第一篇:一元一次不等式组的应用教学案Microsoft Word 文档
七年级数学教学案
执笔人:胡
丙(初一数学备课组)
班次:
姓名: 课题:一元一次不等式组的应用。课型:新授
制定时间:4月23日,执行时间:4月25日。学习目标:
1、会用一元一次不等式组解决有关的实际问题;
2、掌握一元一次不等式组应用题的一般解题步骤;
3、体验数学学习的乐趣,感受一元一次不等式组在解决实际问题中的价值。重点:解题步骤。
难点:找“等量”关系。
学法指导:通过回顾列方程解应用题,掌握列方程解不等式的步骤与方法。
一、课前预习及自我检测 回顾复习:
(1)、一元一次方程应用题的解法与步骤:(2)、一元一次不等式组的解法: 自学检测
1、慈晖中学为丰富学生的校园生活,准备购买足球好篮球共96个。已知足球50元一个,篮球80元一个,要求总费用不超过5720元,最多可以买多少个篮球?
分析:设篮球为x个,则足球可以表示为()个。篮球费用为-------------------、足球费用为-----------------------、-总费用为----------------------------。解:
2、已知两条线段的长度分别为8cm,5cm,当第三条线段a为多长时,(1)这三条线段能组成一个三角形?
(2)这三条线段能组成一个周长不小于20cm的三角形? 分析:组成一个三角形需要满足什么样的条件?-------------------不小于是什么意思?----------------解:
二、合作与探究
例
1、某宾馆一楼客房比二楼少5间,某旅游团有48人,若全部安排在一楼,每间4人,房间不够,每间5人,房间没有住满;若安排住在二楼,每间3人房间不够,每间4人,有房间没住满,问宾馆一楼有客房几间?
例
2、七年级春游,若租用48座位的客车若干辆,则正好坐满;若租用64座
位的客车,则可以少租用1辆,且还有1辆没有做满但是超过了一半。已知租用48座位的客车费用是250元,租用64座位的客车费用是300元。那么应租用哪种客车比较合算?
三、巩固练习爆破施工时,导火索燃烧的速度是0.8cm/s,人跑开的速度是5m/s,为了使点火的战士在施工时能跑到100m以外的安全地区,导火索至少需要多长?
2.王凯家到学校2.1千米,现在需要在18分钟内走完这段路。已知王凯步行速度为90米/ 分,跑步速度为210米/分,问王凯至少需要跑几分钟?
3.抗洪抢险,向险段运送物资,共有120公里原路程,需要1小时送到,前半小时已经走了50公里后,后半小时速度多大才能保证及时送到?
4、某工厂接受一项生产任务,需要用10米长的铁条作原料。现在需要截取3米长的铁条81根,4米长的铁条32根,请你帮助设计一下怎样安排截料方案,才能使用掉的10米长的铁条最少?最少需几根?
四、小结解不等式应用题的步骤:
五、课后反思:
通过本节课的学习,我学会了什么?过关了么有?
第二篇:《一元一次不等式的应用》教学案
第2课时
一元一次不等式的应用
学习目标:
1.能根据实际问题中的数量关系,列出一元一次不等式,解决简单问题.2.初步体会一元一次不等式的应用价值,发展学生的分析问题和解决问题的能力.预习导学:
自学指导:阅读教材第124至125页,完成下列问题(先独立完成,再小组讨论)知识探究
问题1:某人问一位老师,他所教的班有多少名学生,老师说:“一半的学生在学数学,四分之一的学生在学音乐,七分之一的学生在学外语,还剩不足6位同学在操场上踢足球”.求这个班共有多少名学生?
解:设这个班有学生x名.根据题意,得:
111x-x-x-x<6,解得:x<56.247xxx∵x,,都是正整数,247∴x取2、4、7的最小公倍数,即x=28.问题2:为了保护环境,某企业决定购买10台污水处理设备,现有A、B两种型号的设备,A型设备的价格是每台12万元,B型设备的价格是每台10万元.经预算,该企业购买设备的资金不高于105万元.请你设计该企业有几种购买方案.解:设购买污水处理设备A型x台,则B型为(10-x)台,依题意得:
12x+10(10-x)≤105,解得:x≤2.5.因为x取非负整数,所以x取0、1、2.所以有三种购买方案:A型0台,B型10台;A型1台,B型9台;A型2台,B型8台.变式:若企业每月生产的污水量为2 040吨,A型设备每月可处理污水240吨,B型机每月处理污水200吨,为了节约资金,应选择哪种方案?
