第一篇:《圆柱体表面积》教学案例及反思
《圆柱体表面积》教学案例及反思
教学案例片段: 师:看下面三张硬纸皮(实物演示),并让学生分别计算它们的面积.(单位:厘米)
师:再看演示(展示三张硬纸皮组合成圆柱体茶叶桶的过程)师:谁能根据这个演示很快地说出这个圆柱体茶叶桶侧面的面积和两个底面的面积之和是多少?
生:在立体图形和平面图形的互相转化的过程中,面积总和不变.师:(展示茶叶桶)现在要让你们计算这样一个茶叶桶的侧面的面积和两个底面的面积之和,该怎么办?
生:把茶叶桶展开成一个长方形铁皮和两张圆形铁皮,通过测量圆形铁皮的直径以及长方形铁皮的长和宽,再分别计算它们的面积,然后求出三张铁皮的面积之和。
师:可茶叶桶不能展开,茶叶桶的侧面是个曲面,怎么计算它的面积呢?(小组可以讨论)
生1:我用一根铁丝绕茶叶桶的底面一周,量出细铁丝的长度,就能知道围成侧面的长方形的长,再量茶叶桶的高,就知道围成侧面的长方形的宽,这样就能计算侧面的面积.(观看生1演示实验)
生2:用一张纸围住茶叶桶的侧面(刚好围满)然后展开成一个长方形(或正方形),长方形(或正方形)纸张的面积就是茶叶桶侧面的面积.(观看生2做演示实验)生3:因为沿着高把圆柱的侧面展开可以得到一个长方形(或正方形),这个长方形(或正方形)的长等于圆柱底面周长,宽等于圆柱的高,所以只要量出茶叶桶底面直径和高,计算底面周长,用底面周长乘高就能得知茶叶桶的侧面积.师:同学们发现的办法可真多!(板书:s侧=ch)
师:(学生计算了茶叶桶侧面和两个底面的面积之和后)请同学们结合手中的学具看书学习,圆柱的侧面积加上两个底面的面积叫做圆柱的什么?
生(齐答):表面积!(师板书s表=s侧+2s底)
师:请同学们根据上面的计算方法计算自己带来的圆柱体茶叶桶的表面积。(略)教学反思:
上面的教学中,学生学得主动积极,思维灵活多样,获得了自主学习成功的体验。
一、树立“用教材教,而不是教教材”的新教育理念,创造性地使用教材。在本课教学中,没有机械使用课本的例题,而是灵活地处理教材,创造性地使用教材.因为小学生的思维特点是:“从以具体形象思维为主要形式逐步过渡到以抽象逻辑思维为主要形式,但是这种抽象逻辑思维在很大程度上仍然是直接与感性经验相联系的,仍然具有很大成份的具体形象;”遵循小学生的认知规律,充分利用方便易取的实物(如茶叶桶等)作为直观教具和学具,及时为学生提供丰富、直观的感知材料,学生看得见、摸得着,易于操作,有助于学生由具体形象思维进入抽象逻辑思维,课堂教学省时高效,充分体现了“用教材教,而不是教教材”的新理念.二、数学教育首先应该关注学生的发展。新课标在目标体系中首先列出的是发展性领域的目标,首先关注的是每一个学生在情感态度、思维能力等多方面的进步和发展。在上述教学过程中,教师创造了一个有利于学生生动活泼、主动发展的教育环境,提供给学生充分发展的时间和空间。不难看到,教师只提出“如何计算茶叶桶的表面积”这个问题,引导学生进行探索性实践活动,在探索过程中学生发现了圆柱的侧面是个曲面,要计算侧面的面积需要把曲面图形转化成平面图形,把其侧面展开成长方形,但茶叶桶的侧面不能展开,怎么办呢?学生围绕这个关键性问题,通过实验操作、独立思考、与人合作讨论交流和比较探索等,发现了计算圆柱侧面积的几种方法,最终发现了圆柱体侧面积和表面积的计算方法。在学生的学习过程中,精心创设各种问题情景,诱发学生不断发现问题、提出问题,学生在自主探索中一步一步走向成功。经历了由感性认识上升到理性认识的过程,在这里,教师是学生学习的组织者、引导者、合作者,而并非是知识的灌输者,学生真正成为学习的主人,成为课堂教学的主体。解题思路是由学生逐步自主探索出来的,解题规律是学生发现、总结出来的.学生的观察能力、思维能力、空间观念、情趣等方面在探究过程中而获得充分的发展。
