然,并非每一个数学概念的教学都要完成所有这些事情.对于一些简单的、次要的数学概念,有时只需完成前三件事情就可以了.习得概念的基本形式有两种:一种叫概念形成,另一种叫概念同化.①概念形成这是一种从辨别概念的例证出发,逐渐归纳概括出概念的本质属性的学习方式,其心理机制可用奥苏贝尔的上位学习模式来解释.(具体内容见参考文献[1])
学与教的基本过程:
知觉辨别(提供概念的正例,引导学生分析概念例证的特征)→提出假设(对概念例证的共同本质特征作出假设)→检验假设,使假设精确化→概括(给概念下定义)→辨别概念的正例、反例(正例应有助于证实概念的本质属性,反例应有助于剔除概念的非本质属性)→用不同的语言形式对概念加以解释→对概念做深入分析(分析与相关数学概念之间的关系,揭示概念的其他一些重要属性或特征).学习的内部条件(即学生自身应具备的条件):
学生必须能够辨别正、反例证.学习的外部条件(即教学应提供的条件):
第一,必须为学生提供概念的正、反例,正例应有两个或两个以上,正例的无关特征应有变化,以帮助学生更好地辨别概念的本质属性和非本质属性;正例应连续呈现,最好能同时让学生意识到,以帮助学生形成概括.第二,学生必须能从外界获得反馈信息,以检验其所做的假设是否正确.第三,提供适当的练习,并给予矫正性反馈.采用概念形成的学习方式涉及如何给概念下定义的问题.明确概念的定义方式,对于教师更好地分析概念以及促进学生形成概括是有帮助的.在高中数学中,对于一些重要的数学概念大多数采用属加种差的定义方式.这里的属是指属概念,种是指种概念.属概念和种概念是指具有包含关系的两个概念,即如果概念A的外延真包含概念B的外延,则称概念A为概念B的属概念,而概念B即为概念A的种概念.通常,也称概念A为概念B的上位概念,而概念B即为概念A的下位概念.可用公式表示:
被定义概念=种差+最邻近的属概念.公式中,最邻近的属概念是指在被定义概念的所有上位概念中外延最小的上位概念(属概念),种差就是被定义概念在它的最邻近的属概念里区别于其他种概念的那些本质属性.例如,一元二次不等式的定义是:只含有一个未知数且未知数的最高次数是2的不等式叫做一元二次不等式.这个定义中,被定义概念是一元二次不等式;最邻近的属概念是不等式;种差是“只含有一个未知数且未知数的最高次数是2”,这是一元二次不等式独有的而且能够将一元二次不等式与其他不等式区别开来的本质属性.②概念同化概念同化是通过直接下定义来揭示一类事物的共同本质属性,从而习得概念的一种学习方式,其心理机制可用奥苏伯尔的下位学习模式来解释.学与教的基本过程:
呈现概念的定义→分析定义,包括揭示概念的本质属性和构成定义的各部分的关系→辨别概念的正例、反例(正例应有助于证实概念的本质属性,反例应有助于剔除概念的非本质属性)→用不同的语言形式对概念加以解释→对概念做深入分析(分析与相关数学概念之间的关系,揭示概念的其他一些重要属性或特征).学习的内部条件:
学生的原有认知结构中应具有同化新概念的适当的上位概念(或结构),而且这一上位概念(或结构)越巩固、越清晰就越有利于同化新的下位概念.学习的外部条件:
第一,言语指导,以帮助学生更好地理解概念的本质属性.第二,提供符合概念定义的正例和不符合概念定义的反例.第三,提供适当的练习,并给以矫正性反馈.第二阶段:转化阶段