解:由题意得:240x+200(10-x)≥2 040,解得:x≥1.1 / 3
所以x为1或2.当x=1时,购买资金为12×1+10×9=102万元 当x=2时,购买资金为12×2+10×8=104万元 又因为102<104 因此,为节约资金,应选购A型1台,B型9台.活动1 例题解析
例
12002年北京空气质量良好(二级以上)的天数与全年天数之比达到55%,如果2008年这样的比值要超过70%,那么2008年空气质量良好的天数要比2002年至少增加多少?
分析:1.2002年北京空气质量良好的天数是多少?
2.用x表示2008年增加的空气质量良好的天数,则2008年北京空气质量良好的天数是多少?
3.与x有关的哪个式子的值应超过70%?
解:设2008年空气质量良好的天数比2002年增加x天.2002年有(365×0.55)天空气质量良好,2008年有(x+365×0.55)天空气质量良好,并且x3650.55>70%,366去分母,得x+200.75>256.2,移项,合并,得x>55.45.由x应为正整数,得x≥56.答:2008年要比2002年空气质量好的天数至少增加56天.例
2某次知识竞赛共有20道题.每道题答对加10分,答错或不答均扣5分:小明要想得分超过90分,他至少要答对多少道题?
解:设小明答对x道题,则他答错或不答的题数为(20-x).根据他的得分要超过90,得
210x-5(20-x)>90,解这个不等式,得x>12.3由题意,小明至少要答对13道题.活动2 课堂小结
列一元一次不等式解应用题的一般步骤:
/ 3
(1)审:认真审题,分清已知量、未知量及其关系,找出题中不等关系;
(2)设:设出适当的未知数;
(3)列:根据题中的不等关系,列出不等式;
(4)解:解所列的不等式,求得不等式的解集;
(5)答:写出答案并检验是否符合题意.3 / 3
第三篇:一元一次不等式组教后反思
一元一次不等式组教后反思
赵双艳
本节课我采用从生活中创设问题情景的方法激发学生学习兴趣,采用类比等式性质创设问题情景的方法,引导学生的自主探究活动,教给学生类比,猜想,验证的问题研究方法,培养学生善于动手、善于观察、善于思考的学习习惯。利用学生的好奇心设疑、解疑,组织活泼互动、有效的教学活动,鼓励学生积极参与,大胆猜想,使学生在自主探索和合作交流中理解和掌握本节课的内容。力求在整个探究学习的过程充满师生之间,生生之间的交流和互动,体现教师是教学活动的组织者、引导者、合作者,学生才是学习的主体。
课堂开始通过回顾旧知识,抓住新知识的切入点,使学生进入一种“心求通而未得,口欲言而未能”的境界,使他们有兴趣的进入数学课堂,为学习新知识做好准备。在这一环节上,留给学生思考的时间有点少。接下来出示的问题1从学生的生活经验出发,让学生感受生活中数学的存在,不仅激发学生学习兴趣,而且可以让学生直观地体会到在不等关系中存在的一些性质。这一环节上展现给学生一个实物,使学生获得直观感受。
问题2、3的设计是为了类比等式的基本性质,研究不等式的性质,让学生体会数学思想方法中类比思想的应用,并训练学生从类比到猜想到验证的研究问题的方法,让学生在合作交流中完成任务,体会合作学习的乐趣。在这个环节上,我讲得有点多,在体现学生主体上把握得不是很好,在引导学生探究的过程中时间控制的不紧凑,有点浪费时间。还有就是给他们时间先记一下不等式的基本性质,便于后面的练习。
通过问题四让学生比较不等式基本性质与等式基本性质的异同,这样不仅有利于学生认识不等式,而且可以使学生体会知识之间的内在联系,整体上把握知识、发展学生的辨证思维。
在运用符号语言的过程中,学生会出现各种各样的问题与错误,因此在课堂上,我特别重视对学生的表现及时做出评价,给予鼓励。这样既调动了学生的学习兴趣,也培养了学生的符号语言表达能力。
在练习的设计上两道练习以别开生面的形式出现,给学生一个充分展示自我的舞台,在情感两道练习以别开生面的形式出现,给学生一个充分展示自我的舞台,在情感态度和一般能力方面都得到充分发展,并从中了解数学的价值,增进了对数学的理解。在这一环节,让学生起来回答问题的时候有点耽误时间。