三、数学教育必须关注学生学习数学的过程。新课程标准的一个显著特点是,指出了过程性目标.新课程标准强调现代数学教学应致力于关注学生已有的生活经验和知识背景,关注学生的自主探索和合作交流,关注学生数学情感和情绪体验,让学生亲历做数学的过程。本课教师运用了化归的方法导入新课,由平面图形变成立体图形,由组合图形面积计算到表面积的计算,学生在解题的思维过程中化静为动,化动为静,形成一定的认知策略,学到数学思想方法,培养了学生的初步空间观念。
四、重视问题意识的形成和培养,突出问题解决。问题解决是数学教育的核心,要重视学生问题意识的形成和培养。教师注意引导学生把生活问题转化成数学问题来解决,学生发现必须先解决的问题是侧面积的计算,最后要解决的问题是表面积的计算,其中关键性的问题是侧面积的计算。整个学习过程完全是学生不断发现问题、分析问题和解决问题的过程。学生在学习中体会到数学的趣味和应用价值,体验到数学魅力,增强学生的数学应用意识,激发学生学习数学的兴趣。
第二篇:《圆柱体的表面积》教学反思
《圆柱体的表面积》教学反思
这节课的教学是求圆柱的侧面积和表面积,首先我利用侧面展开图的长和宽和圆柱底面周长与高的关系让学生推导出圆柱侧面积的计算方法,然后拿出学生制作圆柱把它展开,让学生了解圆柱表面积的组成部分,然后按展开图求出圆柱表面积。通过例1、2让学生自己独立解决求圆柱的侧面积和表面积,而且让学生思考求侧面积和表面积还有哪几种情况,让学生自己制造一道题来解决,同学们提出很多问题,当时有个学生说圆柱的侧面有时展开得到的是一个正方形,老师问在什么样的情况下得到的是一个正方形呢,学生很快回答在底面周长和高相等的时候,我认为在这个时候让学生及时编一道题来解决就好了,这时通过这道题,可以培养学生的思维能力,同时让学生知道这道题实际上只要有一个条件就行了,通过这节课的教学,我深深的体会到我们课堂教学不仅让学生学会做题,关键是掌握做题的方法,培养他们动手,动口,动脑的能力,更重要的是激发他们的学习兴趣,他们才积极参入、主动参入、深度参入、渴望参入。
第三篇:圆柱体表面积教案
圆柱体表面积教案
教学目标:
1、学习理解圆柱体侧面积和表面积的含义。
2、通过观察思考、交流讨论推导并掌握求圆柱的侧面积、表面积的方法,并能解决一些实际问题。
教学重点:掌握求圆柱的侧面积、表面积的方法。
教学难点:会运用圆柱侧面积、表面积方的计算法解决实际问题。
一、复习导入: 师:昨天我们认识了立体图形中的一位新朋友——圆柱体。谁来说说你对它的了解。
其实,圆柱还有许多的奥秘,你打算研究它的什么? 板书课题。
回忆长方体和正方体的表面积?
二、猜想圆柱表面积
1、请大家猜想一下,什么是圆柱的表面积呢?
学生:圆柱的表面积等于一个侧面的面积加上两个底面的面积。
2、验证猜想
3、动画演示圆柱展开图
三、小组合作、研究圆柱侧面积
(1)、利用手中的材料,探究圆柱的侧面积计算公式。
(2)、观察对比
观察展开的图形各部分与圆柱体有什么关系?(3).小组交流
能用已有的知识计算它的面积吗?