第一阶段习得的概念仍属于概念的陈述性形式.若要运用概念对外办事,则还需将它转化为程序性形式,也就是转化为办事的技能.这是本阶段的主要教学任务,重点是要明确运用概念办事的情境和程序,并在一些典型的情境中尝试运用概念.转化的关键条件是要提供变式练习.运用数学概念办事大致可分两种情况:一种是为数学概念自己办事,解决与数学概念本身有关的问题;另一种是运用概念的本质属性和一些重要的非本质属性去解决有关数学运算、推理、证明问题以及解决实际问题.例如,函数概念的运用,一种是为函数自己办事,如求函数的解析式、函数值、定义域、值域,作函数的图象,判定函数的单调性和奇偶性,求函数的最值等;另一种是运用函数的概念、图象、性质等解决与方程、数列、不等式等相关问题,或建立函数模型解决实际问题.函数概念教学及变式练习的重点就在于熟练掌握每一种情境中办事的程序和步骤.第三阶段:迁移与应用阶段
这是第二阶段的延伸.通过变式练习,学生已能在一些典型的情境中运用概念,已初步形成运用概念对外办事的技能.本阶段是要进一步提供概念应用的新情境,以促进迁移,其关键条件是提供综合练习.综合练习中问题的类型或情境应多样化,和第二阶段相比有类似的,也有新的呈现,以有效地帮助学生在不同情境中独立运用概念解决问题.这一阶段既可在课内完成,也可在课外完成,但通常都要反复多次才能完成.3.高中数学概念课教学的基本程序
根据上面的分析,结合广义知识学与教的“六步三段两分支”教学模型,我们可以将高中数学概念课型教学的基本程序简要归纳为:
第一阶段:习得阶段(习得数学概念)
(1)引起注意与告知目标,使学生对学习新概念产生一定的预期,从而激发学生的学习动机.(2)提示学生回忆原有知识,以便为同化新概念做好准备.(3)引入概念,使学生初步感知概念的本质属性.这里,既要从学生接触过的具体内容引入,也要注意从数学内部提出问题.(4)采用概念形成或概念同化的形式帮助学生习得概念的陈述性形式,即理解概念.第二阶段:转化阶段(将习得的概念转化为办事的技能)
(5)通过变式练习促进学生将习得的陈述性形式的概念转化为程序性形式,即转化为办事的技能.第三阶段:迁移与应用阶段(运用概念对外办事)
(6)通过课外作业、复习、间隔练习和在后续课程内容中应用概念等多种形式,为学生提供概念应用的情境,促进保持与迁移.根据高中数学教学的特点,第一、二两个阶段的5步通常是在课内完成.第三阶段即第6步为概念的巩固、迁移和应用阶段,通常是在课外和后续的课程中完成.对于以学案自学为主的教学则需考察其学案编写以及教师课堂上提供的帮助是否有助于学生完成学习的三个阶段.二、高中数学概念课型教学设计举例
下面以《对数函数及其性质》(具体内容见参考文献[2]第2.2.2节)的教学过程分析为例,具体说明高中数学概念课型的教学设计过程.1.教学任务分析
本节教材有两项学习内容:
(1)对数函数的概念;
(2)反函数的概念.第(1)项内容属于定义性概念学习,需达到掌握水平.对对数函数概念的学习需采用数形结合方法从数和形两个方面展开.第(2)项内容也属于定义性概念学习.高中数学课程标准对反函数的学习要求已经降低.本课学习反函数的概念,主要为了帮助学生明确对数函数和指数函数间的关系,从而深化对数函数概念的理解.因此,本节教材主要是对数函数概念的学习,反函数概念的学习只需达到了解水平即可.本节教材的主要教学任务是对数函数概念的教学,属于概念课型,需按高中数学概念课的课型特点来设计整个教学过程.具体教学要做到三点:
第一,要帮助学生明确对数函数概念是什么,包括四个方面:对数函数的定义、名称、例证和属性.根据函数的特点,对对数函数属性的讨论应包括形和数两个方面.第二,要运用对数函数概念去办事,教材主要要求能解决三方面问题:求对数型函数的定义域,比较两个对数值的大小,解决简单的实际问题.第三,要明确对数函数与指数函数及函数的关系.其中,辨明对数函数概念与指数函数概念的关系需要先介绍反函数概念.本节教材一般应安排2课时.第1课时学习对数函数的概念、图象与性质.第2课时学习运用对数函数解决简单的两数大小比较、运用对数函数模型解决简单实际问题和反函数概念.为了帮助学生形成运用对数函数概念去办事的能力,需要补充适量的变式练习题.2.教学的基本过程