让学生通过总结反思,一是进一步引导学生反思自己的学习方式,有利于培养归纳总结的习惯,让学生自主构建知识体系;二也是为了激起学生感受成功的喜悦,力争用成功蕴育成功,用自信蕴育自信,激励学生以更大的热情投入到以后的学习中去。
本节课,我觉得基本上达到了教学目标,在重点的把握,难点的突破上也基本上把握得不错。在教学过程中,学生参与的积极性较高,课堂气氛比较活跃。其中还存在不少问题,我会在以后的教学中,努力提高教学技巧,逐步的完善自己的课堂。
第四篇:一元一次不等式教学案(全章)
八年级上册数学第6章 《一元一次不等式》 学案
§6.1 不等关系和不等式(1)教师寄语: 处处留心皆学问 学习目标: 1.通过具体情境,感受现实世界和日常生活中存在着大量的不等关系.2.了解不等式的意义,使学生经历实际问题中数量关系的分析和抽象过程,感受不等式和等式都是刻画现实世界中数量关系的工具,发展学生的符号感.学习重点: 不等式的概念 学习难点:不等关系的表示
学习过程:
一、自主探究:
1.学生自主阅读课本第162页,你能利用不等号分别表示出上述3个问题中的不等关系吗?与同学交流一下。
2.相关知识链接:
某中学八年级(1)班50名学生在上体育课,老师说了这样一句话:我拿来了一些篮球,如果每5名同学玩一个篮球,有些同学没有篮球玩,如果每6名同学玩一个篮球,就会有一个篮球玩的人数少于6人,请同学们回答下面的问题:
(1)你能把老师的这句话用三个式子表示出来吗?(2)你列出的式子与我们以前学过的等式有什么不同?
二、学习新知:
1.不等式的概念: 叫做不等式。
并举例说明,阅读课本第162页的“加油站”。
2.例题讲解: 判断下列式子哪些是不等式?哪些不是?
① 3>-1;②3x≤ -1;③2x- 1;④s=vt;⑤2m< 8-m;⑥5x-3=2x+1;⑦a+b≥c;⑧1+1≠2
规律总结:
一个式子是不是不等式,关键是看它是否含有常用的五中不等号其中的一种或几种,若有则是不等式;否则便不是。
三、强化练习:
1.设a<b,用“<”或“>”填空。
⑴ a+1 b+1 ⑵ a-3 b-3 ⑶-a-b ⑷-4a-5-4a-3 2.用不等式表示:
⑴.a与b的和不是负数:.⑵.x的2倍与3的差大于4:.⑶.8与y的2倍的和是负数:
四、课堂小结:
我学会了:
不明白的地方(或`容易出错的地方):
五、达标测试: 基础把握:
1.在数学表达式 ①-2<0 ②3x-k>0 ③x=1 ④x≠2 ⑤x+2>x-1 中是不等式的有()
A.2个 B.3个 C.4个 D.5个
2.若a>b,那么仍能成立的不等式是()
A.ac>bc B.ac<bc C.a+1>b+2 D.a-c>b-c 3.用不等式表示下列数量关系:
①.x的相反数大于x的倒数.②.a的平方的相反数不是正数.§6.1 不等关系和不等式(2)教师寄语:勇于探索,敢于挑战学习目标: 1.经历不等式三条基本性质的探索过程。
2.能利用不等式的基本性质对不等式进行简单的变形。
学习重点:根据等式的基本性质类比发现不等式的基本性质。学习难点:不等式基本性质3的理解和运用。学习过程:
一、自学探究:
⑴.学生自学课本163 164页的内容。与同学们交流一下。
⑵.总结:
①不等式的基本性质1: ; 用代数式表示为:若a>b,则。②不等式的基本性质2 : ; 用代数式表示为:若a>b,且c>0, 则。③不等式的基本性质3 : ; 用代数式表示为:若a>b,且c<0, 则。
二、学习新知:
例1.根据不等式的基本性质,把下列不等式化成x>a或x<a的形式:
⑴ X-7>2 ⑵-x<1 ⑶4x-5<5x
三、针对性训练:
1.已知a<b,用“>”或“<”填空:
①a+7 b+7;②a÷7=b÷7;③a-3 b-3;④2a a+b;⑤-a-3-b-3
2.用“>”或“<”填空:
①如果a-c>b-c,那么a b ②如果ac>bc, 那么a b ③如果<, c<0, 那么a b ④如果>,c 0 ,那么a<b
四、综合拓展:
2试比较a-2a+3与-2a+3的大小。
五、探究创新: 已知方程组
试列出使x>y的六、课堂小结:
你对本节课的收获是什么?
