第一篇:三角形的内角和教学案例反思
《三角形的内角和》教学案例反思
山东省淄博市张店东一路小学 邹恒
背景:最近,张店区教研室举行了“青年教师优质课”评选,我们学校有位刚毕业一年的年轻教师参加。经过大家共同选教材、研究商量后,确定参评课题为“三角形的内角和”。这是新实验教材四年级下册的内容,从教材上看,教学内容比较简单,就是让学生亲自动手,通过量、剪、拼、折等方法推导出三角形内角和是180°,会应用这一规律进行计算。很显然,许多学生肯定有这样的知识经验,每个班都有部分学生已经能说出这一知识点。根据这样的现状我们让年轻教师根 据自己的理解先备课、设计教学思路,随后我们进行了跟踪听课。
试讲教学片断: 创设情境,引入新知:
教师先出示色彩鲜艳,用卡纸制作的学具:钝角三角形、锐角三角形、直角三角形等,让学生分辨,复习上节课的内容。学生回答的轻车熟路,感觉非常简单。继而教师拿出直角三角形,说道:“请大家画出一个直角三角形。”很快,学生便大功告成,举起画完的作品让老师看。老师边点头边露出赞许的微笑。接着提出第二个问题:“聪明的同学们,能不能画出有‘两个’直角的三角形呢?画画试试。”没出5秒钟,反应快的学生便脱口而出:“老师,画不出来!”老师紧接追问:“为什么呢?”学生:“因为三角形的内角和是180°,两个直角就是180°了,画不出第三个角了。所以画不成三角形。”学生说得太好了,老师赶紧接过了话题:“这位同学说三角形的内角和是180°,你们知道吗?”其他学生似乎还没明白怎么回事,只好连忙点头说知道。教师肯定的说:“是的,三角形的内角和就是180°,我们怎么想办法验证一下呢?请大家想想办法。”学生经过很长时间的合作、探究,得出了三种办法,全班交流汇报。练习分为基本练习和综合练习两个层次。学生计算的没多大问题。最后一题是思维拓展练习:研究一下四边形的内角和?五边形、六边形的内角和呢?多边形呢?因时间的关 系,无一人能够想出策略。
反思:
教师创设情境采用的是给学生制造思维障碍的方法,让学生画出有“两个”直角的三角形,欲擒故纵,有其果,学生肯定会究其因,同时,还能让学生在体验中,寻找数学的真谛,此创设情境的方法真是妙哉。听课时,我也为他这样的设计感到高兴,心想,一定能产生好的教学效果,但事实却不是如此,学生一堂课显得比较沉闷,只有部分好学生在迎合老师,学生并没有充分的参与到数学学习中来。课后,我反复的思考,为什么会这样呢?后来发现原因有以下几点:
一是因为教师在出示问题时,没有把“两个”直角三角形的“两个”强调清 楚,有许多学生没有听清要求;
二是因为教师没有留给学生充分的思考的时间,好学生反应快,答案脱口而出,其他学生思维还没产生任何的碰撞,更没经历实验的过程。
三是我们现在教育体制下的学生大都缺少质疑权威的意识和习惯,显得顺从,没有主张和个性。在好学生说出三角形的内角和是180°后,其他学生对于这一知识点真正知道的有多少?但正因为是好学生的回答,在其他学生眼中,这是学习的权威啊,他说的肯定是对的,结果大家只有稀里糊涂的点头附和,是的,三角形的内角和是180度。
在这一环节的教学中,很多学生就吃了夹生饭,根本没有透彻的理解和掌握。看似精彩的情境创设,如果得不到教师适度的调控和把握,也焕发不出它应有的 光彩。
新课标指出:数学教学活动必须建立在学生的认知发展水平和已有的知识经验基础之上。教师应激发学生的学习积极性,向学生提供充分从事数学活动的机会,帮助他们在自主探索和合作交流的过程中真正理解和掌握基本的数学知识与技能、数学思想和方法,获得广泛的数学活动经验。深刻的思考、仔细的推敲以上情境的创设,也不难发现,它尽管有它的闪光点,但也有不足的地方,就是它的设计引入没有从大部分学生的知识经验出发,没有照顾到全体,知道三角形内角和是180°的学生毕竟是少数,这也就是它没能激发起学生学习欲望的原因所在。因此,在数学课堂教学中,我们要时刻注意发掘教材孕伏的智力因素,审时度势,把握时机,因势利导地为学生创造良好的教学情境,激发学生的兴趣,让学生在学习数学中愉快地探索。