第一阶段:习得阶段.习得对数函数的概念.第一步 引起注意与告知目标.通过本课的学习,学生应能做到:
(1)初步掌握对数函数的概念.包括:
①能陈述对数函数的定义,并能列举正例、反例加以说明;
②能用描点法画出具体对数函数的图象,并能用自己的话描述一般对数函数的图象特征和基本性质;
③能根据对数函数的单调性比较两个对数值的大小.(2)了解反函数的概念,进一步明确对数函数和指数函数之间的关系.(3)通过对实际问题的分析,能初步认识到对数函数模型与现实生活以及与其他学科的密切联系和应用价值,提高数学应用的意识.第二步 复习原有知识.对本课学习影响较大的原有知识,一是函数概念和指数函数概念,二是描点法画函数的图象.对数函数的定义是属加种差的定义方式,函数是其上位概念,也是其最邻近的属概念.因此,在学习新课之前,应帮助学生回忆函数和指数函数的定义,以及函数图象的画法.第三步 采用概念同化方式习得对数函数的定义.习得对数函数的定义可以采用概念形成的方式,也可以采用概念同化的方式.如采用概念形成方式则需列举两至三个正例.我们这里是采用概念同化方式.(1)引入概念
教材提供了一个引例:通过碳14的含量测量出土文物的年代.这个引例能起两方面的作用:一是使学生初步感知对数函数的概念;二是使学生认识对数函数的应用价值,激发学生的学习动机.教师应引导学生观察教材中给出的t和P的取值的对应表,体会“对每一个碳14的含量P的取值,通过对应关系的函数.(2)呈现并分析定义
根据对数函数的定义方式,分析时要讲清两点:一是最邻近的属概念,二是种差.在对数函数的定义中,最邻近的属概念是函数,函数与对数函数构成了上下位关系,即对数函数是一种函数;种差是指两个变量间的对应关系为
(a>0,且a≠1),种差也就是对数函数,都有唯一的生物死亡年数t与之对应”,从而说明t是P区别于其他函数的本质属性,即对数函数是一类特殊的函数.分析定义的目的是为了帮助学生形成对定义的深入理解.教师可以提出一些问题供学生思考.例如:定义中为什么要规定a>0,且a≠1?为什么对数函数义域是(0,+∞)?
(3)列举正例与反例
通过列举正例、反例,帮助学生进一步加深对概念的理解.第四步 采用概念形成方式习得对数函数的图象与性质.(a>0,且a≠1)的定 对各种不同的函数的概念学习都包括数和形两个方面,画函数图象既是为了获得函数的性质,也是为了从形的方面更好地理解函数概念.将图象上观察到的共同特征用代数语言表达出来,就得到一类函数的性质.这一过程体现了数形结合的基本思想.(1)在同一坐标系内采用描点法画出对数函数的图象
应分0<a<1和a>1两种情况,每种情况至少举两个对数函数的例子,在同一坐标系内采用描点法画出它们的图象.有的教师在教学时,每种情况都只举一例,这是不能形成对共有的关键特征的概括的.有的教师说教材也只举一例,这是不对的.教材中有一段话:“选取底数a(a>0,且a≠1)的若干个不同的值,在同一平面直角坐标系内作出相应的对数函数的图象.观察图象,你能发现它们有哪些共同特征吗?”教学时应落实教材的这个意图.(2)通过观察图象的特征,概括出一般对数函数的性质
观察和分析图象,归纳它们的共同特征和性质,并由此概括出一般对数函数的图象特征和性质.第二阶段:转化阶段.将习得的对数函数概念转化为办事的技能.第五步 样例学习和变式练习
这一步主要任务是帮助学生学会如何运用概念去办事,其核心是掌握运用的方法与步骤.根据教材的要求,分为三种情况.(1)运用对数函数定义解决求对数型函数的定义域问题
教材中提供了两个例题,均属于对数型的函数.教学中应结合这两个例题分析对数型函数与对数函数的异同,以及总结求这类函数定义域的基本方法.例1 求函数数的定义域:(a>0,且a≠1)的定义域.通过样例学习后让学生小结求对数型函数的定义域的步骤,并进行变式练习.如求下列函(2)运用对数函数性质解决比较两个对数值大小的问题