七、布置作业:
达标检测
不等式。
一、选择题:
1〉 如果-a<2,那么下列各式正确的是()
A.a<-2 B.a>2 C.-a+1<3 D.-a-1>1 2〉 若a>b,则下列不等式中正确的是()
A.-3a>-3b B.->-C.3-a>3-b D.a-3>b-3
二、填空题:
3〉若a>b, 用“>”或“<”填空:
① 2a+1 2b+1 ②3a-6 3b-6 ③1-1-
§6.2 一元一次不等式 ⑴
教师寄语:自信是成功的一半。
学习目标:1.通过分析实际问题中数量之间的不等关系,抽象出不等式。
2.能在数轴上表示出不等式的解集。
学习重点:不等式的解集
学习难点:正确地在数轴上表示出不等式的解集 学习过程: 一.自主探究:
1.学生自学课本167 168页的内容。与同学们交流。
2.总结
不等式的解:。举例说明:。不等式的解集:。举例说明:。
二.学习新知:
例1.判断下列说法是否正确
①、5是不等式x+2>6的解; ②、3是不等式y-1>2的解;
③、所有小于1的整数都是不等式x+1<2的解。
规律总结:①判断某一个数值是不是不等式的解,就应用这个数值代替不等式中的未知数,看不等式是否成立,若不等式成立,则该数值是不等式的解;否则便不是。
②、不等式的解与一元一次方程的解的区别:不等式的解是不确定的,一般不等式的解有无数个,而一元一次方程的解则是一个具体的数值。例2.你能说出不等式x+2>8的一些解吗? 你能说出它的解集吗?
规律总结:不等式的解一定在不等式的解集范围之内,不等式的“解”有多个,而“解集”却是唯一的。
例3.将下列不等式的解集在数轴上表示出来 ①x>3 ②x+1≥3 ③x≤5的非负整数解。
规律总结:在数轴上表示不等式的解集时,要确定边界和方向。⑴边界:有等号的是实心圆点,无等号的是空心圆点。⑵方向:大于向右,小于向左。
三.跟踪训练:
教材168页 练习1、2、3、四.课堂小结:
五.达标检测
1.填空:
⑴ 不等式-1<x<2的整数解为。
⑵ 若x>0, 则.2.选择题:
⑶ 用不等式表示如图所示的解集,正确的是()
A x>1 B x≥1 C x<1 D x≤1
(4)如图所示,在数轴上表示x<-2的解集,正确的是()
六.布置作业:
§6.2 一元一次不等式(2)
教师寄语:敢于向困难挑战
学习目标:⑴知道一元一次不等式的概念
⑵会解一元一次不等式
学习重、难点:一元一次不等式的解法 学习过程:
一、学前准备:
观察下列含有未知数的不等式,它们有什么共同点?(1)x>-2(2)3y+1.25<5(3)≤ 与同学们交流一下。
二、学习新知:
⑴ 一元一次不等式的概念:。⑵ 例题讲解:
例1 解不等式3x+26<8,并把它的解集在数轴上表示出来。
例2 解不等式≤
-1,并把它的解集在数轴上表示出来。
规律总结:在解不等式时,应注意以下问题:
① 两边同时乘以一个数时,不能漏乘一些项。
② 分数线有括号的作用,去分母时,应用括号将分子上的多项式括起来。③ 系数化为1时,若两边乘(或除以)同一个负数,则不等号的方向要改变。④ 在数轴上表示不等式解集时要注意“实心点”与“空心圈”的区别。
三、小组讨论:
⑴ 想一想,解一元一次不等式与解一元一次方程的步骤有哪些类似的地方?
⑵ 在解一元一次不等式时,哪些步骤可能用到不等式的基本性质3?这时要注意什么问题?
四、挑战自我:
已知适合不等式
≥的x的值是正数,你能确定实数a的范围吗?