再者,最后一题,是在学习了三角形内角和基础上的拓展,任何多边形都可以转化为多个三角形来计算内角和,学生无一人能够想出办法,仔细想想,是我们的题目出的太难,还是学生太笨呢?都不是,是我们教师的引导作用没发挥出来,没能激发起学生学习的内部活力,也就无谈学生的动手实验、猜想、验证。当然,学生的实验、猜想、验证能力的培养并不是一堂课的问题,而是朝朝夕夕,无声无息的渗透。作为任何一个站在教学前沿的教师,我们都应有这样的教学理念,让自己的学生在数学学习中通过观察、实验、归纳、类比、推断获得数学猜想,体验数学活动丰富的探索性和创造性,感受证明的必要性、证明过程的严谨 性以及结论的确定性。
再次实践:
经过大家的共同评课和授课教师自己的反思,我们重新改变了创设情境的方 法。
师出示一正方形纸,问:这是一张(正方形)的纸,它有(4)个角,这4个角在数学里,我们给它一个名称,把它叫做正方形的(内角),而且每个内角 都是(直角),那么它的内角和是多少度呢?为什么?
生1:正方形的内角和是360°,因为每个内角都是90°,有4个内角,就 是4个90°,也就是360°。
师:现在,我们把这个正方形纸沿着对角线剪开后会怎样呢?(师演示,并指导生拿出正方形纸折一折、剪一剪)
生3:通过刚才的观察与操作,我发现这样沿对角线剪开后,得到了2个三 角形,都是等腰直角三角形。
师:谁来猜想一下其中的1个三角形的内角和是多少度?
生:通过刚才的观察与操作,我发现三角形的内角和是180°。因为正方形的内角和是360°,沿对角线剪开后,等于把正方形平均分成了两份,也就是把360°平均分成两份,每份是180°,所以这个三角形的内角和是180°。生:我发现三角形的内角和是180°。因为沿正方形对角线剪开后,等于把正方形原来的直角平均分成了两份,每份是45°,两个45°加上90°就得到 180°,所以我知道三角形的内角和是180°。„„
师:同学们猜的对不对呢?用什么办法可以知道?
生:验证。
师:对,需要经过验证。
(分小组对三角形进行验证。看它的内角和是不是180°)
组织学生汇报(测量的同学边汇报边板书,剪拼的同学利用投影汇报。)生1:我们用量角器对3个角进行了测量,再分别把3个角的度数相加,得 出了内角和为360°。
生2:我们将这个直角三角形的两个锐角用量角器测量,把两个锐角相加是90°,再加上直角的度数,这样我们知道直角三角形的内角和是180°。生3:我们小组将三角形的两个锐角剪下来,然后拼在一起组成了一个直角,再把另一个直角拿来拼在一起,这样组成了平角,证实直角三角形的内角和是 180°。
生4:我们是先将一个角折过来,使它顶点落在底边上,再把另外两个角也折过来,这样三个角正好拼成一个平角,所以我们知道这个钝角三角形的内角和 是180°。
以上教学取得了非常好的教学效果,学生从一开始就全员参与到观察的过程中来,轻松得出正方形的内角和是360°,再通过动手折一折,剪一剪的实验过程,将正方形转化为两个三角形。然后让学生再次观察通过剪开得到的三角形,大胆猜想,它的内角和会是多少度?所有的过程都是学生在实践、在经历、在体验、在猜想,就在学生猜想出三角形的内角和是180°后,教师不紧不慢的说道:“同学们猜得对不对呢?用什么办法可以知道?”轻松的把问题又重新抛给了学生。真是随风潜入夜,润物细无声啊,将教师的引导作用发挥的淋漓尽致,却又不留半点痕迹。在最后拓展练习时,学生也能轻而易举的利用转化的思想,将多边形转化为多个三角形了,真是一举两得。新课程所提倡的:让学生经历观察、实验、猜想、证明等数学活动过程,发展合情推理能力和初步的演绎推理能力,能有条理地、清晰地阐述自己的观点,在此课中得到了良好的体现,学生语言逻辑能力和表达能力,展示自我的意识都得到了进一步的提高。如果我们长此以往 这样坚持下去,我们的学生将会是受益无穷的。
(长安二小 钟莉转载自人教网)
第二篇:三角形内角和教学案例
《三角形内角和》教学案例
新疆兵团第四师63团中学马莉红
《三角形内角和》的教学内容,以前曾是选学内容,有时是必学内容,无论是选学必学,我应用新的教学理念和已有的经验,使这个内容的教学有新意,效果有突破。
环节一:
学生独立说说每个角的度数,再分别算一算每个三角板中三个内角的和是多少度。师:通过计算你们发现了什么?