教材中提供了三个例题,三个例题分属三种类型.教学中应结合这三个例题,总结运用对数函数的单调性比较两个对数值的大小的基本方法.同样,先学习样例,然后再进行变式练习.例2 比较下列两个值大小:
在学习例2时,教师可以提出一些问题引发学生的思考.如本题的第①、②小题都可以直接使用计算器计算,然后比较大小.但第③小题则不行.有没有其他统一的方法解决这一类型的问题呢?这种统一的方法实际上就是:利用数形结合,画出图象,再利用函数的单调性则可以比较大小.利用函数的单调性比较大小,将设及构造函数.那么如何构造函数呢?三个小题中的底数不变,真数变化,则可以构造函数:
教师引导学生小结:根据对数函数的单调性比较两个对数值的大小的步骤为:
第1步:依据对数的特点构造对数函数;
第2步:判断函数单调性,有时需要分类讨论;
第3步:利用单调性比较大小,下结论.(3)运用对数函数模型解决简单实际问题
教材提供了一个溶液酸碱度测量问题.通过这一例题,不仅要使学生初步掌握运用对数函数模型解决简单实际问题的方法,而且要帮助学生初步认识到对数函数模型与现实生活以及与其他学科的密切联系,同时,教师还可通过对“对数函数模型”的应用(如航天技术、考古学、生物学等领域)的大致介绍,使学生进一步体会到对数函数模型的应用价值,提高数学应用意识.数学应用意识属于学习分类中的态度学习,亦即数学中情感态度价值观的学习.第六步习得反函数概念
对反函数概念只需达到了解水平,知道指数函数与对数函数是互为反函数即可.具体教学中,可以请学生先阅读教材中的有关内容,然后思考以下问题:
①我们知道表示y是x的函数,由
可以得到,教材上说x也是y的函数,请尝试用自己的话说明理由.②教材上说和y=
都表示函数的反函数,这是何原因?
(a<0,且a≠1)③请用自己的话说明指数函数是互为反函数.(a<0,且a≠1)与对数函数y= 第三阶段:迁移与应用阶段.运用对数函数概念对外办事.第七步 提供技能应用的情境(相似的和不同的情境),促进迁移.提供课外作业以及在后续课程中提供运用对数函数概念办事的机会.【参考文献】
[1]皮连生.学与教的心理学(第五版)[M].上海:华东师范大学出版社.2009.[2]刘绍学主编.普通高中课程标准实验教科书·数学必修1(A版)[M].北京:人民教育出版社,2007.^
第五篇:高中数学必修2教学设计: 1.1.1算法的概念
文字资料] 1.1.1算法的概念
算法是指完成一个任务所需要的具体步骤和方法。也就是说给定初始状态或输入数据,经过计算机程序的有限次运算,能够得出所要求或期望的终止状态或输出数据。
算法常常含有重复的步骤和一些比较或逻辑判断。如果一个算法有缺陷,或不适合于某个问题,执行这个算法将不会解决这个问题。不同的算法可能用不同的时间、空间或效率来完成同样的任务。一个算法的优劣可以用空间复杂度与时间复杂度来衡量。〖算法的历史〗
“算法”(algorithm)来自于9世纪波斯数学家比阿勒·霍瓦里松的名字al-Khwarizmi,比阿勒·霍瓦里松在数学上提出了算法这个概念。“算法”原为“algorism”,意思是阿拉伯数字的运算法则,在18世纪演变为“algorithm”。第一次编写算法是Ada Byron于1842年为巴贝奇分析机编写求解解伯努利方程的程序,因此Ada Byron被大多数人认为是世界上第一位程序员。因为巴贝奇(Charles Babbage)未能完成他的巴贝奇分析机,这个算法未能在巴贝奇分析机上执行。因为“well-defined procedure”缺少数学上精确的定义,19世纪和20世纪早期的数学家、逻辑学家在定义算法上出现了困难。20世纪的英国数学家图灵提出了著名的图灵论题,并提出一种假想的计算机的抽象模型,这个模型被称为图灵机。图灵机的出现解决了算法定义的难题,图灵的思想对算法的发展起到了重要的作用。