(4)、小组汇报。(选出一个学生将已经展开的图形贴到黑板上)
这个长方形与圆柱体的哪个面有什么关系?(长方形的长是圆柱体底面周长、长方形的宽是圆柱体的高)长方形的面积=长 ×宽
圆柱的侧面积=底面周长×高
S 侧
=
C ×
h
如果已知底面半径为r,圆柱的侧面积公式也可以写成:S侧=2∏r×h(5)师:如果圆柱展开是平行四边形,是否也适用呢?(6)学生再次动手操作,动笔验证,得出了同样适用的结论。
四、巩固练习
1、求下面圆柱的侧面积
(1)底面周长是1.6米,高是0.7米。(2)底面半径3.2分米,高5
2、出示例4,(1)一顶圆柱形厨师帽,高30厘米,帽顶直径20厘米,做这样一顶帽子至少要用多少平方厘米的面料?(得数保留整十数)(2)思考:求至少要用多少面料,就是求帽子的什么? 生:就帽子的表面积
(3)这个帽子的表面积是完整的表面积吗?它包括哪些面的面积?(帽子的一个底面是空的,因此这个帽子的表面积不是完整的表面积,它包括侧面积和一个底面积)。(1)、学生尝试列式(2)、生汇报
五、课堂小结
通过今天的学习,你有什么收获?
第四篇:《圆柱体的表面积》教学设计
《圆柱的表面积》教学设计
屏南实验小学 韦 斌 教学内容:六年级第十二册 教学课时:第二单元第二课时 教学目标
1、认识圆柱的表面积,理解圆柱表面积的含义.
2、掌握表面积的计算方法,能正确运用公式计算圆柱的表面积.
3、培养学生观察、操作、概括的能力和利用所学知识解决实际问题的能力.
重点:认识圆柱的表面积,理解圆柱表面积的含义.
难点:掌握表面积的计算方法,能正确运用公式计算圆柱的表面积. 教具准备:
1、圆柱体教具一个
2、学生每人准备圆柱形模型两个;剪刀; 教学过程:
一、复习引入
1、圆柱有哪些特征?它各部分名称叫什么?
2、学生回答后,让学生拿出自己做的模型,指出哪一部分是侧面.
3、引入新课。
二、新课教学
(一)出示学习目标:
1、理解圆柱的侧面积和表面积的含义。
2、掌握圆柱的侧面积和表面积的计算方法,并能正确计算。
3、认识取近似值的进一法。
4、学习推导方法。
(二)圆柱的侧面积
1、出示自学提示:
(1)、认真观察自己手中的长方形,思考这个长方形与圆柱体的哪一部分有关系?
(2)、推导出圆柱体侧面积的计算公式。
小组合作注意:组长负责发言次序,同学之间尊重他人,懂得谦让,互相帮助。
2、学生汇报交流。
出示教具,说明把表面全部展开,看一看得到什么图形,和大家说的对不对。揭下圆柱表面的纸,贴在黑板上,再与圆柱对比说明各个部分,明确圆柱表面包括一个侧面和两个相等的圆。
3、推导公式。
侧面积=底面周长×高
4、口答
把直圆柱体侧面展开得到一个()形,这个()形的长等于圆柱体的(),宽等于圆柱体的(),因为长方形的面积等于(),所以圆柱体的侧面积等于()。
(二)、圆柱的表面积
1、出示自学提示:(1)、思考怎样求圆柱体的表面积?
(2)、讨论:求圆柱体的表面积需要知道哪些数据?
小组合作注意:组长负责发言次序,同学之间尊重他人,懂得谦让,互相帮助。
2、学生汇报交流。
3、推导公式。
圆柱的表面积=底面积×2﹢侧面积
(三)运用公式计算。
1、求下面各圆柱体的侧面积。(只列式不计算)(1)、底面周长1.6米,高是0.7米。(2)、底面半径是3.2分米,高是5分米。(3)、底面直径是10厘米,高是25厘米。
2、求上面各圆柱体的表面积(分步口答)
3、出示例3 学生独立完成.指名板演,然后小组内交流。
教师:注意,这里不能用“四舍五入”法取近似值.在实际生活中,使用的材料都要比计算得到的结果多一些.因此,要保留整百平方厘米,省略的十位上即使是4或比4小,都要向前一位进1,这种取近似值的方法叫进一法.