生:每个三角形的三个内角的度数加起来都等于180° 小组合作、交流。
A小组:我们都是用量角度的方法。
生1:我画的是一个锐角三角形,量一量,知道∠1=80°∠2=60°∠3°=40°; 80°+60°+40°=180°
生2:我画的是一个钝角三角形,可能是钝角比锐角大,我把三个角的度数合在一起,共是182°。
生3:我画的锐角三角形,我量的是175°…… 师:通过以上同学的比较,你们发现了什么?
(生:三角形的内角和不相等,钝角的内角和大于锐角三角形的内角和)B小组:我们组用的是别的方法,知道三角形的内角和
生1:长方形的内角和是360°,我把长方形对折,然后剪开,我有两个三角形,它们的内角和是360°÷2=180°
生2:我能过正方形来计算的,把正方形分成两个大小相等的三角形,它们的内角和都是90°+45°+45°=180°
生3:我学过四边形的内角和是360°,我随意剪了一个四边形,连一条对角线,把四边形也是平均分成2份,每个三角形的内角和就是360°÷2=180°
生4:不对呀,你那两个三角形一个大,一个小,怎么可能平分呢?我认为不合理。师:生4提得很好!两个三角形大小的确不一样,那我们就来验证……
C小组:我们是把三角形撕成三块来拼一拼,三个角拼合在一起,刚好成一条直线,即是一个平角180°
D小组:生1:我们小组什么三角形也没有剪出来,我们就简单算出来。生2:我们设想一个等边三角形,每个角都是60°,3×60°=180°
师:通过各小组不同回答,你认为三角形的和到底是接近180°还是180°呢? 生:根据以上的种种方法,可得出不论是什么三角形,三角形的内角和都是180° 反思: 以上环节我从学生的生活实际出发设计问题情境,使学生自发提出所要探究的问题,用自己的思维方式大胆地提出猜想,并对自己的猜想设法进行验证,获得知识结论,可以看出学生的思维是非常活跃的,不管有些方法显得有些笨拙,然而学生思考了,体验了探索问题的过程,这就是新课改中所说的:问题是数学的心脏,探索浓度的过程,正是学生思维的飞跃,个性的展示,让学生玩使学生在自主的活动中和愉悦的玩中探索一系列的在整节课中,我没有更多地讲知识,告诉方法,而是组织了几次活动,每次活动后学生汇报、讨论、争辩、质疑,学生自己不断发现新问题,又自已去解决问题,学生的学习是一种主动的积极的,愉悦的活动。如果学习的任务由别人来派给学生,学生无形中就是被动的,因此让学生在已有的知识结构中自然而然地产生知识的冲突,让他们感悟到自己确实有一种学习某些知识的需要。在上面的这个案例中,学生通过对已是三角形内角和是180°而自画的三角形内角和不是180°,就发现自己会很多很多东西。在老师的肯定和学生的赞许中,获得了一种成就感和满足感,同时也发现科学家有很多知识自己还不能去解决,于是就有了要去解决它的必然需求,这就是学生思路注放了更活跃的因子,学生的思维就会更开阔的,老师巧妙地把以学生为主体地理念淋漓尽致地体现了出来。
因此,在课堂教学中,创造条件让学生主体性得到发展,培养有扎实的数学基础和较强的适应能力,又有独立的人格和创造精神的开拓型人才,让全体学生自始至终主动积极地参与到学习的全过程中。
第三篇:三角形内角和教学反思
“双主体”教学反思
--《三角形内角和》课后反思
严怀军
为了全面提高教学质量,学校以我们初一数学为启动点,非常有幸的学习了南京东庐中学“讲学稿”模式、高邮赞化中学“导学案”教学,结合我们学生的特点形成了我校的“双主体”特色,我们这些新手是最大的受益者。本学期快结束了,我上了一节汇报课《三角形内角和》,让我真切的感觉到“教育是门带有遗憾的艺术”。
本节课的宗旨是以学案为依托,以教师为主导,以学生为主体,通过学生的自主学习,培养学生的自学能力,实现学生的自学能力、合作能力、创新能力和整体素质共同提高,进而提高教学效益。在设计这节课时我请教了学校的教学能手余老师,请她对教学环节进行了指导。对教学案中涉及三角形外角知识进行了探讨,在学习余老师的课后我们决定在我的课上也可一试。现将我在这节课的思索、认识、体会及迷惑、彷徨总结如下:
一、抓好小组建设及学法指导,是搞好“双主体’的基础。
“小组学习”是“双主体”的主要形式。小组建设要遵循“同组异质,异组同质”的原则,考虑成绩搭配、男女性别平均、学生的意愿;要通过小组文化建设增强小组团结协作的凝聚力;更要做好小组长的培训,明确小组内每位成员的职责。比如在进行例二的探索研究时,小组长并没有组织好组内讨论,你一言我一语的显得无序,最后也没形成一个总结来进行汇报。
二、“双主体”的成功离不开教师的巧妙引导。
以学生为学习的主体,在“双主体”中,教师是学生的得力助手,一方面要相信学生的智慧和能力,绝对不能越俎代庖;另一方面也要注意:学生毕竟是学生,离不开教师必要的引导、指导。初中生是有一定的自我修正能力的,教师必须对学生进行必要的“学法指导”,才能让学生在平时的学习过程中随时掌握解决问题的方法,逐步由“学会”变为“会学”。我在这节课上没有很好的关注全体学生,未能调动部分学生的学习积极性和主动性,特别是在解决利用外角知识解决问题时,学生产生倦怠、迷惑或感到困难时,未能真正实现课堂教学中的“生生互动”、“师生互动”,使教学得以顺利进行,获得成功。
三、实施“双主体”,身上的担子更重了
实施“双主体”后,表面上教师在课堂教学中轻松了,但教师的任务并没有减轻,而是对教师的要求更高了。教师要提高自己的职业修养和道德素养,明确自己的任务,提高业务素质。课下教师要搜集更多适合教材、学生的教学、教育资料和相关信息,供学生参考和学习,要把工作做得更深、更细;努力准备各种材料,使之更适合不同层次学生的需要,使材料更具有逻辑性、趣味性、生活化,只有这样,课堂上利用非智力因素,展现一切课堂机智,调动学生投入的积极性,才能真正组织学生进行有效的学习。才不会只见热闹,没有成效。
四、我的疑惑
1、“双主体”的实施对优秀学生来说的确得到了更多、更快的发展,对于那些基础差、行为习惯不够好的孩子来讲,简单的知识他们是投入进去了,碰到难的,比如现在的几何推理部分,他们就丧失了自学能力,让他们做,那就更是摸不着东南西北了。
2、教学流程要求学生独学、对学、群学(在预习时解决)、展示汇报、点评,对于每节课短短的45分钟来说,即使我们现在每堂课仅仅只安排了一个框题的内容,还是无法完成教学任务,教学成绩如何保障?
3、小组交流学习起不到预期的效果。在实际教学过程中,每个小组内那些基础差的、表达能力弱的、不够大方的同学常常是没有发表自己的观点,没有真正实现参与讨论,长此下去,他们只会越来越没有自信,表达能力也会越来越弱。
感谢学校的课改行动,给了我教学新生命,我必将坚定不移的沿着教改的路走下去,努力向教学能手们学习,提升自身教学修养,提高课堂效率!
第四篇:三角形内角和教学反思
《三角形内角和》教学反思
清水塘学校 何丽
本节课的教学目标是:
1.让学生亲自动手,通过量、剪、拼等活动发现、证实三角形内角和是180°,并会应用这一知识解决生活中简单的实际问题。
2.让学生在动手获取知识的过程中,培养学生的创新意识、探索精神和实践能力。并通过动手操作把三角形内角和转化为平角的探究活动,向学生渗透“转化”数学思想。
3.使学生体验成功的喜悦,激发学生主动学习数学的兴趣。
本节课的教学重、难点是:让学生经历“三角形内角和是180°”这一知识的形成、发展和应用的全过程。
本节课教学设计符合新课程理念,转变学生的学习方式,能让学生以小组合作的形式进行问题的探索与研究,学生在整节课中学得轻松。整节课的教学设计,条理清晰,层次清楚,学生思维活跃。
课堂导入环节,我课件先出示三个问题:
1、什么是三角形的内角?
2、三角形有几个内角?
3、什么是三角形的内角和?先让学生独立思考再说说这几个概念,最后教师释疑:三角形内角和就是三角形内的三个角的和。顺水推舟揭示课题:《三角形内角和》。
新课探究环节,我先从学生熟悉的三角板入手计算这两个三角板的内角和,学生计算后猜想三角形内角和是180度。抽象出特殊的三角形探讨三角形的内角和是180°。我提出大小、形状不同的三角形,它们的内角和一样吗?都是180º吗?接下来很自然地引导学生探讨所有的三角形的内角和是不是也是180,过渡自然且有吸引力。
在学生探究活动的过程中,先让学生进行测量、计算,但得不到统一的结果,再引导学生用把三个角拼在一起得到一个平角进行验证。93班的黄霜霜同学很机智的想到将她手中的直角三角形的两个锐角通过折叠后拼凑在一起正好可以和直角重叠。她提出这个想法让我收获和一份惊喜,孩子们思维和潜力是无限的。只要我们静待花开,就一定会有花开浪漫的景象。有部分学生在拼凑的过程中出现了困难,花费的时间较长,在这里用课件再演示一遍正好解决了这个问题。练习设计也具有许多优点,注意到练习的梯度,并由浅入深,照顾到不同层次学生的需求,调动所有学生的积极性。让学生在游戏中除疲倦激发兴趣,拓展学生思维。
本课的不足之处是习题的设计受课本资源的限制,没有大胆突破教材,充分利用生活资源。让学生利用学过的知识解决生活中常出现的问题,更能使学生体会到数学不仅来源于生活,学习数学的目的更是为了解决生活中的问题,体会到学习数学的重要意义。
第五篇:三角形内角和教学反思
《三角形的内角和》教学反思
本节课的教学目标是:1.让学生亲自动手,通过量、剪、拼等活动发现、证实三角形内角和是180°,并会应用这一知识解决生活中简单的实际问题。
2.让学生在动手获取知识的过程中,培养学生的创新意识、探索精神和实践能力。并通过动手操作把三角形内角和转化为平角的探究活动,向学生渗透“转化”数学思想。
3.使学生体验成功的喜悦,激发学生主动学习数学的兴趣。教学重、难点是让学生经历“三角形内角和是180°”这一知识的形成、发展和应用的全过程。
这节课我让学生经历观察、猜想、实验、证明等数学活动过程,能有条理地、清晰地阐述自己的观点。在学生猜测三角形的内角和是多少度的基础上,引导学生通过探究活动来验证自己的观点是否正确,激发求知的渴望和学习的热情,最后达成共识。新课程将探究式学习作为学生学习的主要方式之一,着重点放在让学生在主动参与的过程中进行学习,在探究问题的活动中获取知识并主动建构新的认知结构,了解获取知识的途径和技巧。我在实施探究学习时采用了以下的教学策略:
(1)创设问题情境,引导学生发现问题,思考问题。
本节课我在教学上先通过大小三角形争论故事引入,让学生产生疑问,再让学生进行测量、计算初步感知三角形的内角和是180°,让学生猜测是否所有的三角形的内角和都一样呢?学生初步建立一个表象,学生运用已有的知识经验能否解决这样的问题呢?这个问题为后面的猜测和验证做了铺垫,引发思考,激发学习兴趣。引导学生从特殊三角形过渡到一般三角形的验证规律。
(2)创造解决问题的环境,给充分的机会和时间让学生解决问题。
学生在问题面前是退缩还是前进呢?这就看老师如何有效地引导。我预先要求每位学生准备了一些各式各样、大小各异的三角形,还有剪刀,量角器,白纸,直尺等,让他们经历观察、猜想、实验、证明等数学活动过程。同时提出两个问题,第一:你选用什么三角形, 采用什么方法来验证?第二:经过操作得到什么结论?使学生在操作上有更强的目的性和指向性。学生分小组对大小不一的三角形进行验证,经历量一量、算一算;撕一撕,拼一拼;折一折,量一量等一系列操作活动,从而得出“三角形的内角和是180°”这一结论。整个探究过程学生是自主的、积极的。学生通过操作,思考,反馈等过程真正经历了有效的探究活动。
在练习设计中我注意到练习的梯度,并由浅入深,照顾到不同层次学生的需求,最后的游戏也很有趣味性,调动所有学生的积极性。让学生在游戏中除疲倦激发兴趣,拓展学生思维。
不足之处: 1.验证猜想环节中,学生的方法虽然各有不同,但方法较单一,语言表达能力欠佳,思维比较定势,不敢大胆尝试不同的方法去验证自己的猜想。2.评价语言和方法都太单一,激励性评价没有层次。发言的学生比较集中,面比较窄。
3.因为学生在以前的学习活动中,对剪拼和拼折的方法接触的太少,考虑到课堂教学时间的关系,所以教师引得太多,给学生的自主发现机会太少。
4.数学语言不够精炼,汉语水平还有待于提高。
三角形的内角和教学设计
一、教学内容
义务教育课程标准实验教科书(人教版)四年级下册数学P85例5及“做一做”。
二、教学目标
1、知识与技能:
通过学习,掌握三角形的内角和是180度。
2、过程与方法:
能通过各种方法(量、拼、折)去获取三角形内角和等于180度。
3、情感、态度和价值观:
培养学生动手操作、仔细观察、认真思考、善于合作的良好学习品质。
三、教学重、难点
1、教学重点
(1)、通过各种途径测得三角形的内角和为180度。(2)、应用三角形内角和的特征来进行计算。
2、教学难点
通过量一量、拼一拼、折一折等方法测得三角形的内角和为180度。
四、教学准备
剪刀、纸张、锐角三角形纸片、直角三角形纸片、钝角三角形纸片、三角板、量角器、《三角形的内角和》教学课件。
五、预习目录:
三角形的“内角”,“内角和”指的是什么? 量一量
(1)画一个三角形。(提示:锐角三角形,直角三角形,钝角三角形)
(2)准确,真实的测量出你所画的三角形3个内角的度数。度数写在三角形里。
(3)算一算这个三角形的内角和是多少度?
六、教学过程: 1.谈话导入
讲故事新课导入,激起学生的学习兴趣。老师想给同学们讲一个小故事。(出示幻灯片)在一个三角形里住着三个内角,它们分别叫老大,老二,老三,平时,他们三兄弟非常团结。可是有一天,老三突然不高兴,发起脾气来,他指着老大说:“你凭什么是钝角,度数最大,我也要和你一样大!”“不行啊!”老大说:“这是不可能的,否则,我们这个家再也围不起来了。。。”,“为什么?”老三很纳闷。
要求学生只要认真学习这节课,老三的问题就一定能解决,紧接着老师检查学生预习情况。2.检查预习
让学生口答三角形的内角、内角和的概念。生:在三角形里的三个角叫做三角形的内角。
生:在一个三角形里三个角的总和叫做三角形的内角和。教师用多媒体演示。3.新知探究
1)、通过学生分组合作验证: 画一画,量一量
学生画一个任意的三角形,(提示:锐角三角形,直角三角形,钝角三角形),之后用量角器量得该三角形的内角和。量好后指名学生回答量得的不同三角形内角和是180°。
在学生测量时,强调问直角三角形里有几个直角,钝角三角形里有几个钝角,锐角三角形里有几个锐角等问题。2)、通过学生动手操作验证: 剪-拼或撕-拼
要求学生先把提前准备好的任意一个三角形的三个角剪下来或者,把三角形的三个内角撕下来,然后把它们拼在一起,看有什么发现。
生汇报:三角形的三个角分别剪下来,并把它们分别拼在一起,能拼成一个平角。折-拼
①先统一用准备好的三角形纸来折。
教师巡看学生操作,学生如果折拼直角三角形,及时提示:A先确定好斜边为底边;B确定两条直角边的中点并以这条中点线为准折向底边;C最后把两个锐角分别折向底边;汇报:发现三个角折向一块后,变成(几乎变成)一个平角。也就是说,直角三角形的内角和是(大概是)180度。②要求学生再按刚才的办法,试着折一折锐角三角形和钝角三角形。汇报:锐角三角形和钝角三角形的三个角折向一块后,也变成(几乎变成)一个平角。也就是说,锐角三角形和钝角三角形的内角和也是180度。学生回答回答验证结果,展示作业。把好的作业贴在黑板上。(出示幻灯片演示剪---拼,折---拼效果)3).通过推算验证: 把长方形平均分成两个直角三角形得到三角形内角和是180度。教师利用制作好的课件来演示。师问同学们通过量,剪-拼或折-拼发现了什么?
生小结:所有三角形的内角和等于180度。
出示幻灯片:早在300多年前,数学家,物理学家帕斯(1623-1662),就已经发现了“所有三角形的内角和都是180度”,而他当时12岁。师:你们今年几岁? 生:9岁,10岁。师:了不起,你们比帕斯卡发现三角形的内角和提前了2—3年,我们班的同学们都是数学天才,老师相信你们将来都能成为对社会有用的人。你们相信吗?你们为自己鼓鼓掌。生边鼓掌,边说相信。
师:同学们,经过大家的共同努力,我们研究出了三角形的内角和是180度,现在大家都累了,大家做一个游戏,帮角找朋友。接着追问,一个直角三角形里最多有几个直角,一个钝角三角形里最多有几个钝角?
师:同学们本节课知识掌握得非常好,通过多种方法验证了三角形的内角和等于180度,通过本次学习,你一定能帮忙解决钝角三角形内角三兄弟老三的问题,你想怎样给老三解释呢?想一想?(出示幻灯片)生:三角形的内角和是180度,一个钝角三角形里最多有一个钝角,如果有两个钝角,三角形的内角和超过180度,它就不是三角形了,钝角三角形里的三个内角三兄弟就再也围不起来了。老师及时表扬,点评。
师:回顾以下,我们是怎样一步步得到三角形内角和是180度的?
生:先测量计算,猜想三角形内角和是大约180度,然后在剪拼折拼验证,再利用长方形说明直角三角形内角和,锐角,钝角三角形的内角和。。。
师:对,大胆猜想,小心求证。学数学就需要这种精神!师:除了这些,你们还学到了什么? 生:自己先读书学习师:多好的学习方法!。4)、巩固练习。
(1)出示判断题,进一步巩固这节课重点和难点,学生独立完成。
(2)求等边三角形的每个角是多少度?(3)做课本85页做一做。(4)做课本88页第10题。5)、总结:
通过这节课的学习,你有什么收获? 6)、布置作业