一个算法应该具有以下五个重要的特征:
有穷性: 一个算法必须保证执行有限步之后结束;
确切性: 算法的每一步骤必须有确切的定义;
输入:一个算法有0个或多个输入,以刻画运算对象的初始情况,所谓0个输入是指算法本身定除了初始条件;
输出:一个算法有一个或多个输出,以反映对输入数据加工后的结果。没有输出的算法是毫无意义的;
可行性: 算法原则上能够精确地运行,而且人们用笔和纸做有限次运算后即可完成。
〖形式化算法〗
算法是计算机处理信息的本质,因为计算机程序本质上是一个算法来告诉计算机确切的步骤来执行一个指定的任务,如计算职工的薪水或打印学生的成绩单。一般地,当算法在处理信息时,会从输入设备或数据的存储地址读取数据,把结果写入输出设备或某个存储地址供以后再调用。〖算法的实现〗
算法不单单可以用计算机程序来实现,也可以在神经网络、电路或者机械设备上实现。·例子
这是算法的一个简单的例子。
如果将数列中的每一个数字看成是一颗豆子的大小,可以将下面的算法形象地称为“捡豆子”: 首先将第一颗豆子放入口袋中。
从第二颗豆子开始检查,直到最后一颗豆子。如果正在检查的豆子比口袋中的还大,则将它捡起放入口袋中,同时丢掉原先口袋中的豆子。
最后口袋中的豆子就是所有的豆子中最大的一颗。下面是一个形式算法,用近似于编程语言的伪代码表示
给定:一个数列“list“,以及数列的长度”length(list)" largest = list[1] for counter = 2 to length(list): if list[counter] > largest: largest = list[counter] print largest 符号说明: = 用于表示赋值。即:右边的值被赋予给左边的变量。List[counter]用于表示数列中的第counter项。例如:如果counter的值是5,那么List[counter]表示数列中的第5项。<= 用于表示“小于或等于”。
==例子==
设两个变量 M 和 N 1.如果 M < N,则交换 M 和 N 2.以 N 除以 M,得到余数 R 3.判断 R=0,正确则 N 即为“最大公约数”,否则下一步 4.将 N 赋值给 M,将 R 赋值给 N,重做第一步。用“Basic 代码”表示--
If M < N Then Swap M,N Do While R <> 0 R = M Mod N M = N N = R Loop Print R
〖算法设计和分析的基本方法〗
分治法:字面上的解释是“分而治之”,就是把一个复杂的问题分成两个或更多的相同或相似的子问题,再把子问题分成更小的子问题„„直到最后子问题可以简单的直接求解,原问题的解即子问题的解的合并。这个技巧是很多高效算法的基础,如排序算法(快速排序,归并排序),傅立叶变换(快速傅立叶变换)„„
动态规划:动态规划在查找有很多重叠子问题的情况的最优解时有效。它将问题重新组合成子问题。为了避免多次解决这些子问题,它们的结果都逐渐被计算并被保存,从简单的问题直到整个
因此,动态规划保存递归时的结果,因而不会在解决同样的问题时花费时间。
贪心法(亦作饕餮法):就是一种在每一步选择中都采取在当前状态下最好/优的选择,从而希望导致结果是最好/优的算法。贪心法可以解决一些最优性问题,如:求图中的最小生成树、求哈夫曼编码„„对于其他问题,贪心法一般不能得到我们所要求的答案。一旦一个问题可以通过贪心法来解决,那么贪心法一般是解决这个问题的最好办法。由于贪心法的高效性以及其所求得的答案比较接近最优结果,贪心法也可以用作辅助算法或者直接解决一些要求结果不特别精确的问题。〖算法的分类〗