三、课堂小结
大家回顾一下今天我们学了什么内容?计算时要注意什么? 《圆柱的表面积》教学反思
屏南实验小学 韦 斌
整个教学过程,学生学习兴趣浓厚,学得主动积极。我认为教学成功的关键在于关注了学生的学习过程,创设了一个有利于学生生动活泼,主动发展的教育氛围。片通过学生动手动脑,来突破难点;引导学生在应用中加深认识,形成能力。
动手实践,主动探索和合作学习是小学生学习数学的重要方式。而在儿童的精神世界中,这种需要特别强烈。因此,数学教学要努力创建有利于学生主动探索的数学学习环境,关注学生的自主探索和合作学习,使学生在获取作为一个现代公民所必需的基本数学知识和技能的同时,在情感、态度和价值观等方面得到充分发展。
本节课,教师通过让学生动手制作圆柱体模型,让学生“自由结合”进行探索,这便是给学生提供主动发展的时间和空间。人各有其个性,有的爱独立思考,有的爱互相讨论,有的爱听听别人怎么说。于是,有的独立思考,有的同桌讨论,有的由几个人组合,一个生动活泼的学习形式油然而生,使每个学生达到了“既竭我才,欲罢不能”的地步,在主动探索中意识和感觉到自己的智慧和力量,再互相交流启发,自然就获得了成功。
教师为学生提供了基本题以及多向思维的材料,引导学生善于联想所学的知识,从不同的角度、不同层次、不同方法分析问题,使学生开阔思路,思维灵活,从而敏捷地解决问题。使不同的学生都能获得学到知识的满足感,体会到学习数学的快乐,对于未获得成功者,教师决不能简单地批评、指责,教师应尽量发现其错误中的正确成份,给以肯定,并启发学生自己发现,纠正错误。即使彻底错了,教师也要循循善诱,启发引导,给予机会让他争取成功,从而增强学生学好数学的自信心,使他们获得人的尊严,享受成功的快乐,教师也因此而分享快乐。
总之,学生在以上学习过程中,探索意识和发现能力得以展示,知识获取和能力提高相辅相成,大大有利于整体素质的提高。
学习目标:
1、理解圆柱的侧面积和表面积的含义。
2、掌握圆柱的侧面积和表面积的计算方法,并能正确计算。
3、认识取近似值的进一法。
4、学习推导方法。
自学提示:
1、认真观察自己手中的长方形,思考这个 长方形与圆柱体的哪一部分有关系?
2、推导出圆柱体侧面积的计算公式。小组合作注意:组长负责发言次序,同 学之间尊重他人,懂得谦让,互相帮助。
把直圆柱体侧面展开得到一个()形,这个()形的长等于圆柱体的(),宽 等于圆柱体的(),因为长方形的面积等 于(),所以圆柱体的侧面积等于()。
自学提示:
1、思考怎样求圆柱体的表面积?
2、讨论:求圆柱体的表面积需要知道哪些数据? 小组合作注意:组长负责发言次序,同 学之间尊重他人,懂得谦让,互相帮助。
求下面各圆柱体的表面积
求下面各圆柱体的侧面积。(只列式不计算)
1、底面周长1.6米,高是0.7米。
2、底面半径是3.2分米,高是5分米。
3、底面直径是10厘米,高是25厘米。
目标检测:
一个没有盖的圆柱形铁皮水桶,高 是24厘米,底面直径是20厘米,做这 个水桶要用铁皮多少平方厘米?
(得数保留整百平方厘米)
拓展题:
一个圆柱体的侧面展开是一个边长为 25.12厘米的正方形,求这个圆柱体 的表面积。
给下面的物体分类。
(1)
(2)
(3)
(4)
(7)
(5)
(8)
(6)
(9)
第五篇:圆柱体的表面积教学设计
《圆柱体的表面积》教学设计
一、教学目标:
1、知识与技能目标:理解和掌握圆柱体侧面积和表面积的计算方法,能正确计算圆柱的侧面积和表面积。
2、过程与方法目标:操作活动中,使学生经历认识圆柱的侧面积和表面积的过程,掌握它们的特征。
3、情感态度目标:通过观察、想象、操作等活动,让学生体验到数学知识的广泛性、挑战性,体会数学与生活的联系。
二、教学重难点
教学重点:应用圆柱体侧面积和表面积的计算方法,解决实际问题 教学难点:探究并推导出圆柱侧面积、表面积的计算公式。教学准备:实物圆柱体、多媒体课件
三、新授课
(一)、温故引新巧妙入境
1、上节课,我们一起学习了一种新的立体图形,是什么?在日常生活中我们也见到过许许多多的圆柱形物体,想一想,它们有什么共同特征?
2、哦,仅仅通过一节课的学习,大家就掌握了这么多关于圆柱的知识,真了不起!
