第一篇:圆柱体表面积和体积复习 教案教学设计
圆柱体表面积和体积复习教案教学设计(北师大版六年级下册)教学内容:
教科书第98页例4及做一做。教学目标:
1.学生在整理、复习的过程中,进一步熟悉圆柱体的表面积和体积的内涵,能灵活地计算它们的表面积和体积,加强知识之间的内在联系,将所学知识进一步条理化和系统化。2.在学生对圆柱体的认识和理解的基础上,进一步培养空间观念。
3.让学生在解决实际问题的过程中,感受数学与生活的联系,体会数学的价值,进一步培养学生的合作意识和创新精神 重点、难点:
1.灵活运用圆柱体的表面积和体积的计算方法解决实际问题。2.圆柱体表面积和体积计算方法之间的联系。教学准备:课件 教 学 过 程
一、回忆旧知,揭示课题一
1、谈话揭示课题。师:昨天我们对圆柱体的认识进行了整理和复习,今天我们来走入圆柱体的表面积和体积的整理与复习。(板书:圆柱体表面积和体积的整理与复习)
2、看到课题,你准备从哪些方面去进行整理和复习。(板书:意义、计算方法)
二、回顾整理、建构网络
1、圆柱体的表面积和体积的意义。
(1)提问:什么是圆柱体的表面积?你能举例说明吗?(2)提问:什么是圆柱体的体积?你能举例说明吗?
(3)教师小结:圆柱体的表面积就是指一个圆柱体所有的面的面积总和,圆柱体的体积就是指一个圆柱体所占空间的大小。
2、小组合作,整理――圆柱体的表面积和体积的计算方法。(1)独立整理。
刚才我们已经对圆柱体的表面积和体积的意义进行了整理。下面,请同学们用自己喜欢的方式,将对圆柱体的计算方法进行整理。
(2)整理好的同学请在小组中说一说你是怎样进行整理的?
3、汇报展示,交流评价
哪一个同学自愿上讲台展示、汇报你的整理情况。其余的同学要注意认真地看,仔细地听,待会对他整理情况说说你的看法或者有什么好的建议。(注意计算公式与学生的评价)
4、归纳总结,升华提高(1)公式推导。
刚才,我们已经对圆柱体表面积和体积的计算公式进行了整理。那么,这些计算公式是怎样推导出来的?
(2)教师小结:从圆柱体的表面积和体积计算公式的推导过程中,我们不难发现有一个共同的特点:就是把新问题转化成已学过的知识,从而解决新问题,这种转化的方法、转化的思想,是我们数学学习中一种很常见、很重要的方法。(3)整理知识间的内在联系 ①同学们。我们已经对圆柱体的表面积和体积计算公式进行了整理,并且也知道了这些公式的推导过程。那么,这些圆柱体的表面积计算公式之间有什么内在联系?体积计算公式之间又有什么内在联系?对照自己整理的公式,想一想,然后把你想的法说给同桌听听。②反馈学生交流情况,明确其内在联系:
a、圆柱体的表面积计算公式的内在联系:圆柱体的侧面积就是长方形的面积,它的表面积都可以用侧面积加两个底面积;
b、圆柱体的体积计算公式的内在联系:长方体体积计算公式推导出了正方体和圆柱的体积计算公式,也就是说正方体、圆柱的体积计算公式都是在长方体体积计算公式的基础上推导出来的;长方体、正方体、圆柱的体积都可以用底面积乘高来计算;等底等高的圆柱体的体积是圆锥的3倍,等体积等高的圆柱体的底面积是圆锥的,等体积等底的圆柱体的高是圆锥的。
随着学生的回答,展示课件
三、重点复习、强化提高 同学们,我们对圆柱体的表面积和体积的意义和计算方法进行了整理和复习,而整理复习的最终目的就是要运用。(板书:运用)运用相关知识去解决问题。
1、判断。(对的打“√”,错误的打“×”)① 正方体的棱长扩大2倍,体积就扩大6倍。()
② 一个圆柱体底面半径缩小3倍,高扩大9倍,它的体积不变。()
③ 因为求体积与求容积的计算公式相同,所以物体的体积就是它的容积。()
④ 一个正方体与一个圆柱体的底面周长相等,高也相等。那么,它们的体积也相等。()⑤ 圆柱和圆锥等底等高,则圆锥的体积比圆柱少,圆柱的体积比圆锥多200%。()
2、选择正确答案的序号填在括号里。
① 把一个棱长6厘米的正方体切成棱长2厘米的小正方体,可以得到()个小正方体。A、3 B、9 C、12 D、27 ② 一个圆锥和一个圆柱的体积相等,底面积也相等。这个圆锥的高是圆柱的高的()。A、3倍 B、C、D、③ 把两个棱长5厘米的正方体木块粘合成一个长方体,这个长方体的表面积是(),体积是()。
A、250平方厘米 B、200平方厘米 C、250立方厘米 D、200立方厘米
④ 一个圆柱的底面半径是2厘米,高是2厘米,列式为(3.14×2×2×2)平方厘米,是求()。
A、侧面积 B、表面积 C、体积 D、容积
⑤ 681.2用进一法取近似值,得数保留整十数约是()。A、681 B、680 C、690 D、700
3、解决问题。
我朋友买了一套新房,他告诉了我他家客厅的一些数据(长6米,宽4米,高3米)。请同学们帮老师算一算装修时所需的部分材料。
(1)客厅准备用边长是(100×100)平方厘米规格的方砖铺地面,需要多少块?
(2)准备粉刷客厅的四周和顶面,除去门、电视墙等10平方米不粉刷外,实际粉刷的面积是多少平方米?
(3)朋友装修新房时,所选的木料是直径40厘米,长是3米的圆木自己加工,大约需要5根。求装修新房时所需木料的体积?
(板书:认清图形、单位对应、明白问题、认真计算、反复检验)
四、自主简评、完善提高 自主检测
(一)仔细思考、明辨是非
1、一个正方体的棱长扩大2倍,它的体积就会扩大8倍。()
2、长方体比长方形大。()
3、油桶的容积就是油桶的体积()
4、一个正方体和一个圆柱体的底面周长和高都相等,那么它们的体积也相等。()
5、把一个圆柱削成最大的圆锥,圆锥的体积是削去部分的一半。()(二)你能解决下面生活中的问题吗? 一个圆柱形水池,直径是20米,深2米.①这个水池占地面积是多少? ③在池内四周和池底抹一层水泥,水泥面的面积是多少平方米?(三)活用知识、解决问题
一个水池的排水管内直径是2分米,水在管内的流速是每秒4分米。一小时可以排水多少升?(四)我是生活小能手
一个装满稻谷的粮囤,高2米,它的上面是圆锥形,下面是圆柱形,底面半径是3米,圆柱和圆锥一样高,这囤稻谷大约有多少立方米?(得数保留整数)评价完善
1、通过这节课的整理和复习,你最大的收获是什么?
2、关于圆柱体的表面积和体积你还有什么问题? 板书设计:
“圆柱体的表面积和体积”的整理和复习(图形、单位、问题、计算、检验)意义 应用 计算方法 作业设计: 基础: 1.填一填:
(1)如果我想给房屋进行粉刷,需要刷()个面?()面不刷?
(2)甲乙两人分别利用一张长20厘米,宽15厘米的纸用不同的方法围成一个圆柱体,那么,围成的圆柱()一定相等。
(3)把一个圆柱在平坦的桌面上滚动,那滚动的路线是一条()。
(4)把一个边长1分米的正方形纸围成一个最大的圆柱体,这个圆柱体的体积是()。2.选择题。(将错误的答案划掉)。
(1)一只铁皮水桶能装水多少生升是求水桶的(侧面积、表面积、容积、体积)。(2)做一只圆柱体的油桶至少要用多少铁皮,是求油桶的(侧面积、表面积、容积、体积)。(3)做一节圆柱形的铁皮通风管,要用多少铁皮,是求通风管的(侧面积、表面积、容积、体积)。
(4)求一段圆柱形钢条有多少立方米,是求它的(侧面积、表面积、容积、体积)。3.判一判:
(1)两个圆柱体侧面积相等,它们的体积一定相等。()
(2)两个圆柱体底面积和高分别相等,它们的体积一定相等。()(3)圆柱体底面积和高都扩2倍,体积就扩4倍。()(4)一个圆柱底面周长和高都扩2倍,体积就扩4倍。()
(5)一个正方体的棱长是6厘米,它的表面积和体积相等。()
(6)容器的容积和容器的体积大小不一样。()(7)两个圆柱体的侧面积相等,那么,它们的底面周长一定相等。()(8)一个圆柱体,它的高缩小2倍,底面半径扩大2倍,体积不变。()
(9)一段圆柱体木头,把它制成一个最大的圆锥体,削去部分的体积是圆柱体积的2/3,是圆锥体积的2倍。综合:
4.只列式、不计算:
(1)我们学校的一间教室长9米,宽6米,高3米。在四周墙壁和顶部抹水泥,扣除门窗以及黑板面积共20平方米后,需抹水泥的面积是多少平方米?
(2)李师傅要做一个无盖的圆柱形铁皮水桶,高6分米,底面半径4分米,做这个水桶至少要用铁皮多少平方分米?(得数保留整十平方分米)
(3)大厅里有十根圆柱形柱子,它的底面直径是10分米,高是6米,在这些柱子的表面涂漆,1千克能涂2平方米,共需油漆多少千克?
(4)一个圆柱的侧面展开图是一个边长6.28厘米的正方形,这个圆柱的表面积是多少?(5)将两个棱长是10厘米的正方体拼成一个长方体,这个长方体的表面积是多少? 拓展提升: 5.解决问题
(1)把一个棱长6分米的正方体木块削成最大的圆柱形,要削去多少立方分米?
(2)一个底面直径是40厘米的圆柱容器中,水深12厘米,把一块石头沉入水中完全浸没后,水面上升了5厘米。这块石头的体积是多少立方厘米?(3)一个酒瓶里面深30厘米,底面直径是8厘米,瓶里有酒深10厘米,把酒瓶塞紧后倒置(瓶口向下), 这时酒深20厘米,你能算出酒瓶的容积是多少毫升来吗?(4)一个圆柱体,底面半径3分米,切拼成一个近似的长方体后,表面积增加了60平方分米,这个圆柱体的高是多少分米?(5)一个长方体,底面是个正方形,高每减少2厘米,长方体的表面积就减少32平方厘米,这个长方体的的底面边长是多少?
(6)一根圆柱体木料,长2米,直径4分米,要把它等分成二份,表面积增加了多少?(7)有一个近似圆锥的小麦堆,测得其底面周长是12.56米,高1.5米。如果每立方米小麦重0.75吨,这堆小麦大约有多少吨?将这些小麦装入底面积是3.14平方米的圆柱形粮囤里能装多高?
(8)一间教室长10米,宽8米,高4米,门窗面积21.5平方米,粉刷教室的四壁和顶面要用水泥多少千克?(按每平方米用水泥15千克计算)
第二篇:圆柱体体积教学设计
圆柱体体积教学设计
陶营镇中心小学
刘交宾
教学内容:苏教版十二册圆柱的体积 设计理念:
兴趣是学生学习的动力,创设有趣的情境可以激发学生的学习兴趣。所以,在本节课教学中,我以一杯水引入,先让学生想想用以前学过的知识可以怎么计算水杯中水的体积,再引出问题:如果要求压路机或是圆柱形柱子的体积,还能用刚才那样的方法吗?怎样求它们的体积呢?问题的提出和学生的生活实际紧密相连,激发了学生的学习兴趣,从而体现了数学的价值观。教材重视类比、转化思想的渗透,在教学圆柱体积公式的推导时,引导学生经历“转化图形——建立联系——推导公式”的探索过程,使学生掌握圆柱体积的计算方法,并在此基础上感悟到直柱体体积的一般计算方法。
教学目标
1.理解圆柱体体积公式的推导过程,掌握计算公式.
2.使学生会运用公式计算圆柱的体积,并能解决一些实际问题。
3、通过公式的推导,培养同学们的分析推理能力,向同学们渗透转化思想;
4、使同学们感悟到人民的卓越智慧,感悟数学知识的魅力,提高审美意识 教学重点
圆柱体体积的计算. 教学难点
理解圆柱体体积公式的推导过程. 教学准备:
多媒体课件,圆柱体教具模型 教学过程
一、复习预备
(一)教师提问
1.什么叫体积?怎样求长方体的体积? 2.圆的面积公式是什么?
3.圆的面积公式是怎样推导的?
(二)谈话导入
同学们,我们在研究圆面积公式的推导时,是把它转化成我们学过的长方形知识的来解决的.那圆柱的体积怎样计算呢?能不能也把它转化成我们学过的立体图形来计算呢?这节课我们就来研究这个问题.(板书:圆柱的体积)
二、新课教学
(一)教学圆柱体的体积公式.
1.教师演示
把圆柱的底面分成了16个相等的扇形,再按照这些扇形沿着圆柱的高把圆柱切开,这样就得到了16块体积大小相等,底面是扇形的形体. 2.启发学生思考、讨论:
(1)圆柱体切开后可以拼成一个什么形体?(近似的长方体)(2)通过刚才的实验你发现了什么?
①拼成的近似的长方体和圆柱体相比,体积大小没变,形状变了.
②拼成的近似的长方体和圆柱体相比,底面的形状变了,由圆变成了近似的长方形,而底面的面积大小没有发生变化.
③近似长方体的高就是圆柱的高,没有变化. 4.学生根据圆的面积公式推导过程,进行猜想.
(1)如果把圆柱的底面平均分成32份,拼成的长方体形状怎样?(2)如果把圆柱的底面平均分成64份,拼成的长方体形状怎样?(3)如果把圆柱的底面平均分成128份,拼成的长方体形状怎样? 5.启发学生说出通过以上的观察,发现了什么?
(1)平均分的份数越多,拼起来的形体越近似于长方体.
(2)平均分的份数越多,每份扇形的底面就越小,弧就越短,拼起来的长方体的长就越近似于一条线段,这样整个形体就越近似于长方体. 6.推导圆柱的体积公式
(1)学生分组讨论:圆柱体的体积怎样计算?
(2)学生汇报讨论结果,并说明理由. 因为长方体的体积等于底面积乘高.(板书:长方体的体积=底面积×高)近似长方体的体积等于圆柱的体积,(板书:圆柱的体积),近似长方体的底面积等于圆柱的底面积,(板书:底面积)近似长方体的高等于圆柱的高,(板书:高)所以圆柱的体积等于底面积乘高.(板书:圆柱的体积=底面积×高)(3)用字母表示圆柱的体积公式.(板书:V=Sh)
(1)已知圆柱的底面半径和高,怎样求圆柱的体积?
(2)已知圆柱的底面直径和高,怎样求圆柱的体积?(3)已知圆柱的底面周长和高,怎样求圆柱的体积?
三、巩固反馈,解决问题 只列式,不计算。
① 底面积12平方分米,高6分米。② 底面半径3厘米,高7厘米。③ 底面直径6米,高8米。
④ 底面周长314毫米,高20毫米。.
四、拓展探究,知识延伸 总结所有直柱体的体积公式,理解所有直柱体的体积都可用底面积乘高来计算。
五、畅所欲言,总结收获
1、谈谈这节课你有哪些收获。
2、解题时需要注意哪些方面
《圆柱的体积》教学反思
教学反思:
一,摆脱情境困扰,追求简单高效
圆柱的体积教学是小学几何知识的重头戏。教学这节课时,我首先搜集了大量课例,想寻找一些灵感来装饰这节课的开头——创设怎样的情境才能新颖又能
够为整节课的教学服务呢?想了好几套方案最后还是采用谈话法引出直柱体,再从直柱体牵出圆柱体,由此带出圆柱的体积。板书“圆柱的体积”,课本是先让学生回忆“长方体,正方体的体积都可以用它们的底面积乘高来计算”,再接着马上提问:“圆柱的体积怎样计算呢 ”让学生们猜一猜,猜想计算方法固然有好处,但要让学生马上做实验理解圆柱体积计算公式的推导过程,我觉得这样教学引入,学生的思维跳跃得太快,衔接性不强,不利于学生理解和掌握实验的用意,课堂效果就会明显不佳.我认为,首先应复习一下圆面积计算公式的推导过程,这样有助于学生猜想,接着在回忆了长方体,正方体体积计算方法之后,再接着探究.这样由平面图形到立体图形,过度自然,流畅,便于学生的思维走向正确方向,这时教师的引导才是行之有效的。
二, 建立切拼表象,渗透极限思想
学生进行数学探究时,由于条件的限制,没有更多的学具提供给学生,只一个教具。为了让学生充分体会,我把操作的机会给了学生。接着再结合多媒体演示让学生感受"把圆柱的底面分的份数越多,切开后,拼起来的图形就越接近长方体;接着教师指导学生悟出这个长方体的长相当于圆柱的哪一部分的长度,宽是圆柱哪一部分的长度,高是圆柱的哪一部分的长度,圆柱的体积怎样计算的道理,从而推导出圆柱体积的计算公式。学生基本没有亲身参与操作,非常遗憾。但我使用了课件——把圆柱体沿着它的直径切成诺干等份,拼成一个近似的长方体 ,展示切拼过程。学生虽然没有亲身经历,但也一目了然。
三, 练习层层递进,弱化繁琐计算
为了让学生能熟练地掌握计算圆柱的体积,在设计练习时要多动脑花心思去考虑怎样才能让学生用最短的时间完成不同类型的题目。通过反思,我概括出四种类型:
1.已知圆柱底面积(s)和高(h),计算圆柱体积可以应用这一公式:V=sh。2.已知圆柱底面半径(r)和高(h),计算圆柱体积可以应用这一公式:V=πr h。3.已知圆柱底面直径(d)和高(h),计算圆柱体积可以应用这一公式:V=π(d/2)h。
4.已知圆柱底面周长(c)和高(h),计算圆柱体积可以应用这一公式:V=π(c÷π÷2)h。
在巩固练习中,只要从这四种类型去考虑,做到面面俱到,逐层深入,由易到难,学生才能真正掌握好计算圆柱体积的方法,课堂上的时间有限,课本的标注也有:今后涉及圆柱圆锥的计算可以使用计算器,所以这节课教学时基本没有让学生参与繁琐的计算,学生学的也很轻松。
第三篇:圆柱体表面积教案
圆柱体表面积教案
教学目标:
1、学习理解圆柱体侧面积和表面积的含义。
2、通过观察思考、交流讨论推导并掌握求圆柱的侧面积、表面积的方法,并能解决一些实际问题。
教学重点:掌握求圆柱的侧面积、表面积的方法。
教学难点:会运用圆柱侧面积、表面积方的计算法解决实际问题。
一、复习导入: 师:昨天我们认识了立体图形中的一位新朋友——圆柱体。谁来说说你对它的了解。
其实,圆柱还有许多的奥秘,你打算研究它的什么? 板书课题。
回忆长方体和正方体的表面积?
二、猜想圆柱表面积
1、请大家猜想一下,什么是圆柱的表面积呢?
学生:圆柱的表面积等于一个侧面的面积加上两个底面的面积。
2、验证猜想
3、动画演示圆柱展开图
三、小组合作、研究圆柱侧面积
(1)、利用手中的材料,探究圆柱的侧面积计算公式。
(2)、观察对比
观察展开的图形各部分与圆柱体有什么关系?(3).小组交流
能用已有的知识计算它的面积吗?
(4)、小组汇报。(选出一个学生将已经展开的图形贴到黑板上)
这个长方形与圆柱体的哪个面有什么关系?(长方形的长是圆柱体底面周长、长方形的宽是圆柱体的高)长方形的面积=长 ×宽
圆柱的侧面积=底面周长×高
S 侧
=
C ×
h
如果已知底面半径为r,圆柱的侧面积公式也可以写成:S侧=2∏r×h(5)师:如果圆柱展开是平行四边形,是否也适用呢?(6)学生再次动手操作,动笔验证,得出了同样适用的结论。
四、巩固练习
1、求下面圆柱的侧面积
(1)底面周长是1.6米,高是0.7米。(2)底面半径3.2分米,高5
2、出示例4,(1)一顶圆柱形厨师帽,高30厘米,帽顶直径20厘米,做这样一顶帽子至少要用多少平方厘米的面料?(得数保留整十数)(2)思考:求至少要用多少面料,就是求帽子的什么? 生:就帽子的表面积
(3)这个帽子的表面积是完整的表面积吗?它包括哪些面的面积?(帽子的一个底面是空的,因此这个帽子的表面积不是完整的表面积,它包括侧面积和一个底面积)。(1)、学生尝试列式(2)、生汇报
五、课堂小结
通过今天的学习,你有什么收获?
第四篇:《圆柱体的表面积》教学设计
《圆柱的表面积》教学设计
教学目标
1、认识圆柱的表面积,理解圆柱表面积的含义.
2、掌握表面积的计算方法,能正确运用公式计算圆柱的表面积.
3、培养学生观察、操作、概括的能力和利用所学知识解决实际问题的能力.
重点:认识圆柱的表面积,理解圆柱表面积的含义.
难点:掌握表面积的计算方法,能正确运用公式计算圆柱的表面积. 教具准备:
1、圆柱体教具一个
2、学生每人准备圆柱形模型两个;剪刀; 教学过程:
一、复习引入
1、看老师今天带来了个什么?它是个什么样的立体图形?为什么你认为它是圆柱呢,他与圆柱又什么共同的特征呢?(有两个相同的圆,有一个侧面。。)
2、哪现在老师想请一个同学来摸一摸你能摸到几个面?
3、其实刚才同学们所摸到的面,它的面积就是我们圆柱的表面积也就是我们今天要学习的内容(板书:圆柱的表面积)
二、新课教学
一、侧面积的推导:
首先请同学们读一读这节课的学习目标
(一)出示学习目标:
1、理解圆柱的侧面积和表面积的含义。
2、掌握圆柱的侧面积和表面积的计算方法,并能正确计算。
3、能灵活运用求表面积,侧面积的有关知识解决一些生活中的实际问题。
师:要求表面积,从我们观察的羽毛球桶来说求的是桶的表面积指的是什么呢?(一个侧面和两个底面面积之和)板书:圆柱的表面积=侧面面积+2个底面面积
师:哪两个底面面积是两个什么的面积啊?(两个圆的面积)
哪可是圆柱的侧面是一个什么面?(曲面)我们学过平面图形的面积哪曲面图形的面积怎么计算呢?我们可以把它转化为平面图形来计算吗?
师:把圆柱的侧面展开会是一个什么样的图形呢?这个问题由同学们待会再小组讨论中得出结论.现在每组都有一个圆柱那你们把它剪开,把侧面剪开后你有什么发现,并带着这两个问题进行讨论。小组讨论:
1.圆柱的侧面展开是什么形状
2.展开图中的长与圆柱的底面的周长又什么关系,宽与圆柱的高有什么关系呢?
为了清楚看到他们展开后是什么形状,我们一起来看大屏幕的演示。侧面展开后是个什么形?那么它展开后与圆柱的各部分又什么关系呢?大家接着看。(长刚好是圆柱底面周长 宽刚好是圆柱的高)那么圆柱的侧面积你知道应该怎么计算了吗?(板书:长方形的面积= 长 × 宽
↓ ↓ ↓ 圆柱的侧面积=底面的周长×高)
这个方法是同学们通过自己的努力,将一个曲面转化成平面图形而推导出来的,请同学们用洪亮的声音表扬自己读一读。
(二)圆柱的侧面积应用
师:那么老师想要将这个羽毛球桶贴上一圈商标纸呢应该是求这个圆柱的什么呢?(侧面积)那么侧面积怎么算呢?大家做到本子上 请同学展示
我们知道了什么求什么?底面周长是多少呢?
二、圆柱的表面积推导:
(一)圆柱表面积
师:那么刚才我们求的商标纸的面积是圆柱的表面积吗?(不是)哪要求圆柱的表面积还要怎么办?(加上两个底面的面积)也就是说我们要求圆柱的表面积就是要求圆柱那几部分的面积?
(一)圆柱表面积应用
师:如果老师要将这个羽毛球桶全部贴上包装呢,你认为求的是它的什么呢?(表面积)自己做下。展示(做对的举手)
哪么是不是生活中的所有的圆柱都是要求三个面的面积吗?我们来看下这道题。请同学们读一读题,读出关键词,问的是要求做这样一顶帽子要多少材料多少材料其实是求什么呢?有几个面的面积要算呢?该怎么算呢大家做一做?(出示答案)完了吗?(没有)那我们要用什么法呢?(进一法)
通过刚才的学习我们知道是不是所有的圆柱的表面积都是要求三个面吗?(不是)对要根据实际情况分清楚,要求的是哪几个面比如?(出示图片请同学们回答)
三、练习
四、小结
同学们这节课你有什么收获呢
五、课后作业
六年级数学下册《圆柱的表面积》
教学设计
竹寨小学 聂磊
第五篇:《圆柱体的表面积》教学设计
《圆柱体的表面积》教学设计
教学要求:
1、使学生理解和掌握圆柱体侧面积和表面积的计算方法,能正确运用公式计算圆柱的侧面积和表面积。
2、培养学生观察、操作、概括的能力和利用所学知识合理灵活地分析、解决实际问题的能力。
3、培养学生的合作意识和主动探求知识的学习品质和实践能力。
教学重点:圆柱表面积的计算。
教学难点:圆柱体侧面积计算方法的推导。
教法运用:本节课采用操作和演示、讲练相结合的教学方法。通过直观演示和实际操作,引导学生观察、思考和探求圆柱侧面积的计算方法;同时通过多媒体的辅助教学,使新授与练习有机地融为一体,做到讲练结合,较好地突出教学重点、突破教学难点。
学法指导:采取引导 放手 引导的方法,鼓励学生积极、主动地探求新知,运用化曲为平的方法推理发现侧面积的计算方法。
教具:圆柱体教具、多媒体课件。
学具:圆柱形纸筒、茶叶桶。
教学过程:
一、检查复习,引入新课。
(复习圆柱体的特征)
师:上节课,我们认识了一个新的几何形体――圆柱。知道它是由平面和曲面围成的立体图形。
问:圆柱上下两个圆形的平面叫圆柱的什么?它们的关系怎样?两底面之间的距离叫什么?这个曲面叫什么?
引入:两个底面和侧面合在一起就是圆柱的表面。这节课,我们就一起来学习圆柱的表面积。
二、引导探究,学习新知。
(一)教学圆柱表面积的意义。
设疑:长方体6个面的总面积,叫做它的表面积。哪些面的总面积是圆柱体的表面积呢?
板书:底面积×2+侧面积=表面积
要求圆柱的表面积,首先应该计算它的底面积和侧面积。
(二)根据条件,计算圆柱的底面积。
圆柱的底面是圆形,同学们会求它的面积吗?
(多媒体逐一出示圆柱及条件,求它的底面积,并记录结果。)
条件:(厘米)r=3 d=4 c=6.28
底面积(平方厘米)28.26 12.56 3.14
(三)教学圆柱体侧面积的计算
1、引导探究圆柱体侧面积的计算方法。
(1)设疑:圆柱的侧面是个曲面,怎样计算它的面积呢?想一想,能否将这个曲面转化成我们学过的平面图形,从中思考发现它的侧面积该怎样计算呢?
(2)小组合作探究。(剪圆柱形纸筒)
(3)汇报交流研究结果,多媒体课件展示。
(4)小结:同学们会动脑,会思考,巧妙地运用了把曲面转化为平面的方法,探讨发现了圆柱体侧面积正好等于它的底面周长与高的乘积。
2、计算圆柱体的侧面积。
多媒体回到前面三个圆柱,逐一给出三个圆柱的高,求它的侧面积。并把结果记录下来。
条件(厘米)h=5 h=8 h=10
侧面积(平方厘米)94.2 100.48 62.8
(四)教学求圆柱的表面积。
1、设疑:学会了计算圆柱的底面积和侧面积,怎样计算它的表面积?
2、学生根据数据进行计算?
3、汇报计算方法及结果,媒体出示结果进行验证。
表面积(平方厘米)150.72 125.6 69.08
(五)小结:圆柱表面积的意义及计算方法。
三、练习巩固,灵活运用。
(一)多媒体出示圆柱形的油漆桶,无盖水桶、烟筒实物图,引导学生观察思考:计算制作这些物体所用的铁皮的面积,各是求哪些面的总面积?
指出:圆柱表面积在实际计算中的意义。
(二)根据要求练习。
1、用铁皮制作圆柱形的通风管10节,每节长8分米,底面周长是3.4分米。至少需要铁皮多少平方分米?(只列式不计算)
2、砌一个圆柱形的水池,底面直径2米,深3米,在池的周围与底面抹上水泥,抹水泥的部分面积是多少平方米?(只列式不计算)
3、用铁皮制一个圆柱形的油桶,底面半径3分米,高12分米。制这个油桶至少要用铁皮多少平方分米?(得数保留整十平方分米)根据学生的计算结果,教学用“进一法”取近似值。
小结:计算圆柱的表面积要具体情况具体分析。要学会运用所学的知识合理灵活地解决生活中的实际问题。
(三)操作练习。
根据练习要求,小组合作测量计算制作所带的圆柱形实物的用料面积。
练习要求:(多媒体出示)
讨论:要计算制作这个圆柱形物体用料的面积,是求哪些面的总面积?需要知道哪些条件?怎样测量这些数据?
测量:借助工具测量出需要的数据(取整厘米数),并做好记录。
计算:根据量得的数据,列出相应的算式并算出结果。
教学反思:
一、合理灵活地组织和利用教材。
“圆柱的表面积”这部分教学内容包括:圆柱的侧面积、表面积的计算,表面积在实际计算中的应用以及用进一步取近似值。教材共安排了三道例题,分两课时进行教学。教学时,我打破了传统的教学程序,将这些内容重新组织,合理灵活地利用教材在一课时内完成了两课时的教学任务。将侧面积计算方法的推导作为教学的难点来突破;将表面积的计算作为重点来教学;将表面积的实际应用作为重点来练习;将用进一法取近似值作为一个知识点在练习中理解和掌握。四者有机结合、相互联系,多而不乱。教学设计和安排既源于教材,又不同于教材。三道例题没有做专门的教学,但其指导思想和目的要求分别在练习过程中得以体现。整个一节课,增加容量但又学得轻松,极大提高了调堂教学效率。
二、较好地体现了教师主导与学生主体作用的统一。
本节课在教学上采用了引导、放手、引导的方法,通过教师的“导”,鼓励学生积极、主动地探究新知。
1、直观演示和实际操作相结合。
新课开始,教师通过圆柱教具直观演示,引导学生复习圆柱体的特征,进而理解圆柱表面积的意义。在教学侧面积的计算时,精心设疑:圆柱的侧面是个曲面,怎样计算它的面积呢?想一想,能否将这个曲面转化为我们学过的平面图形,从中思考和发现它的侧面积该怎样计算呢?在老师的启发下,学生以小组为单位,用圆柱形纸筒进行实际操作,最后探究出侧面积的计算方法。
2、讲练结合。
整个教学过程中,教师讲解和学生练习相结合,培养了学生们的合作意识和实践能力.