·基本算法 〔枚举 搜索(深度优先搜索 广度优先搜索 启发式搜索 遗传算法)〕 ·数据结构的算法 ·数论与代数算法
·计算几何的算法(凸包算法)
·图论的算法(哈夫曼编码 树的遍历 最短路径算法 最小生成树算法 最小树形图 网络流算法 匹配算法)· 动态规划
·其他(数值分析 加密算法 排序算法 检索算法 随机化算)
还可以分成串行算法、并行算法。
〖算法的复杂性〗
算法的复杂性是算法效率的度量,在评价算法性能时,复杂性是一个重要的依据。算法的复杂性的程度与运行该算法所需要的计算机资源的多少有关,所需要的资源越多,表明该算法的复杂性越高;所需要的资源越少,表明该算法的复杂性越低。
计算机的资源,最重要的是运算所需的时间和存储程序和数据所需的空间资源,算法的复杂性有时间复杂性和空间复杂性之分。
算法在计算机上执行运算,需要一定的存储空间存放描述算法的程序和算法所需的数据,计算机完成运算任务需要一定的时间。根据不同的算法写出的程序放在计算机上运算时,所需要的时间和空间是不同的,算法的复杂性是对算法运算所需时间和空间的一种度量。不同的计算机其运算速度相差很大,在衡量一个算法的复杂性要注意到这一点。
对于任意给定的问题,设计出复杂性尽可能低的算法是在设计算法时考虑的一个重要目标。另外,当给定的问题已有多种算法时,选择其中复杂性最低者,是在选用算法时应遵循的一个重要准则。因此,算法的复杂性分析对算法的设计或选用有着
在讨论算法的复杂性时,有两个问题要弄清楚:
(1)一个算法的复杂性用怎样的一个量来表达;
(2)怎样计算一个给定算法的复杂性。
找到求解一个问题的算法后,接着就是该算法的实现,至于是否可以找到实现的方法,取决于算法的可计算性和计算的复杂性,该问题是否存在求解算法,能否提供算法所需要的时间资源和空间资源。
筛选法求质数
质数亦叫作素数,是大于1的自然数,并且除了该数本身和1以外没有其它的数能整除它,如2,3,5,7,11,13,„,质数有无穷多个。
(1)判断143是否为质数。解:
Step1:143÷2不为整数; Step2:143÷3不为整数; Step3:143÷4不为整数; Step4:143÷5不为整数; Step5:143÷6不为整数; Step6:143÷7不为整数; Step7:143÷8不为整数; Step8:143÷9不为整数;
:143÷10不为整数;
Step10:143÷11=13,143能被11整除; Step11:结论:143不是质数。(2)判断17是否为质数。解:
Step1:17÷2不为整数; Step2:17÷3不为整数; Step3:17÷4不为整数; Step4:17÷5不为整数; Step5:17÷6不为整数; Step6:17÷7不为整数; Step7:17÷8不为整数; Step8:17÷9不为整数; Step9:17÷10不为整数; Step10:17÷11不为整数; Step11:17÷12不为整数; Step12:17÷13不为整数; Step13:17÷14不为整数; Step14:17÷15不为整数; Step15:17÷16不为整数; Step16:结论:17是质数。
3)判断216091是不是质数
该题的计算量非常大,我们可以把算法编为程序,由计算机帮我们计算。
(4)设计一个算法,输入大于2的整数n,由计算机判断它是不是质数。
解:Step1:输入整数n;
Step2:依次检验2~(n-1)是不是n的因数,若有这样的数,则n不是质数,否则,n为质数。Step3:输出结果。
说明:其中第3步在计算机中可以通过一个循环来实现,今后会学到