五、跟踪练习:
解下列不等式:
⑴ 3(x+4)<2(x-1)②
六、课堂小结:
七、达标检测 1.选择题:
⑴ 不等式+1<的负整数解有()
≤
-1 A 1个 B 2个 C 3个 D 4个
⑵ 若ax<1的解集是x>,则a一定是()
A 非负数 B 非正数 C 负数 D 正数
2.填空题:
⑶ 当k 时,关于x的方程2x+3=k的解为正数。
⑷ 若不等式(a-1)x>a-1的解集是x<1,则a的值满足。3.解下列不等式:
≥
八、布置作业
二、例1.例2.三、四、§6.2 一元一次不等式(3)教师寄语:勇于探索,你就会有新的发现。学习目标:利用不等式解决实际问题 学习重点: 不等式的应用 学习难点:不等式的应用探索 学习过程:
一、课前准备:
小组讨论:①列方程解应用题的关键是。
②列方程解应用题的步骤是。
总结:列不等式解应用题的基本步骤与列方程解应用题的步骤类似。学习新知: 1999年,新疆喀什市一位70岁的维吾尔族老人为参加新中国成立50周年庆祝活动,只身从家乡骑自行车前往北京。他家到北京约5000千米,他于5月20日出发,计划9月15日前到达。他先走了1400千米,于6月17日到达乌鲁木齐。此后,他平均每天至少要行多少千米才能按计划到北京?
某商店实行打折销售。一种电子琴每台进价1800元,如果按标价的八折出售,所得利润仍低于实际售价的10%,那么电子琴的标价应在什么范围内?
挑战自我:
每一位学生自己编制一道有关一元一次不等式的实际问题。与同学们交流一下。
挑战中考:(2009.临沂)小华家距学校2.4千米。某一天小华从家中去上学恰好行走到一半的路程时,发现离到校时间只有12分钟了。如果小华按时赶到学校,那么他行走剩下的一半路程的平均速度至少要达到多少?
五、课堂小结:
你对本节课的收获有哪些?
六、达标检测
1.某人要到相距3.3千米的A地去办事,他行走的速度是每分钟90米,跑步的速度是每分钟210米,若他必须在30分钟之内到达A地,他跑步的时间不能少于多少分钟?
2.育英中学学生准备组织去泰山参加夏令营活动,车站提出两种车票价格的优惠方案供学校选择。第一种方案是教师按原价付款,学生按原价的78%付款;第二种方案是师生都按80%付款,该校有5名教师参加这项活动,是根据夏令营学生人数选择购票的最佳方案。
七、布置作业:教材第172页 6、7
§6.3 一元一次不等式组(1)
教师寄语:坚持就是胜利 学习目标:
①.经历由实际问题分析、抽象出一元一次不等式组的过程,了解一元一次不等式组及其解集的意义,理解一元一次不等式组与一元一次不等式的区别与联系。② .会用数轴确定一元一次不等式组的解集。学习重点:一元一次不等式组的解法
学习难点:一元一次不等式组的解集及确定解集的方法 学习过程:
一、设置情境,探究发现: ①.如果设该宾馆能聘用x名服务员,那么由上面的不等关系能得到怎样的不等关系?学生思考交流。
②.未知数x与这两个不等关系有什么关系?
③ .上面得到的式子 有什么特点?
④.你会解上面不等式组中的两个不等式吗?你会求这个不等式组的解集吗?
二、学习新知:
① 一元一次不等式组的解集为:。② 解不等式组为:。
③ 总结:解一元一次不等式组的方法步骤是什么?学生思考,小组讨论。
三、应用拓展:
例1.解不等式组
例2.解不等式组
四、练习与巩固:
解下列不等式组,并把它们的解集在数轴上表示出来:
五、达标测试 1.选择题:
① 不等式组 的解集为x<2m-2,则m的取值范围是(A m≤2 B m=2 C m>2 D m<2 ②
解集如图所示的不等式组为()
2.填空题:
③ 不等式组 的整数解为。
④ 代数式1-m的值大于-1,且大于3,则m的取值范围是。
六、回顾概括、课后延伸,布置作业.12)
§6.3 一元一次不等式组(2)
教师寄语:失败乃成功之母
学习目标:⑴能根据简单的实际问题中的数量关系,列出一元一次不等式组求解。
⑵感受数列结合思想的作用,培养学生分析问题,解决问题的能力。
学习重、难点:列出一元一次不等式组解决事实问题。学习过程:
一、课前预习:
相关知识链接:
例 : 小宝和爸爸、妈妈三人在操场上玩跷跷板,爸爸体重为72千克,坐在跷跷板的一端;体重只有妈妈一半的小宝和妈妈同坐在跷跷板的另一端,这时,爸爸的一端仍着地,后来小宝宝借来一个重量为6千克的哑铃,加在他和妈妈坐在的一端,结果,爸爸被跷起来,猜猜小宝宝的体重范围。
学生小组讨论,共同探讨。
二、学习新知: 例.软件公司的产品经过升级换代,平均每月多创利润10元,从而8个月内利润超过200万元。后来,进行了第二次升级换代,平均每月利润又增加了9万元,这样只用6个月就超过了前8个月的利润,这个公司原来每个月利润的范围是怎样?
总结 : ⑴建立不等式组的条件是:已知要解决的问题同时满足几个外来条件,而这几个外来条件都是不等式时,自然引入不等式组。⑵不等式组在实际问题中应用广泛,务必掌握。
三、小组活动:
(2009.金华)为了美化校园环境,建设绿色校园,某中学准备对校园中30亩地进行绿化,绿化采用种植草皮与种植树木两种方式,要求种植草皮与种植树木的面积都不少于10亩,并且种植草皮面积不少于种植树木面积的3,已知种植草皮与种植树木每亩的费用分2别为8000元与12000元。
⑴种植草皮的最小面积是多少?
⑵种植草皮的面积为多少时绿化总费用最低?最低费用是多少?
四、课堂小结:
你对本节课的收获有哪些?
五、达标检测
1.把一批铅笔分给几个小朋友,每人分5支还余2支;每人分6支那么最后一个小朋友分得铅笔少于2支,求小朋友人数和铅笔支数?
2.某工厂现有甲种原料360㎏,乙种原料290㎏,计划利用这两种原料生产A、B两种产品共50件。已知生产一件A种产品需甲种原料9㎏,乙种原料3㎏;生产一件B种产品需甲种原料4㎏、乙种原料10㎏。
⑴ 设生产x件A种产品,写出x应满足的不等式组。
⑵ 如果x是整数,有哪几种符合题意的生产方案?请你帮助设计。
六、布置作业:
课本第176页 A组 4 B组 2
第五篇:一元一次不等式组教案
一元一次不等式组教案
教学目标:
1、了解一元一次不等式组的概念,理解一元一次不等式组解集的意义,掌握求一元一次不等式组解集的常规方法;
2、经历知识的拓展过程,感受学习一元一次不等式的必要性;
3、逐步熟悉数形结合的思想方法,感受类比和化归思想。
4、通过利用数轴探求一元一次不等式组的解集,感受类比和化归的思想,积累数学学习的经验,体验数学学习的乐趣。
5、通过观察、类比、画图可以获得数学结论,渗透数形结合思想,鼓励学生积极参与数学问题的讨论,敢于发表自己的观点,学会分享别人的想法的结果,并重新审视自己的想法,能从交流中获益。教学重难点:
重点:一元一次不等式组的解集与解法。难点:一元一次不等式组解集的理解。教学过程:
呈现目标
目标一:创设情景,引出新知
(教科书第137页)现有两根木条a与b,a长10厘米,b长3厘米,如果再找一根木条c,用这三根木条钉成一个三角形木框,那么对木条c的长度有什么要求?
(教科书第135页第10题)求不等式5x-1>3(x+1)与 x-1<7-x的解集的公共部分。目标二:解法探讨
数形结合 解下列不等式组: 2x-1>x+1 X+8<4x-1
2x+3≥x+11 -1<2-x
目标三:归纳总结
反馈矫正 解下列不等式组(1)
3x-15>0 7x-2<8x(2)
3x-1 ≤x-2-3x+4>x-2
(3)
5x-4≤2x+5 7+2x≤6+3x
(4)
1-2x>4-x 3x-4>3
归纳解一元一次不等式组的步骤:(1)求出各个不等式的解集;(2)把各不等式的解集在数轴上表示出来;(3)找出各不等式解集的公共部分。第141页9.3第1 题中,体会不等式组与解集的对应关系 X<4
x>4
x<4
x>4 X<2
x>2
x>2
x<2 X<2
x>4
2<x<4
无解
教师推荐解不等式组口决:同大取大,同小取小,大小小大中间夹,小小大大无解答。目标四:巩固提高
知识拓展 《完全解读》第230页
已知∣a-2∣+(b+3)=0,求-2<a(x-3)-b(x-2)+4<2的解集。求不等式10(x+1)+x≤21的不正整数解。
探究合作
小组学习:各学习小组围绕目标
一、目标二进行探究,合作归纳解一元一次不等式组的基本步聚;
教师引导:(1)什么是不等式组?
(2)不等式组的解题步骤是怎样的?你是依以前学习的哪些旧知识猜想并验证的?
展示点评
分组展示:学生讲解的基本思路是:本题解题步骤,本小组同学错误原因,易错点分析,知识拓展等。
教师点评:教师推荐解不等式组口决。
巩固提高
教师点评:本题共用了哪些知识点?怎样综合运用这些知识点的性质解决这类题目。