今天,我们学校前面的加工厂接了一桩大生意,让我们一起来看看!(电脑出示)
(二)、情境探究引出主题(1)、出示产品订货单 产品类型:薯片盒
产品规格:底面半径为3厘米,长10厘米。订购数量:10000个 交货日期:2010年5月13日 订购单位:苗苗副食品加工厂 订货时间:2010年4月27日
如果你是这家工厂的老板,你首先会考虑什么问题?他该购进多少材料呢?大家愿不愿意帮他解决这个问题?
(三)、动手操作结合课件理解重难点
1、认识表面积。
请同学们拿出课前准备的圆柱纸筒,现在假如它就是一个薯片盒,你们能算出做这样的一个薯片盒,需要多少材料吗?其实这就是求圆柱形薯片盒的?
以前我们学过长方体和正方体的表面积,想一想,圆柱的表面积应该指什么?(一生边指边说)
那你能用一个等式来表示圆柱的表面积吗?圆柱的侧面积加上两个底面的面积就是圆柱的表面积。现在一边指着薯片盒一边把刚才的发现说两遍!(生说师板书)指着式子问:我们已经会求什么了?难点是什么?所以这节课,我们就重点研究圆柱的侧面积。
2、探究圆柱侧面积的求法。
拿出你们带来的圆柱形物体,动手操作,去探究,去发现!在探究之前,请先看老师给你的探究提示。(大屏幕出示探究提示:a、你能把圆柱的侧面转化成我们已学过的平面图形吗?
b、转化后的图形与圆柱的哪部分有关系?有什么关系?你能推导出圆柱侧面积的计算公式吗?)
先自己思考,然后再小组内讨论。
汇报各组的发现。预设:学生可能在探究的过程中转换成不同的图形,重点感受圆柱体侧面沿高剪开后是一个长方形。
老师看大多数同学都把圆柱的侧面转化成长方形,那这个长方形与圆柱的哪部分有关系,有什么关系?谁来继续汇报?
真的像同学们说的这样吗?请看大屏幕!
真的像许多同学说的那样,圆柱体的侧面沿高剪开后是一个长方形,长方形的宽相当于圆柱的高,那么,长方形的长呢?请同学们认真看大屏幕!说说你看到了什么?
看到这里,你能根据长方形的面积公式推导出圆柱侧面的面积公式吗? 你是怎样推导的?小组内说一说,一会儿看谁能到黑板上把自己的推导过程清晰地写出来?(有的学生可能把圆柱的侧面转化成其他图形,让学生说说自己的想法。然后电脑动画演示这些图形都能转化成长方形)
3、完成完整的表面积推导公式。
(四)、巩固应用拓展提高
1、基本练习
求圆柱体的侧面积,只列式,不计算 A、底面周长 10米,高0、5米 B、底面半径2分米,高5分米 C、底面直径20厘米,高5厘米 求圆柱体的表面积,只列式,不计算 A底面周长10米,高0、5米 B底面半径2分米,高5分米 C底面直径20厘米,高5厘米
2、变式练习
A现在,你能帮助加工店的老板解决问题了么? 思考:
生活中求一个圆柱形物体的用料情况时,是不是都得用:侧面积加两个底面积呢?举例说明。课件出示
要求下列圆柱形物体用料的面积,应计算哪些面的总面积? 油桶、笔筒、下水管、通风管
通过这道题,你想提醒提醒大家什么? B想想,在练习本上做下面的题
(1)、一个圆柱形铁桶(无盖),高5分米,底面半径是2分米,做一个这样的铁桶,至少需要多少铁皮?(得数保留一位小数)
(2)、一个圆柱底面直径是5厘米,把它的侧面展开正好是一个正方形,它的侧面积是少平方厘米?
(3)、一个圆柱形水池,从池里面量,底面直径是4米,深1.5米。在池的内壁与底面抹上水泥,抹水泥部分的面积是多少平方米?
3、发展练习(1)、把一根长2.1米,底面半径是0.5分米的圆柱形钢材平均截成3段,表面积增加了多少?
(2)、做一个直径是30厘米的铁皮烟囱,高3.2米,接口处占2厘米,至少要用铁皮多少平方米?
课堂小结:通过本节课你有哪些收获? 布置作业: