我的小学鸡兔同笼教案

时间:2019-05-15 06:08:58下载本文作者:会员上传
简介:写写帮文库小编为你整理了多篇相关的《我的小学鸡兔同笼教案》,但愿对你工作学习有帮助,当然你在写写帮文库还可以找到更多《我的小学鸡兔同笼教案》。

第一篇:我的小学鸡兔同笼教案

《鸡兔同笼》教学设计(小学数学六年级)

教学内容分析:

鸡兔同笼问题是我国民间流传下来的一类数学妙题,它集题型的趣味性、解法的多样性、应用的广泛性于一体,具有训练智能的教育功能和价值,是实施开放式教学的好题材。

教材呈现三种解题思路:列表尝试法、假设法和方程法。列表尝试法能直观反映数据的变化,学生容易接受,但数据较大时比较繁琐不宜采用;假设法是一种算术方法,计算比较简便,但理解算理有一定难度;方程法容易建立数量关系,有利于培养学生的分析能力,但求解过程对多数小学生而言较难。因此,本课设计的重点放在理解假设法的算理上。列表尝试法虽然有局限性,但它是假设法和方程法的基础,因此在引导学生用列表尝试法解决问题时,就要有意识地作好铺垫,为下面的教学埋下伏笔。在掌握解决问题的方法后,引导学生反思提升,通过鸡兔同笼问题与生活中类似问题的比较,帮助学生建立“鸡兔同笼”结构特点和解决模型。

课前,我对我班学生进行调查,发现一小部分学生接触过”鸡兔同笼”问题,但多数学生对独立学习“鸡兔同笼”问题存在一定的难度。所以在这节课中,我主要采用教师适时引导和学生小组合作探究相结合的教学方式,让学生在尝试,探索,交流合作中弄懂“鸡兔同笼”问题的基本结构特征,经历用不同的方法解决”鸡兔同笼”问题的过程,初步形成解决此类问题的一般性策略。教学方法:

按照我对教材的理解,并遵照《新课程标准》中:在课程设置中强调学生是学习的主人,在学习过程中尽可能多的为学生提供探索和交流的空间,鼓励学生自主探索与合作交流的精神,并通过创设的现实情景,让学生投入解决问题的实践活动中去,自己去研究、探索、经历数学学习的全过程,从而体会到假设的数学思想的应用与解决数学问题的关系,提高学生分析问题和解决问题的能力。

首先通过图片将主题图中的情境生动地演示出来,并通过学生冥思苦想问题的画面激发学生解决该问题的兴趣,从而调动他们的好奇心。其次引导学生从简单的问题入手,出示例1后,鼓励学生大胆猜测,然后验证,通过不断地猜测、尝试最终找到答案。这种猜测虽然解决了问题,但效率很低。尤其当数据较大时需要花费很长时间,显然不是最佳方法,那么还有其他方法吗?再一次激发学生的探索欲望,让学生在小组讨论交流中弄清“鸡兔同笼”问题的结构特征和解题策略,亲历多样化解题的过程,初步形成解决此类问题的一般性策略。形成“鸡兔同笼”问题的解题模型,从而更好的突出本节课的重点;接着引出《孙子算经》中的一个数据比较大的鸡兔同笼问题,先让学生用自己刚刚学到的方法进行解决,然后再激发学生“了解古人的解题方法”欲望,让学生自主的去阅读书中的一段阅读资料,了解古人的解题方法,并试着解释。老师再利用多媒体课件帮助学生理解古人这种独到的解题方法--------抬腿法。从而让学生受到古文化的熏陶,感受道古人的了不起。最后就是利用法学到的方法解决生活中类似的“鸡兔同笼”问题,让学生真正感受到数学与生活密不可分,数学知识来源与生活,同样也运用于生活。

把握过程:猜测、列表验证;假设—计算—推理—解答。教学目标:

1、了解“鸡兔同笼”问题的结构特点,掌握用列表法、假设法、方程法解决问题,初步形成解决此类问题的一般性策略。

2、通过自主探索,合作交流,培养学生的合作意识和逻辑推理能力,体会解题策略的多样性,渗透化繁为简的思想。

3、感受古代数学问题的趣味性,提高学习数学的兴趣。教学重点:让学生亲历列表、尝试、假设和列方程解题的过程,体会解决问题的一般策略。教学难点

运用学到的解题策略解决生活中的实际问题。教学过程

二、自主探索,解决问题

为了便于研究,我们可以先从简单的问题入手,我们把题中的35个头和94只脚改成8个头和26只脚。就变成了书中的例1 出示例1:笼子里有若干只鸡和兔。从上面数,有8个头,从下面数,有26只脚,鸡和兔各有几只?

【设计意图:“鸡兔同笼”问题原题数据比较大,不利于首次接触该类问题的学生进行探究,因此例1把原题的数量变小,通过化繁为简的思想,先从简单问题入手,有利于学生的探究和操作。】

1、学生默读此题,思考:从上面数,有8个头,从下面数,有26只脚,分别是什么意思?所求问题是什么?

2、尝试列表法(1)猜想

师:要求鸡和兔各有几只,咱们不妨猜一猜,好吗?(学生猜)

(2)验证:

师:到底谁猜对了呢?我们来验证一下。(师生算出脚的只数)

(3)师:刚才我们是随意猜的,其实大家如果能够把刚才的猜想按照一定的顺序列成这样的表格(大屏幕出示表格),就可以找到答案了。学生观察表格说说各项表示的含义。

(4)学生独立完成表格,之后交流完成情况,并逐一填写在大屏幕的表格中。

师:像这样把我们的猜测按一定的顺序列成表格,这种方法叫列表法。观察这个表格,你找到答案了吗?答案是怎样的。

师:列表的方法可以解决鸡兔同笼问题,但是如果数据很大,会发生什么情况?(繁琐)。

【设计意图:猜测、列表尝试法,是解决问题一种重要的策略和方法。但当问题中的数据比较大的时候,列表的方法就会很繁琐、复杂,这时列表法就有一定的局限性,揭示进一步学习假设法和代数法的必要性。】

师:还有没有别的方法呢?现在我们通过小组讨论寻找更为便捷的解决方法。(学生讨论,教师巡视并加以适当引导)

3、尝试假设法和方程法。

(1)小组之间讨论讨论,并用算式记录你的讨论结果。(2)汇报交流(在学生说出自己想法的同时,老师逐一进行多媒体演示)

生1:我们组是用假设的方法。(学生板演)如果假设笼子里都是鸡,就有8×2=16只脚,这样就多出26-16=10只脚,一只兔比一只鸡多2只脚,也就是有10÷2=5只兔。所以笼子里有3只鸡,5只兔。

生2:如果假设笼子里都是兔,那么也可以列式: 鸡:(8×4-26)÷(4-2)=3(只)

兔:8-3=5(只)答:兔有5只,鸡有3只。

师:真好,你们发现了数学中一种重要的数学思想,就是假设思想。如果我们学会了用假设思想,我们就能解决生活中的很多很多问题。

生3:我们是用方程解的。(一名板演,一名汇报)解:设兔有x只,那么就有(8 -x)只鸡,鸡兔共有26只脚,就是

4x+2(8-x)=26 2x+16=26 x=5

8-5=3(只)答:兔有5只,鸡有3只。

4、小结交流,归纳方法

师:今天我们解决了一个什么问题?刚才我们在解决“鸡兔同笼”的问题时,用到了哪些方法?比较这些方法,你喜欢用哪种?为什么?你认为哪种方法一般都能适用?

小结:解决这类问题的方法很多,用猜测、画图、列表法可以解决问题,但当数据较大时,过程就很繁琐了。假设法和方程解就具有一般性,不管是数据较大时或数据较小时都可用到这两种方法。

【设计意图】:先让学生独立思考,再在小组内交流,最后全班共同研究讨论。在学习过程中尽可能多的为学生提供探索和交流的空间,鼓励学生自主探索与合作交流。通过教师创设的现实情境,让学生投入解决问题的实践活动中去,自己去研究、探索、经历数学学习的全过程,找出题中的等量关系,并列出相应的方程组求解,从而体会到假设的数学思想的应用与解决数学问题的关系,实现了运用多种方法解决问题的目的。让学生享受快乐的学习氛围。享受成功的喜悦!学会思考,学会自学,通过思维训练,使学生肯学、肯做、敢做、会做。

5、了解鸡兔同笼的历史:(进行爱国主义教育,激励学生。)课件演示(电脑“阅读资料”,了解“抬脚法”学生试着解释。)

师:请看大屏幕。古时候是如何解答的呢?

94÷2-35=12(头)

…… 兔的头数

35-12=23(头)

……

鸡的头数

师:这就是最早的鸡兔同笼问题。看了这段资料,你有什么想法,你有什么想说的吗? 生:古时候的人们太聪明了。生:他们不仅聪明还很勤劳。生:他们太伟大了。

生:我为我们的祖先感到骄傲。

师:其实老师也为你们感到骄傲,你们在这么短的时间内就想出了这么多解决问题的办法,你们也很了不起!

【设计意图】:通过学生对本节课所学内容的归纳、总结,把零碎的知识点和认知过程形成了一个完整的知识体系。像鸡兔同笼的古代问题较多,在教学时,应注意渗透爱国主义思想教育,激发学生努力学习数学热情,使他们感到学数学不是枯燥乏味的,而是风趣幽默、有情有趣的一门学科。

三、深化练习,拓展延伸

师:同学们,“鸡兔同笼”问题漂扬过海,传到日本等国,对中国古文化的传播起到很大的作用。在我们的生活中,也存在着许多类似“鸡兔同笼”的问题,解决方法也类似。下面我们就一起走进我们的生活,解答生活中放入“鸡兔同笼”问题。(1)动物园中的问题

动物园有龟和鹤共40只,龟的腿和鹤的腿共有112条。龟、鹤各有几只?

(2)游乐园中的问题

有38个同学去游乐园划船,共租了8条船,每条船都坐满了。大船每条乘6人,小船每条乘4人。大小船各租了几条?

四、板书设计:

鸡兔同笼

解:设兔有x只,那么就有(8-x)只鸡。

4x+2(8-x)=26

8×2=16(只)列表法

2x+16=26

26—16=10(只)假设法

x=5

10÷2=5(只)列方程

8-5=3(只)

8—5=3(只)

答:兔有5只,鸡有35只。

第二篇:鸡兔同笼教案

鸡兔同笼教案七篇

鸡兔同笼教案 篇1

教学目标:

1.认识和了解“鸡兔同笼”问题,初步掌握解决问题的策略与方法,体会解决问题策略的多样性。

2.经历解决问题的过程中,学习和体会“枚举”、“假设”等数学思想和方法,提高解决实际问题的能力。在解决问题的过程中归纳概括出鸡兔同笼问题的数学模型,进一步培养学生的合作意识和逻辑推理能力。

3.让学生感受古代数学问题的趣味性,受到祖国优秀数学文化的熏陶和感染,增强学习数学的乐趣。

教学重点:会用假设法和方程法解答“鸡兔同笼”问题。

教学难点:明白用假设法解决“鸡兔同笼”问题的算理。

教学用具:

多媒体课件。

教学过程:

一、创设情境,引入新课。

1、引入:

同学们,我们国家有着几千年的悠久文化,在我国古代更是产生了许多位数学家和许多部数学著作,《孙子算经》就是其中一部,大约产生于一千五百年前,书中记载着这样一道有名的数学趣题。你们想看一看吗?

今有雉兔同笼,上有三十五头,下有九十四足,问雉兔各几何?把它翻译成现代汉语是:现在有一些鸡和兔被关在同一个笼子里。鸡和兔共有35个头,94只脚。鸡和兔各有多少只?

这就是著名的“鸡兔同笼”问题,生活中类似的问题非常多,这类问题应如何解决呢?今天我们就来研究著名的“鸡兔同笼”问题。板书课题:“鸡兔同笼”。

为便于研究,我们先从简单的生活问题入手,请看下面问题。

●学校买来50张电影票,一部分是4元一张的学生票,一部分是6元一张的成人票,总票价是260元。两种票各买来了多少张?

【设计意图】以我国古代著名的鸡兔同笼问题引入,让学生感受我国悠久的数学文化,激起探知这类问题的兴趣。

二、自主学习、小组探究

对于这个问题你想用什么方法来解决呢?请根据提示思考解决问题的方案。

温馨提示:

①用列举法怎样解决问题?

②你能用画图的方法解答吗?

③如果把这些票都看成学生票或都看成成人票如何解答?

④回顾列方程解决问题的经验,怎样用方程解决问题?

学生自己根据提示用自己喜欢的方法解决问题。

先把自己的想法在小组内说一说,再共同协商解决。

教师巡视,要注意发现学生的不同解法,同时参与小组的指导。

三、汇报交流,评价质疑

对于解决这个问题,同学们一定有自己的好的方法,请把你的好办法同大家交流吧。

1.列举法。

可以有目的的先展示这种方法。(多媒体展示。)

学生票数(张)成人票数(张)钱数(元)

2525250

2426252

2327254

2228256

2129258

2030260

质疑:有50张票,是否有必要一一列举,你是如何列举的?

(引导学生通常先从总数的中间数列举。)

质疑:根据假设算出的钱数与实际总钱数不一样时,你是如何调整的?

(引导学生根据数据特点确定调整方向、调整幅度。)

师强调:像咱们这样,采用列表的方法列举出来,并最终找到答案的方法,在数学上叫列举法,也叫枚举法。(板书:枚举法)

2.假设法

(1)假设全是成人票:

①为了便于学生理解,展示假设为成人票,学生试画的分析图。(图略)

②引导:上面的过程如果用算式怎样表示呢?请同学们试试看。

(学生试着列算式,请两个学生到黑板上去板演。)

预设板演:

50×6=300(元)300-260=40(元)40÷(6-4)=20(张)

50-20=30(张)

③质疑:你这样做是如何想的?你是如何理解多出的40元的?根据多出的40元如何求出学生票和成人票的?

预设回答:

假设全是成人票,就50×6=300元,而实际花260元,这样就多出了300-260=40元。

而1张学生票看做成人票就比1张学生票多2元,学生票的张数就是40÷(6-4)=20张了,成人票就是50-20=30张。

(2)假设全是学生票:

如果假设成全是学生票该如何解答?(学生根据刚才的经验独立解答,交流时重点说清推理思路。)

总结方法归纳抽象出这类问题的模型。

学生票数=(成人票价×总张数-总钱数)÷(成人票价-学生票价).

成人票数=(总钱数-学生票数×总张数)÷(成人票价-学生票价).

3、方程法:

除了以上两种方法,还有别的计算方法了吗?

学生汇报列方程的方法。

(1)找出相等的数量关系。

(学生汇报,课件出示:成人票数+学生票数=50;成人钱数+学生钱数=260

元)

(2)根据等量关系列式:

设成人票有x张,则学生票有(50-x)张。

列方程为:6x+4(50-x)=260

(解略)

4.学生比较以上几种方法解题方法。

四、抽象概括,总结提升。

让学生结合自己解决问题的经验,用自己的语言进行总结。

列举法:适合数据比较简单的问题,但是如果数字比较大,这样一一列举法就太麻烦了。

画图法:操作简单,比较直观。但数字大的时候,画图也是比较麻烦的。

假设法:适合所有的这类问题,但比较抽象,不好理解。

方程法:适用面广,便捷,容易理解。

师:同学们,我们这节课研究“鸡兔同笼”问题,我们探讨出了用枚举法、假设法、解方程的方法解决这种题。只不过列举法对于数据较大时比较麻烦。一般我们采用假设法和解方程的方法比较简便。

【设计意图】通过适时的总结,引领学生归纳建立“鸡兔同笼”问题的模型,及解决这类问题的一般方法和策略。

五、巩固应用,拓展提高

1.今有雉兔同笼,上有三十五头,下有九十四足,问雉兔各有几何?(回应开课时的问题。)

温馨提示:

A.先让学生认真读题,(同桌讨论)。

B.然后自己解决,汇报交流。交流时同时让学生感受中华民族悠久的数学文化。

2.王丽有20张5元和2元的人民币,一共是82元。5元和2元的人民币各有多少张?

处理方法:

①学生认真读题,引导学生对比“鸡兔同笼”问题模型,分析数量关系,然后选择合适的方法独立解答。

②小组内交流算法。

③全班交流。

【设计意图】本题是“鸡兔同笼”问题模型,在现实生活中的应用,鼓励学生用自己喜欢的方法解答。进一步巩固“鸡兔同笼”问题的各种解法,培养学生的实践应用能力。

3、巩固练习:回应解决例题,引导学生用合适的方法计算。然后说一说在我们的生活中有类似鸡兔同笼的问题吗?(龟鹤问题、乘船问题、合作植树问题等)

【设计意图】让学生寻找生活中的鸡兔同笼问题,使学生感受到“鸡兔同笼”问题在生活中的广泛应用。

3、全课小结:

回顾总结,引发思考

本节课,我们在解决“鸡兔同笼”问题时,采用了几种策略,在这节课中,我发现同学们还有其他的解决方法,下课后相互交流一下,并尝试一下。

师总结:

这节课大家共同探究,解决了生活中类似“鸡兔同笼”问题的实际问题。只要我们善于动脑,好多问题都可以归为一类问题,抽象出一个总的模型进行解决。

鸡兔同笼教案 篇2

教学目标:

1、在“鸡兔同笼”的活动中,经历自主探索、合作交流的过程,体会列表举例、作图分析等解决问题的不同策略。

2、能解决有关“鸡兔同笼”鸡与兔的数量问题及其相类似的数学问题,提高解决实际问题的能力。

3、在探索规律的过程中体会数学与日常生活的联系,获得成功的体验,增强学习数学的兴趣和自信心。

教学重点:

能解决“鸡兔同笼”鸡与兔的数量问题及与其相类似的数学问题。

教学难点:

能用不同的策略解决相关的实际问题。

教学关键:引导学生学会用假设、举例、列表、作图等方法解决问题。

教具:多媒体课件

教学过程:

一、联系现实,激趣导入

1、师:同学们,你们喜欢歌谣吗?老师这里有一首歌谣,大家一起读一读。

生:一只鸡一个头,两条腿,一只兔子,一个头,四条腿;

师:接下来的歌谣不完整,谁能把它填完整呢?

两只鸡 个头, 条腿,两只兔子, 个头, 条腿,三只鸡三只兔子一共 个头, 条腿...…

师:你是怎么知道的?

生:我把兔子的腿数乘兔子的只数然后加上鸡的腿数乘鸡的只数。

[设计意图:从学生们非常感兴趣的话题入手,让学生读歌谣、填歌谣,能深深吸引学生的积极性和探索欲望。]

2.这节课,我们就一起来研究有关“鸡兔同笼”的问题。

二、自主探索,尝试解决

1、猜一猜:出示:鸡兔同笼,有20个头,那么鸡、兔各有多少只?

(1)、指名读题

(2)、理解题意:

师:20个头表示什么?

生:20个头表示鸡与兔的总头数。

师:鸡与兔各有多少只?大家猜猜看?跟同桌说一说。

(3)、同桌说一说:

(4)、学生汇报,教师填表

生1:我猜鸡有3只,兔子有17只。

生2:我猜鸡有5只,兔子有15只。

生3:我猜鸡有16只,兔子有4只。

……

师:请同学们仔细观察一下表格,鸡的只数在变化,兔子的只数也在变化,什么没有变?

生:鸡兔的总只数没有变。

强调鸡兔的总只数不变

[设计意图:通过这样的设计,目的是为了让学生猜测,引出对下边例题的思考,体现思维的灵活性。]

2、自主探究

出示:鸡兔同笼,有20个头,54条腿,那么鸡、兔各有多少只?

(1)、指名读题

(2)、引导观察:

师:这两道题有什么不同呢?

生:第2个问题多了一个条件“54条腿”

(3)、理解题意:

师:20个头,54条腿是什么意思呢?

生:20个头表示鸡与兔的总只数。54条腿表示鸡与兔的总腿数。

师:你想用什么方法来解决鸡兔各有多少只?请小组的同学一起讨论。讨论前老师提个小小的要求:

①、每个小组老师都有一份材料

②、小组长组织小组成员讨论,小组长并做好记录

3、反馈交流,教师适当引导

(1)、逐一列表法:

生1:我先假设鸡1只,兔子19只,算出总腿数78条,接着假设鸡2只,兔子18只,算出总腿数76条……我一直算到鸡13只,兔子7只总腿数54条为止。

师:像这样把每一种情况一一举例,直到寻找到所求的答案的方法,我们把它叫做逐一列表法。(板书:逐一列表法)谁还有不同的方法?

(2)、跳跃列表法

生2:我先假设鸡有1只,兔子有19只,算出总腿数78条,比题目的54条多很多。接着我就假设鸡有5只,兔子有15只,算出总腿数70条,还是多。我就假设鸡有10只,兔子有10只,算出总腿数60条,还是多。我再假设鸡有15只,兔子有5只,算出总腿数50条,比54条少,说明鸡的只数应在10与15之间。我再假设鸡有13只,兔子7只,算出总腿数54条。

师:像这种“5只5只增减”,估计鸡与兔的可能范围,以减少列举的次数,我们把这种方法叫做跳跃列表法。(板书:跳跃列表法)还有其他方法吗?

(3)、折中列表法

生3:我先假设鸡有10只,兔子也是10只,算出总腿数60条,比54条多,我再假设鸡有12只,兔子8只,算出总腿数56条,还是多一点,所以我就假设鸡有13只,兔子有7只,算出总腿数54条。

师:由于鸡与兔的只数共20只,所以各取10只,然后在举例中根据实际数据的情况确定举例的方向,这样可缩小举例的范围,这种方法叫做折中举例法。(板书:折中列表法)

像同学们刚才的这几种解法,我们把它称为列表法。

[设计意图:让学生小组讨论,尝试列表解决问题,调动每个学生的学习积极性,同时对列表的方法不做统一规定,让学生自由发挥,培养了学生的发散思维]

4、画图法(板书:画图法)

师:除了列表法,我们还可以通过画图来解决问题。先画20个圆圈表示20个头,再假设20只都是鸡,在每个圆的下面画2条竖线表示2条腿,总共画出40条腿,还剩下14条腿,刚好可以给7个圆各添上2条腿,所以兔子有7只,鸡有13只。

5、归纳算法

解决“鸡兔同笼”有多种方法,你喜欢哪种方法?

三、巩固练习

生活中有许多类似“鸡兔同笼”的数学问题,你会解答吗?

(1)、出示:停车场上共停放12辆三轮车和自行车,两种车轮子总和为31个,三轮车和自行车各有几辆?

(2)、学生独立解决,全班交流。

[设计意图:通过学生的独立解决,旨在加深学生对鸡兔同笼问题的的理解。此外,不同层次的问题体现了不同学生的发展。也让学生体会到数学就在我们身边。]

四、全课

通过本节课的学习,你学会了什么?(板书:解决问题的不同策略)

五、拓展延伸

书P81“你知道吗?”

师:我国古代数学名著《孙子算经》中就记载了“鸡兔同笼”的有关问题,可见古代劳动人民的智慧,我们为之感到骄傲和自豪。

[设计意图:在教学时,对学生渗透爱国主义教育,激发学生努力学习数学热情,使他们感到学数学不是枯燥乏味的,而是风趣幽默的`一门学科。]

教学反思:

反思本次教学活动,我发现了成功与遗憾共存。

成功之处在于:

1、在导入新课时我采用创设情境的方式导入,学生的积极性一下子就被调动起来了。让学生读歌谣、把歌谣补充完整,学生不仅觉得有趣,同时也复习了计算腿数的方法。

2、新授时我让学生自主探索、尝试解决鸡兔同笼的问题,然后引导学生认识三种不同的列表方法:逐一列表法、跳跃式列表法、取中列表法。由于学生的认知水平不同,我没有统一要求,允许不同的学生有不同的解题方法。而且在这个环节中,我给予学生思考的时间也比较充分,因此部分学生对列表法掌握得还蛮可以的。在教学列表法后,我又引导学生用画图的方式去试着解这种类型的问题。

3、练习时,选择与学生生活密切联系的例子,如:停车场上停着自行车和三轮车,让学生自主解决,不仅体会到数学与日常生活的联系,而且获得成功的体验,增强学习数学的兴趣和自信心。

遗憾之处在于:

1、我感觉多媒体课件虽然帮助学生非常直观的理解了“假设法”的这种思维过程,让复杂问题简单化了。但我发现学生的思维过程只是停留在直观、表象这一层面,只有少数同学将这一思考过程内化成成为了自己的一种解决这类知识的模型。

2、练习时,如能引导学生巧妙综合运用三种列表法,把课上得更精彩、生动一点就更好了。

鸡兔同笼教案 篇3

第1课时 鸡兔同笼

教学内容:P116页的练习二十五的第20题。

教学目标

知识与技能:通过复习“鸡兔同笼”问题,感受中国古代数学问题的趣味性。

过程与方法:能熟练用列表、假设等不同的方法解决“鸡兔同笼”问题,体验解决问题的方法的多样性,提高解决实际问题的能力。

情感态度价值观:通过复习,培养学生的合作意识和逻辑推理能力,在解决问题的过程中,提高迁移思维的能力,进而体会数学的价值。

教学重点:熟练理解和掌握解决问题的不同思路和方法,让学生再一次亲历列表法、假设法等解题的过程,深刻体会解决问题的一般性策略。

教学难点:建构解决“鸡兔同笼”问题的数学模型,运用学到的解题策略熟练解决生活中的实际问题。教具学具:多媒体

教学过程

一、情境导入

师:“鸡兔同笼”是一道有名的中国古算题。最早出现在《孙子算经》中。许多小数数学问题都可以转化成这类问题。

师:你知道解决“鸡兔同笼”问题有几种方法吗?通过比较发现它们有什么特点?

生1:列表法,适合数据较小的问题。

生2:假设法,一般情况都适合,数量关系比较容易理解。

师:今天我们复习“鸡兔同笼”问题。

二、自主探究

师:摆三角形和正方形一共用了19根小棒。(任意两个图形之间没有公共边)你能算出分别摆了多少个三角形和多少个正方形吗?(学生回答)

师:星期日,小英一家八口人到博物馆参观,博物馆的票价是成人每人30元,儿童每人15元,买门票共花去210元钱,其中儿童有几人?(学生回答)

师:三年级(4)班48人去北海公园划船,租了大船和小船共10条,每6人克坐满一条大船,每4人可坐满一条小船,且每条船都没有空位,他们租大船和小船各几条?(学生回答)

三、探究结果汇报

师:通过复习“鸡兔同笼”问题,你有哪些收获?

生1:借助列表的方法,解决简单的实际问题。

生2:我学会了化繁为简的学习方法。

生3:用“假设”法解决问题的一般性。

四、师生总结收获

师:通过本课的学习,你有哪些收获?

师生总结得出:解决数学问题时,可以先提出假设,如果假设后的情况与实际不符,这时就需要进行调整。我们可以借助画图、列表等方法帮助我们进行调整,从而推算出正确结果,最后还要对结果进行检验。(逐一板书:假设、调整、检验)

板书设计

鸡兔同笼假设→调整(列表、画图)→检验

鸡兔同笼教案 篇4

[教学目标]

1、通过学生对一些日常生活中的现象的观察与思考,从中发现一些特殊的规律。

2、通过列表举例、作图分析等方法,解决鸡与兔的数量问题。

[教学重、难点]

通过列表举例、作图分析等方法,解决鸡与兔的数量问题。

[教学过程]

一、呈现鸡兔同笼问题。组织学生探索解决问题的方法。

1、小组活动

2、交流方法

3、

二、做一做

独立完成第1—3题,并交流解决的方法。

第4题的答案有多种,启发学生找出不同的答案。

讨论第4题与前3题所给条件的不同,从而让学生知道哪些题的答案是唯一的,哪些题是有多种答案的。

[板书设计]

鸡兔同笼问题

方法1方法2方法3方法4

鸡兔同笼教案 篇5

一、教学目标:

1、培养学生的合作意识,在现实情景中,使学生感受到数学思想的运用与解决实际问题的联系,提高学生解决问题的能力和自信心,进而让学生体会数学的价值。

2、应用假设的数学思想,在解题中数形结合,提高学生分析问题和解决问题的能力;

3、在解决“鸡兔同笼”的活动中,通过列表举例、画图分析、尝试计算等方法解决鸡兔的数量问题。

二、教材分析

本课时向学生提供了现实、有趣、富有挑战的学习素材,借助我国古代趣题“鸡兔同笼”问题,使学生展开讨论,应用假设的数学思想,从多角度思考,运用多种方法解题,学生可以应用逐一列表法、跳跃式列表法、取中列表法等来解决问题。学生在具体的解决问题过程中,他们可以根据自己的经验,逐步探索不同的方法,找到解决问题的策略,在合作交流学习的过程中,积累解决问题的经验,掌握解决问题的方法。

三、学校及学生状况分析

五年级学生在三年级时已初步学习了简单的“鸡兔同笼”问题,他们已经初步尝试了应用逐一列表法解决问题,还有一些学生在校外的奥数班中已经学习了相关的内容。因此,教学在这一内容时,学生的程度参差不齐。本班的学生思维活跃,敢想,敢说,有一定的小组合组经验。

四、教学设计

(一)创设情境

师:今天这一节课,我们要共同研究鸡兔同笼问题。(板书:鸡兔同笼)你们知道鸡兔同笼是什么意思?

生:鸡兔同笼就是鸡兔在一个笼子里。

(媒体出示课本第80页的情景图)

师:请你猜一猜,图中大约有几只兔子,几只鸡?

生1:我猜大约是7只,兔子5只鸡。

生2:不一定。因为有一棵树把鸡和兔子挡住了,所以我不知道各有几只。

(二)探求新知

师:如果告诉你:鸡兔同笼,有20个头,54条脚,鸡、兔各多少?能求出几只兔子,几只鸡吗?(媒体出示题目的条件)

师:想一想,要解决这个问题可以用什么方法?想好了,可以写在作业纸上。

师:请同学们把自己的想法在小组内交流一下,看那个小组的方法多样。

师:哪个小组说说你们的想法?

小组1:我们采用列表法得出的答案。(实物投影展示小组的成果)先假设有1只鸡,19只兔子,脚就有78条。脚太多,然后又假设有2只鸡,18只兔子,脚还是太多了。这样试下去就得到了有13只鸡,7只兔子。

师:还有哪些小组采用不同的列表法?

小组2:我们也采用列表法得出的答案,我们发现鸡增加1只,兔子减少1只,腿就减少2条,所以我们没有一个一个的试,那样太麻烦,而是从2只鸡,18只兔直接跳到10只鸡,10只兔。最后也得到了13只鸡,7只兔。

小组3:我们小组也是列表法。我们是先假设鸡有10只,兔子也有10只。这样比较简便。

师:这三个小组的同学都采用了列表的方法来解决问题,但同学们想一想,为什么要列表呢?

生1:列表可以帮助我们一一举例,从中找出需要的答案。

生2:列表也就是运用假设法,通过逐步的假设,最终找到符合条件的答案。

师:那么,这三种列表的方法有什么不同呢?

生3:我认为第一小组的列表方法的特点是逐一列表,这样不容易遗漏答案。

生4:虽说第一小组的方法可以完全地列出全部的答案,但比较麻烦。我认为第三组的方法比较好,可以根据题目的根据情况,确定假设的范围,这样可以很快寻找到需要的答案。

师:这两位同学说得都很有道理,其实同样选择列表的方法,我们因根据题目的实际条件,选择适当的方法,这样可以既快又准确地寻找到我们需要的答案。

(三)解决问题

师:根据刚才的讨论,下面两道题目,同学们可以用列表的方法独立地尝试解决。

媒体出示两道题

1、鸡兔同笼,有23个头,66条腿,鸡、兔各几只?请你列表的方法解决。

2、老师带51名学生到公园划船。一条大船坐6人,一条小船坐4人,他们租了大船、小船各几条?

(学生练习后,教师组织全班进行交流。交流过程略)

(四)学习总结

师:通过今天的学习,你有哪些收获?

五、教学反思

1、充分调动学生的积极性

当新的问题提出后,我并没有急于讲解如何做的方法,而是先让学生独立思考,再在小组内交流,最后全班共同研究讨论。使同学们在民主、和谐的氛围中开拓了思维,实现了运用多种方法解决问题的目的。

2、关注每一个同学的发展。

由于学生原有认知背景的不同,他们对解答本课时的题目存在较大的差异,所以,在同样的列表中,学生的认知水平也有一定的层次。但在教学的过程中,我并没有提出统一的要求,允许不同的学生采用不同的解题方法。在交流时,有些学生用逐一列表的方法,也没去指责他们,而是肯定他们想出好的方法;对于比较优秀的学生,则在课中请他们总结根据题目的条件选择适当方法的优点。这样做的目的,不同的学生在同一节课中就会都有不同程度地提高。

六、案例点评

本节课有以下几个特点:

1、本节课从学的角度安排教学过程、呈现学习内容、提供操作材料,把学习的主动权交给学生,让学生在合作学习的活动中主动完成认知结构的建构过程。因此,使学生的主体意识和探究精神得到培养,创新潜能得到开发。

2、让学生获得亲自参与探究学习的积极体验。探究性学习的过程是情感活动的过程,让学生自主参与类似于科学家研究的学习活动,获得亲身体验,逐步形成一种在日常学习与生活中喜爱质疑、乐于探究、努力求知的心理倾向,激发探究和创新的积极欲望。

鸡兔同笼教案 篇6

数也可以求出来。

6、小结:现在你能从新总结一下这些方法的优势和适用范围吗?数目比较小时,用列表法。数目比较大时,列表法计算量大,就有局限性,比较麻烦,最好用假设法比较好。用假设法时要特别注意:如果假设是鸡而先求出的就是兔子,如果假设的是兔子那先求出的是鸡,两者相反。

* 古人是怎样解决“鸡兔同笼”问题的?

1、假如让鸡抬起一只脚,兔子抬起两只脚,还有94÷2=47只脚。

2、这时每只鸡一只脚,每只兔子两只脚。笼子里只要有一只兔子,则脚的总数就比头的总数多1。

3、这时脚的总数与头的总数之差47-35=12,就是兔子的只数。

三、巩固练习

课本105页“做一做”的1、2题。

四、课堂总结:

师:通过今天的学习,你有哪些收获?

板书设计: 鸡兔同笼

化繁为简

列表法

假设法:1)假设都是鸡

2)假设都是兔

教学反思:人教版四年级下册第九单元数学广角中—《鸡兔同笼》

教材分析:

“鸡兔同笼”问题是我国民间广为流传的数学趣题,最早出现在《孙子算经》中。教材在四年级下册数学广角中安排“鸡兔同笼”的教学内容,其教学方法与常规课不同。数学广角重在向学生渗透一些数学思想方法,并初步培养学生有顺序地、全面地思考问题的意识。因此,在教学此内容时,一方面可以培养学生的逻辑推理能力;另一方面使学生体会代数方法的一般性。

学情分析:

“鸡兔同笼”问题对于四年级的学生来说是难于理解,四年级的学生已经虽然具备了应用逐一尝试法、列表法解决问题的基本能力。他们已初步接触多种解题策略,会一些基本的解决数学问题的方法。学生已初步具备一定的归纳、猜想能力,但是在数学的应用意识与应用能力方面需要进一步培养。

教学目标:

1、使学生了解“鸡兔同笼”问题,感受古代数学问题的趣味性。

2、能尝试用不同的方法解决“鸡兔同笼”问题,使学生体会假设方法的一般性。

教学重点:会用画图法、列表法和假设法解答“鸡兔同笼”问题。

教学难点:用合理的方法解答生活中的“鸡兔同笼”问题。

教具准备:多媒体课件、表格等。

教学过程:

一、创设情境、揭示课题。

1.播放《奔跑吧,兄弟》主题曲,同学们,你们知道这是什么节目的主题曲吗?

2.播放视频,介绍:20xx年4月24日这期的《奔跑吧,兄弟》中,各位跑男被带到有密码的房间里,陈赫遇到了这样一道题。

这道题被收在《孙子算经》中,《孙子算经》是我国古代一部非常重要的数学名著, 今天,我们就来研究中国历史上著名的数学趣题 “鸡兔同笼问题”。(板书课题)

2、我们先从简单一些的问题入手,来探讨解决这类问题的方法,好吗?大家请看。

出示题目:鸡兔同笼一共有8个头,一共有26条腿。 鸡和兔各有几只?

二、合作探究、学习新知:

活动一:探究用猜测列表法解决“鸡兔同笼”问题。

学习方式:自学教材,小组合作交流

1.师:请大家自由读题,你们都知道了什么信息?

生:鸡和兔一共有8个头。鸡兔一共有26条腿。求分别有几只?

师:还有补充吗?有两个隐藏条件看谁细心发现了?。

生:鸡有2条腿,兔子有4条腿。鸡和兔一共有8个头。鸡兔一共有26条腿。求分别有几只?师评:他还发现了隐藏条件,审题真细心。

2.先猜一猜,鸡兔可能有几只?可能只有一种动物吗,为什么?

学生猜测,汇报。不可能都是鸡,因为如果都是鸡就会有16条腿,而题目中是26条腿。也不可能都是兔,因为如果都是兔就会有32条腿。

(1)师:我们采用列表法得出的答案,好吗?翻开书104页,按照顺序列表试一试。

(2)说一说你是怎么想的?从尝试举例过程中,你发现了什么规律?和小组的同学说一说。

(汇报交流)

小结讲解:鸡兔的总只数不变,多一只兔子就会少一只鸡,并会增加两只脚;多一只鸡就会少一只兔子,并会少两只脚。

活动二:探究用假设法解决“鸡兔同笼”问题。

学习方式:自学教材,小组合作交流。

小组1:假设全都是鸡:2×8=16(条)26-16=10(条) 10÷2=5(只)??兔子 8-5=3(只)??鸡 谁有不懂得问题要问他?你们看看是不是这样:看演示板书“假设法。”

师:除了可以假设都是鸡,还可以怎样假设呢?

小组2:引导学生说出都是兔,并演示。

师:实际上,你们刚才的这些方法都运用了一种数学思想。你们知道是什么思想么?

师:真好,你们发现了数学中一种重要的数学思想,就是假设思想。如果我们学会了用假设的数学思想啊,那我们能解决生活中的很多很多问题,是不是啊。

小结:同学们,刚才我们用很多方法解决了同一个问题,你觉得这些方法的核心思想是什么?(假设。所以鸡兔同笼问题又叫假设问题。)

3、发散思考、加深理解。

下面我们来帮陈赫找到他房间的密码,解放他吧!

出示:鸡兔同笼,有35个头,94条腿,鸡兔各有几只?

师:我们发现课本上的假设法理解起来比较抽象,现在大家换一种假设法来思考。你们看,这样行不行?

生:是什么样的假设法,让我们先睹为快!

师:是这样的,如果让每只兔子都立起两条腿,这时,鸡和兔的脚数是相等的,接下来会出现什么样的情况呢?

生:每个头有两条腿,35个头是70条腿。(94-70)少了24条腿,正好可以求出兔子的只数,24除以2等于12。

生:鸡的只数为:35-12 = 23(只)。

师:还有别的做法吗?怎样解答?

生:把每只鸡的翅膀看成是两条腿。这样每只头对应的是4条腿。共有140条腿,多出46条腿,多出的是23只鸡的腿,那么,兔的只数

鸡兔同笼教案 篇7

教学目标:

1、了解“鸡兔同笼”问题,感受古代数学问题的趣味性。

2、尝试用不同的方法解决“鸡兔同笼”问题并使学生体会代数方法的一般性。

3、在解决问题的过程中培养学生的逻辑推理能力。

教学重点:

理解并掌握用假设法和列方程法解决“鸡兔同笼”问题。

教学难点:

理解用假设法的算理并能运用不同的方法解决实际问题。

教学方法:

1、采取直观形象的方式,让学生探讨不同的方法。

2、适当把握教学要求。

一、历史激趣,导入新课

今天老师想给同学们介绍一部1500年前的数学名著《孙子算经》,你们想了解吗?里面记载着许多有趣的数学名题,其中有这样一道题请看:(出示以下情境图)

师:你能说说这道题是什么意思吗?(说明:雉指鸡)出示:笼子里有若干只鸡和兔。从上面数,有35个头,从下面数,有94只脚,鸡和兔各有几只?这就是我们今天要研究的历史趣题“鸡兔同笼”的问题。(板书课题)

结合谈话引入,给数学课堂带来了浓厚的文化气息,让我们的学生感受到我国数学文化的源远流长,激发了学生的学习热情。

二、探究交流,尝试解决问题。

1.为了研究方便,我们把题目里的数字改小一点。“笼子里有若干只鸡和兔,从上面数,有8个头;从下面数,有26条腿。鸡和兔各有几只?”(说明:为了便于分析时叙述,把“26只脚”改成了“26条腿”出示)

2.我们一起来看看被关在同一个笼子里的鸡和兔给我们带来了哪些数学信息?

让学生理解:①鸡和兔共8只。②鸡和兔共有26条腿。 ③鸡有2条腿。 ④兔有4条腿。(出示)

3、我们先来猜猜,笼子中可能会有几只鸡几只兔呢?学生猜测,在猜测时要抓住哪个条件呢?(鸡和兔一共是8只)那是不是抓住了这个条件就一定能猜对呢?

学生猜测,老师板书

4、怎样才能确定你们猜测的结果对不对?(把鸡的腿和兔的腿加起来看等不等于26。)

(一)、尝试列表法

为了研究老师把所有的可能按顺序列出来了,我们先看表格中左起的第一列,8和0是什么意思?(就是有8只鸡和0只兔,也就是假设笼子里全是鸡,)那笼子里是不是全是鸡呢?(不是)那就是把里面的兔也看成鸡来计算了,那把一只4条腿的兔当成一只2条腿的鸡来算会有什么结果呢?(就会少算两条腿)(出示:把一只兔当成一只鸡算,就少了两条腿。)

(二)、假设法

1、假设全是鸡

8×2=16(条)(如果把兔全当成鸡一共就有8*2=16条腿)

26-16=10(条)(把兔看成鸡来算,4条腿兔有当成两条腿的鸡算,每只兔就少了两条腿,10条腿是少算了兔的腿)

4-2=2(假设全是鸡,是把4条腿的兔有当成两条腿的鸡。所以4-2表示是一只兔当成一只鸡就要少算2条腿。)

10÷2=5(只)兔(那把多少只兔当成鸡算就会少10条腿呢?就看10里面有几个2就是把几只兔当成了鸡来算,所以10÷2=5就是兔的只数。)

8-5=3(只)鸡(用鸡兔的总只数减去兔的只数就是鸡的只数,8-5=3只鸡)算出来后,我们还要检验算的对不对,谁愿意口头检验。

2、假设全是兔

我们再回到表格中,看看右起第一列中的0和8是什么意思?(笼子里全是兔)那是不是全都是兔呢?(不是)也就是假设笼子里全是兔。那把兔当了鸡在算。那就是把里面的鸡也当成兔来计算了,那把一只2条腿的鸡当成一只4条腿的兔来算会有什么结果呢?(就会多算两条腿)(出示:把一只鸡当成一只兔算,就多了两条腿)

先用假设全是鸡的办法解决了这个问题,现在假设全是兔又应该怎么分析和解决这个问题呢?同学们能自己解决吗?如果有困难可以同桌边或小组讨论。

小结:

刚才我们假设都是鸡或都是兔,所以把这种方法叫做假设法。这种方法能化难为易,是解答鸡兔同笼问题的一种基本方法。(板书:假设法)

第三篇:鸡兔同笼教案

一、教学内容

人教版四年级下册9数学广角-鸡兔同笼

二、教材与学情分析

“鸡兔同笼”问题是我国民间广为流传的数学趣题,最早出现在《孙子算经》中。教材在本单元安排“鸡兔同笼”问题,一方面可以培养学生的逻辑推理能力;另一方面使学生体会代数方法的一般性。

“鸡兔同笼”的原题数据比较大,不利于首次接触该类问题的学生进行探究,因此教材先编排了例1,通过化繁为简的思想,帮助学生先探索出解决该类问题的一般方法后,再解决《孙子算经》中数据比较大的原题。

解决“鸡兔同笼”问题时,教材展示了学生逐步解决问题的过程,既猜测、列表、假设,其中假设解决该类问题的一般方法。“假设法”有利于培养学生的逻辑推理能力。

三、教学目标

(一)知识与技能

了解“鸡兔同笼”问题,能用列表法和画图法解决相关的实际问题,结合图解法理解假设的方法解决鸡兔同笼问题,初步形成解决此类问题的一般性策略。

(二)过程与方法

经历猜测的过程,尝试用列表、假设的方法解决“鸡兔同笼”问题,引导学生有序思考,体验解决问题方法的多样化,提高解决实际问题的能力。

(三)情感态度和价值观

在解决问题的过程中,培养学生的迁移思维能力,感受古代数学

问题的趣味性,培养学生的合作意识,在现实情景中,在交流的过程中,使学生感受到数学思想方法的运用与解决实际问题的联系,提高学生解决问题的能力和自信心,受到多种数学思想方法的熏陶,进而让学生体会数学的价值。

四、教学重难点

教学重点:渗透化繁为简的思想,体会用假设法的逻辑性和一般性。

教学难点:理解用假设法解决“鸡兔同笼”问题的算理。

五、教学准备 课件、画图。

六、教学过程

(一)激趣导入

数青蛙这首儿歌相信同学们都很熟悉,现在就来跟着老师把数鸭子这首儿歌读一读、唱一唱。

数青蛙 一只青蛙一张嘴 两只眼睛四条腿 两只青蛙两张嘴 四只眼睛八条腿 三只青蛙三张嘴 六只眼睛十二条腿

师:一只青蛙几条腿?两只青蛙几条腿?一百只青蛙几条腿?当老师把青蛙换成鸡和兔,并把它们关在一个笼子里的时候,怎么来计算它们的腿数呢?早在1500年前,就有人曾经提出过这样的问题,我们今天就一起学习一下鸡兔同笼的问题。

板书:鸡兔同笼

(二)设疑自探

笼子里有若干只鸡和兔,从上面数,有8个头,从下面数,有26只脚。鸡和兔各有几只?

提示:

1、从题中你能获得什么信息?

2、结合生活实际,你还能从题中获得什么信息? 思考:你打算用什么方法来解决这个问题呢? 预设:画图法

师:老师也想到了这个方法,看,老师为你们每人准备了一张纸,上面有8个圆代表8个头,用26根竖线代表26只脚,现在请同学们用自己的方式给这8个头加上合适的脚吧。

老师现在请一位同学给大家表示一下自己是怎么画的吧? 学生汇报。

老师也想了一个办法,专门做了一个表格,分为三栏,分别是鸡的只数、兔的只数、脚的总数,当鸡有8只时,兔有0只,脚有16只,鸡有7只时,兔有(1)只,脚有(18)只,那现在哪位同学想帮老师把这个表格补充完成?

学生汇报。

那这种用表格进行记录和计算的方法,统称为列表法。我们用画图法和列表法得到的结果一样吗? 预设:一样

结果是:(鸡有3只,兔有5只)

(三)、解疑合探

(1)师生互动,引出假设法。

《孔子算经》中曾经出现过这样的一道问题,大家来读一下。今有雉兔同笼,上有三十五头,下有九十四足,问雉兔各几何? 谁能用数学语言来表达这道题?

预设:笼子里有若干只鸡和兔,从上面数,有35个头,从下面数,有94只脚。鸡和兔各有几只?

当我们碰到35头,94足这么大数量的问题的时候,我们用画图法和列表法来计算,还容易嘛?今天我们就来学习一种新的解决鸡兔同笼问题的方法。

现在让我们回到最初的简单的8个头,26只脚的问题,观察一下我们完成的表格,当鸡有8只兔有0只时,说明什么?

预设:假设全是鸡

(2)交流反馈,师生互动,学生根据师提示列出解题过程,并得出以下结论:

1、假设笼子里全是鸡

2、看到的比全都是鸡多了(10)只脚,多的是兔子的脚

3、一只兔子比一只鸡多两只脚,所以只能两只两只的加上去。(3)小组讨论,挑战古人,得出假设法的规律:

1、假设全是鸡,得到的是兔的只数;假设全是兔,得到的是鸡的只数。

2、兔的只数=(总脚数-鸡的脚数×总只数)÷(兔的脚数-鸡的脚数)

3、鸡的只数=(兔的脚数×总只数-总脚数)÷(兔的脚数-鸡的脚数)

(四)、质疑再探 规律到底能不能成立?

验证:小组配合运用规律解决孔子算经中的问题。

(五)、应用扩展(1)、全课总结

鸡兔同笼问题可以运用几种方法解决? 学生汇报总结。(2)、作业(古题)

一百馒头一百僧,大僧三个更无争,小僧三人分一个,大小和尚得几丁?

七、教学反思

学生的语言组织能力稍微欠缺,在讲课的过程中应该有节奏的对其进行带动,完成后让学生重新复述,并且注意加强平时的练习。

第四篇:鸡兔同笼教案

人教版四年级下学期 数学广角——鸡兔同笼教学设计

第一课时:

一、教学目标

1、了解“鸡兔同笼”问题,感受古代数学问题的趣味性;了解我国古代数学文化,增强民族自豪感。

2、了解假设法(画图)解决问题的方法,尝试用假设法解决“鸡兔同笼”问题。

3、经历自主探究解决问题的过程,体验解决问题策略的多样化。

4、在解决问题的过程中,体会数形结合的数学思想,增强逻辑推理能力。

二、教学重点

理解掌握假设法(画图),能运用假设法(画图)解决数学问题。

三、教学难点

理解掌握假设法(画图),能运用假设法(画图)解决数学问题。

四、教学用具

1、平板电脑。

2、电教平台

五、课前准备

1、观看微课《画图解鸡兔同笼问题》

2、完成导学案。

六、教学过程

师:同学们,今天我们班里除了大家,又有这么多老师,你们心里会紧张吗? 生:会。

师:为了缓解紧张气氛,我们来玩一个猜猜看的游戏。谜语1

谜语2 顶上红冠戴,红红眼睛白白毛,身披五彩衣,长长耳朵短尾巴,能测天亮时,身披一件白皮袄,呼得众人醒。

走起路来轻轻跳。(猜一动物)

(猜一动物)出示谜语

1、生猜(公鸡)出示谜语

2、生猜(兔子)师评价:你们猜谜语的本领可真高啊。师:观察图片,你能发现它们有哪些异同点?

生:鸡有两条腿,兔子有四条腿。生:鸡和兔子都只有一个头、一个身子。

师:看来同学们对这两种小动物是相当的熟悉呀!今天的思维是相当的活跃呀!下面我们就开始今天的数学之旅吧!(上课)(可以在课前热身)

一)故事激趣,导入新课(1分钟)

师:同学们,刚才猜的两种可爱的小动物喜欢吗?今天,我们就一起去研究与它们有关的数学问题。(出示课件并板书:鸡兔同笼)师:鸡兔同笼问题是我国古代著名的三大趣题之一,一直令无数人津津乐道,也令无数人冥思苦想。它记载于《孙子算经》一书中,距今已有1500多年,提到孙子,大家并不陌生,他就是名扬中外的<孙子兵法>的作者,他的军事才能令后人无限敬仰,但他在数学上的成就同样很突出。今天的鸡兔同笼问题就与他有关。话说有一天,孙子到他的朋友家里去喝酒,他的朋友知道孙子已经是小有名气的数学家了,就想出道难题刁难他,回头一看,正巧笼子里有一些鸡和兔,于是就出了这样一道题。二)探究新知

1、化繁为简(5分钟)

(1)课件出示情景图及题(多媒体出示)今有雉兔同笼,上有三十五头,下有九十四足,问雉兔各几何?)。

师:哪位同学能用自己的语言描述一下这道数学题?

评价:你的语文水平真高!(课件出示译题。)

师:你们能从题中得到哪些数学信息? 生:鸡兔共35个头,鸡兔共有96条腿。

师:那么题中还隐藏了什么已知条件? 生:鸡有两条腿,兔有四条腿。评价:不错,你有一双非常锐利的眼睛。

师:已知条件找到了,你们能很快解决这道题吗? 生:沉默或回答不能

师:是啊,数字大了很难解决,那我们就化繁为简,把数字改小些试试看。(1)呈现导学案题目:笼子里有若干只鸡和兔,从上面数,有8个头;从下面数,有26只脚。鸡和兔各有几只?(这个题目在电脑上显示)

(2)分析条件:

师:让我们再来梳理一下,题目已知的条件是?生齐:条件有⑴鸡和兔共8只。⑵鸡和兔共有26条腿。⑶鸡有2条腿。⑷兔有4条腿。师:所求的问题是?生齐:求的问题是鸡有多少只?兔有多少只? 师:有没有觉得这道题目很熟悉啊,没错这就是你们看完微课小视频后要完成的练习。这是我们班某位同学的解题方法?有谁看懂了能跟大家解释一下吗?

2、探究假设法(10分钟)

(1)呈现结果,分析解法。(课件出示解法,画图也显示出来)生:算式的意思是假设笼子里全是鸡,每只鸡有2条腿,所以2×8=16,(条)多出来了26—16=10(条),兔子比鸡多了4—2=2(条),把兔子的腿算少了10÷2=5(只),所以兔子有5只,鸡就8—5=3(只)【这里多让几个学生回答,讲清楚思路,充分理每个算式的含义】 师:同学们,你们有什么不懂的地方想问问他们吗? 追问:老师想知道为什么会少了10条腿? 生:把兔算成了鸡。师:哦,把兔算成了鸡腿就少了,所以要把鸡换成兔。那为什么要换5只呢? 生:因为每换一只会增加2条腿,要增加10条腿就需要换5只。师:对。10里面有5个2。你们真是爱动脑筋的孩子!

师:4—2=2这一步中已知2,求出2,不是多此一举吗? 生:不是。因为4-2=2表示的是多出的腿,与鸡有2条腿不一样。

师:哦,同是2,意义不一样,所以这一步不能省,明白了吗?

3、假设法的简单应用。

师:我们刚才用假设全是鸡的方法求得了答案,这里还有一种方法谁看得懂呢?生:能(让一个学生出来画图并完成)

师:那就请同学们自己先独立完成,完成之后与身边的同学进行交流,在交流过程中要注意把自己的想法表达清楚。(将题目在学生的平台上显示,并完成。)

让学生说出解题思路。(展示)。师:你们同意吗?生:同意!师:这位同学做得多好,说得多棒。让我们夸夸他。

【意图】学生借助画图探究假设法,把抽象的逻辑思维问题转化成直观的形象思维问题,使复杂的问题变得简单了,学生能体验到转化、数形结合数学在解决问题中妙用。

4、教师小结。

师:刚才我们从假设都是鸡或者都是兔出发,进而发现规律,求得答案的方法,我们把它叫做假设法。这是解答鸡兔同笼问题的一种基本方法。(板书:假设法)

三、拓展应用(3分钟)

1、解决鸡兔同笼问题原题。

师:对于刚才的题目,我们用了不同的方法把它解决了。那我们现在能解决《孙子算经》中原题了吗?你会选择哪一种方法呢?为什么?(课件出示《孙子算经》中原题)。(学生独立解答后指名上台投影仪展示结果并说说是怎么想的。)师:你真了不起。大家也夸夸他吧!师:同学们,这是一道让大名鼎鼎的孙子都感到棘手的难题,却被我们四年级的同学解决了,真是不简单,我为你们自豪。让我们为自己今天的精彩表现鼓鼓掌吧!只要你们继续坚持这种敢想敢猜,不断探索,勇于实践的精神,我想你们在座的每一位同学一定能成为现代版的孙子。

师:那你知道早在一千五百年前的孙子及古人又是怎么解决鸡兔同笼问题的?请同学们在课后自学数学课本P105页的资料以及上网查找更多关于鸡兔同笼问题的解法内容。

2、鸡兔同笼解法的拓展应用。(3分钟)

中国古代数学在数学史上一直处在领先的位置,刚刚同学们解决的古题后来就流传到了日本,变成了这样一道题,看看谁能最先得到结果。

课件出示题目:有龟和鹤共40只,龟的腿和鹤的腿一共有112条,龟、鹤各有几只?

(学生独立解答,集体订正,课件出示答案,可针对重点内容提问,说出意义)

3、实际应用问题。(3分钟)

师:“鸡兔同笼”的问题并不仅仅局限在解决动物有关的问题上,它在我们的日常生活中也有着广泛的应用。

课件出示:我校“环保卫士”小分队12人参加植树活动,男生每人 栽了3棵树,女生每人栽2棵树,一共栽了32棵树,男女生各有几人?

五、分层练习,个性提升。(13分钟)A组题:(全部做)

1、一个饲养组一共养鸡、兔80只,共有200只脚,求饲养组养鸡和兔各多少只?

2、鸡兔同笼不知数,三十六头笼中露。数清脚共五十双,各有多少鸡和兔?

B组题:(80分以上的人做)

1、全班一共有38人,共租了8条船,每条大船坐6人,每条小船坐4人,每条船都坐满了人,问:大、小船各租了几条?

2、松鼠妈妈采松籽,晴天每天可以采20个,雨天每天只能采12个。它一连8天共采了112个松籽,这八天有几天晴天几天雨天?

思考题:一次数学竞赛共有20道题。做对一道题得8分,做错一题倒扣4分,刘冬考了112分,你知道刘冬做对了几道题?

师:同学们,完成得怎么样了?哪位同学愿意上台来展示一下你的解法?并说说你的理由。(学生上台展示)

师:多么好的想法,多么规范的表达,为他们的精彩表现鼓掌吧!

六、全课小结(2分钟)师:一节课的时间总是很短暂,在这短短的四十分钟里你们有收获吗?(生:有)

告诉老师,今天我们研究了什么问题?你掌握了哪些解决“鸡兔同笼”的方法?

师:最后,老师送给同学们两句话:掌握方法比掌握知识本身更重要。画图法、假设法也是解决数学问题的常用方法;好了,今天这节课我们就上到这里,谢谢同学们。下课。

七、布置作业

1、自学数学课本P105页的资料,观看抬腿法微课。

2、上网查找关于鸡兔问题的解法资料。

3、你来当小老师,利用假设法用平板录制一个鸡兔同笼的解题方法。

第五篇:鸡兔同笼教案

《鸡兔同笼》

教学目标:

1、了解“鸡兔同笼”问题,感受古代数学问题的趣味性。

2、尝试用不同的方法解决“鸡兔同笼”问题,使学生体会假设和列方程的一般性。

3、在解决问题的过程中,培养学生的思维能力,并向学生渗透转化、假设等数学思想和方法。

4、了解与“鸡兔同笼”有关的数学史,学习我国传统的数学文化;

教学重点:探索解决鸡兔同笼问题的方法,体会问题解决策略的多样化。

教学难点:在解决问题的过程中,培养学生的思维能力,并向学生渗透转化、假设等数学思想和方法。

教学过程:

一、创设情境,生成问题

导语:老师知道咱们班的同学非常喜欢读书,今天老师给同学们带来一部1500年前的数学名著《孙子算经》,里面记载着许多有趣的数学名题,其中有这样一道题请看:今有雉兔同笼,上有三十五头,下有九十四足,问雉兔各几何?谁知道,这是一个什么问题?(鸡兔同笼问题)

这节课我们就来研究中国历史上著名的数学趣题 “鸡兔同笼”。(板书课题)

二、探索交流,解决问题

1、初步了解题目的意思

师:“鸡兔同笼”这四个字是什么意思? 学生根据自己的理解说一说。

师:这道题目是什么意思?生根据自己的理解回答。

学生回答后课件出示课本中的例题及插图:鸡兔同笼,上面看有35个头,下面看有94条腿,鸡兔各有多少只?(请一名同学读题)

2、感受化难为易的数学思想。师:为了研究方便,那我们把它化难为易,从简单入手找出规律,再来尝试解决这个问题。

出示课本中的例1“笼子里有若干只鸡和兔,从上面数,有8个头;从下面数,有26条腿。鸡和兔各有几只?”

3、获取有用的信息。

师:从这道题中你获得了哪些信息?还有哪些隐藏的条件? 学生理解:①鸡和兔共8只。②鸡和兔共有26条腿。③鸡有2条腿。④兔有4条腿。(课件出示)

4、枚举法。

(1)师:你打算用什么方法解决这个问题? 生说。

(2)师:先猜猜可能有几只鸡几只兔呢? 生猜。

师:同学们猜的都很有道理,到底猜的对不对呢?需要干什么?(验证)怎么验证?(3)利用老师给你们提供的表格,你们猜一猜,不合适再调整,写在表格上。

学生独立完成。全班汇报交流。

师:当腿的条数猜多了时,要减少什么? 不知道你们在猜的时候发现了什么?

(当鸡的只数每减少1只,兔子的只数每增加1只,腿的条数就会增加2只;或是当兔子的只数每减少1只,鸡的只数每增加1只,腿的条数就会减少2只)

(4)师小结:根据题目中对鸡和兔的总只数猜测,根据腿数调整找到准确答案,这种方法叫枚举法。

5、假设法。

(1)假设都是鸡。

师:假如在这个时候远处传来一声巨响,兔子们们都好奇地抬起了两条前腿站立翘着头望,这时,它们和鸡一样只有两条腿站在地上。同学们,此情此景,我们可以把笼子里的鸡兔都想象成什么?(鸡)

这样就是几只鸡?几只兔?(8只鸡,0只兔)(生说师填写在刚才的表格中)。

看看这种情况腿的条数是多少?(16)

实际有26条腿,这样笼子里就少了10条腿,谁的腿?(兔子的前腿)

为什么会少10条腿呢?(把兔当了鸡在算)。一只兔当成一只鸡算少两条腿,那把几只兔当成了鸡算就会少算10条腿呢?(5只)

怎么想的?(即10里面有几个2。就把几兔当成了鸡算,5个2,把五只兔当成了鸡算,这个五就表示应该有5只兔)

刚才思考分析的过程你能不能用算式表示出来呢?算出鸡和兔子各有几只。有困难的可以同桌商量一下。(找一生板演)

学生完成算式,全班交流分析如何列的算式。(2)假设都是兔子。

师:刚才我们让所有的兔子都站起来,相当于把所有的只数都看成了鸡,如果把所有的只数都看成兔子会出现什么情况呢?(生:腿数会增加)

请同学们用算式表示这个过程。有困难的同学可以和同桌商量一下。(学生完成后,全班交流算式)。

师:刚才我们是把笼子里的所有只数都看成了鸡,或者都看成了兔来解决了鸡兔同笼的问题,这种方法我们叫做“假设法”。(师板书“假设法”)

6、用方程解决。

在解决鸡兔同笼问题时,除了用假设法,还有别的方法吗?(用方程解)(师板书方程)

师:可以设谁为x?(鸡或者兔)我们不妨先设兔为x只,那鸡有多少只?(8-x)只,会列方程吗?请同学们尝试用方程解决一下鸡兔同笼的问题。

找一生板演,分析数量关系,全班交流订正。(列方程的重点是找出等量关系:设头数,以脚数相等来列出方程)

7、解决《孙子算经》中的题目。

小结:请同学们回忆一下,刚才在解决鸡兔同笼问题时,用到了哪些方法?(列表法,假设法和列方程)同学们真是太聪明了,一个问题想到了这么多方法解答,老师为你们感到骄傲!现在同学们用喜欢的方法解决《孙子算经》中的题目吧。

学生独立完成后,全班交流订正。

8、了解古人解《鸡兔同笼》的方法。

想知道我们的祖先是怎样解决“问题鸡兔同笼”问题的吗?(课件出示)

师:古人这一思路新颖而奇特,这“抬腿法”也叫“减半法”,令古今中外数学家赞叹不已,我们的祖先真伟大。这种解法给我们的启示是:思维方式一定要思维多变,不能墨守成规。

三、巩固应用,内化提高

1、师:到现在,鸡兔同笼的问题学会了吗?还有什么问题吗? 老师有!你见过有人把鸡和兔子关在一个笼子里吗?(没有)看见过有人从上面数头,从下面数脚的吗?(没有)

那这道题好像显得很无厘头的样子,可就是这样的一道题,古人在研究,现代人在研究,日本人也在研究。

鸡兔同笼问题传到日本时就变成了“龟鹤问题”,课件出示题目你认为“龟鹤问题”与“鸡兔同笼”有什么相似之处?

(龟相当于兔,鹤相当于鸡)

2、在抗日战争时期有一个歌谣:一队鬼子,一队狗,两队并成一队走,数数头有80个,却又200条腿走。请你仔细算一算,多少鬼子多少狗?(课件出示歌谣)

同学们考虑下,这道题目又和鸡兔同笼有什么联系? 生说。

师:是啊!这类问题我们都可以看成是鸡兔同笼的问题。而我们研究的鸡兔同笼的问题不在于解决问题,而在于通过鸡兔同笼的研究建立解决问题的模型。(师板书模型)

3、我也遇到过鸡兔同笼问题的例子。我有5元和2元的人民币20张,一共80元,5元和2元得人民币各有几张?(课件出示题目)这也属于鸡兔同笼的问题。

4、其实生活中还有很多这样的题目,(课件出示课本中做一做的租船和植树的问题)只要同学们用心发现,你一定会大有收获。

四、回顾整理,反思提升 师:这节课研究了什么问题? 鸡兔同笼是个什么? 用到了哪些方法解决的? 你觉得数学怎么样?

数学自古以来是中国历史上的璀璨明珠,在我们的生活中无处不在,我相信同学们只要敢于猜测尝试、并且不断的实践验证、调整创新,任何问题都能迎刃而解

下载我的小学鸡兔同笼教案word格式文档
下载我的小学鸡兔同笼教案.doc
将本文档下载到自己电脑,方便修改和收藏,请勿使用迅雷等下载。
点此处下载文档

文档为doc格式


声明:本文内容由互联网用户自发贡献自行上传,本网站不拥有所有权,未作人工编辑处理,也不承担相关法律责任。如果您发现有涉嫌版权的内容,欢迎发送邮件至:645879355@qq.com 进行举报,并提供相关证据,工作人员会在5个工作日内联系你,一经查实,本站将立刻删除涉嫌侵权内容。

相关范文推荐

    鸡兔同笼教案

    【必备】鸡兔同笼教案4篇鸡兔同笼教案 篇1 鸡兔同笼问题最早出现在我国古代的一本数学书《孙子算经》中,原题是:“今有雉、兔同笼,上有三十五头,下有九十四足。问雉、兔各几何?”......

    (鸡兔同笼)公开课教案

    鸡兔同笼 教学内容 课本第80-81页例题,课本第81页“练一练”中的第1、2、3题,及“你知道吗” 【教材分析】的经验,逐步探索不同的方法,找到解决问题的策略,在合作交流学习的过程......

    鸡兔同笼教案(精选)

    鸡兔同笼 一、创设情境 今天老师给大家带来两只可爱的小动物,鸡和兔 围绕这两只小动物,我们一起来玩一次头脑风暴的小游戏,看看谁最聪明?反应最快?(抢答) 师:一直公鸡几只脚?一只兔子......

    鸡兔同笼教案(5篇)

    【教学内容】:人教版课程标准实验教科书六年级上册第112—114页内容 【教学目标】:知识目标:经历和体验用各种奇思妙法解决实际问题的过程,进一步体会奥数的乐趣。 能力目标:培养......

    鸡兔同笼教案(定稿)

    鸡兔同笼 教学目标: 1.了解“鸡兔同笼”问题,感受古代数学问题的趣味性。 2.经历自主探究解决问题的过程,体验解决问题策略的多样化。了解列表法、假设法等解决问题的方法。 3、......

    鸡兔同笼教案(精选合集)

    鸡兔同笼教案 教学目标: (一 ) 知识技能: 1.使学生初步认识“鸡兔同笼”的数学趣题,了解与此有关的数学史,感受我国传统的数学文化。 2.使学生理解并掌握用“图解法”和“ 列表法......

    人教版六年级鸡兔同笼教案

    《鸡兔同笼》 一、教学内容: 小学数学六年级上册课本126页至130页。 二、过程与方法: 在解决“鸡兔同笼”的活动中,尝试通过列表举例、尝试计算、列方程等方法解决鸡兔的数量问......

    五年级上册鸡兔同笼教案

    五年级上册《尝试与猜测》 汤琪 一、教学内容 五年级上册《尝试与猜测》二、教学目标: 1、知识与技能:学生通过对一些日常生活中的现象的观察与思考,从中发现一些特殊的规律;......