第一篇:什么面积教案
《什么是面积》
三年级
靳秀秀
【教学目标】
1、结合具体情境,通过观察、操作等活动体验面积的含义,初步学会比较物体表面和封闭图形面积的大小。
2、通过比较两个图形面积大小的过程,让学生体会解决问题策略的多样性,培养学生动手操作的能力,同时发展学生的空间观念。
3、创设有目的的活动,让学生经历知识形成的过程,培养学生主动探索与团结协作的意识和能力,使学生体会数学与生活的密切联系,激发学生的学习兴趣。
【教学准备】
1、教师准备:多媒体课件、学具袋(正方形与长方形每生各一个,剪刀、固体胶、小纸片、硬币等)
2、学生准备:学具袋(正方形与长方形每生各一个,剪刀、固体胶、小纸片、硬币等)
【教学重点】
理解面积的含义,体验比较策略的多样性。【教学难点】
理解面积含义,比较两个图形面积的大小。【教学过程】
一、谈话引入:
1、手掌面及数学书封面引出物体表面大小就是它们的面积。(板书:物体表面的大小——面积)
2、以淘气想加入到同学们当中来,出示课件引出:封闭图形的大小就是它们的面积。(板书:封闭图形)
二、初探面积的含义。
1、感知:
① 寻找身边物体的面积,学生举手回答。
② 比较物体面积的大小,同桌互说并举手回答。
2、学生活动:比较长方形和正方形的面积大小
① 教师出示长方形与正方形。学生猜测图形面积的大小。
② 学生动手操作,利用学具袋中的学具想出多种方法比较两个图形的大小。师巡视指导。
③ 学生演示不同方法并由学生选择测量面积比较准确的方法。
④ 师引出数格子的方法。
三、应用。
1、说说教室里一组物体的面,并比较一下他们面积的大小。
2、有些图形我们一目了然就能比较出它的大小,但是有些图形我们就不能。出示书上39页比一比
(1)提问:猜一猜,哪个图形面积大些?
让学生先进行直观估测,和后面的验证结合起来,培养学生的数感。
(2)找验证策略:
A、到底哪个结论是正确的?能不能结合学具袋里的学具想出办法来验证?
B、个人尝试(让学生把学具袋里的学具都可以尝试一下,可以用不同的方法验证)
C、小组同学交流,相互说一说。归纳小组的办法。(这里面的交流重在体现解决问题策略的多样性。可以相互借鉴,相互学习)
D、小组展示验证,全班汇报,并说明理由或想法。
至少可以呈现这样四种方法:折叠、用圆形图片摆、用小方块摆、用透明胶片的格子比较引导学生学会欣赏、反思和评价
(3)小结:比较两个图形面积的大小时。可以采用不同的方法,但验证过程必须科学、准确。
四、拓展(小小设计师)
在方格纸中小组合作完成一个图形贴画。
1、由智慧老人送礼物引出。
2、教师提出活动具体要求。
五、总结
在今天的学习中,你都知道了些什么?
第二篇:平行四边形面积教案
《平行四边形的面积》教学设计
叶长生
教学内容:人教版义务教育课程标准实验教科书《数学》五年级上册P80—81页,平行四边形的面积。
教学目标:
1、使学生经历探索平行四边形面积计算公式的推导过程,掌握平行四边形的面积计算方法,能应用平行四边形的面积公式解决相应的实际问题。
2、培养学生的观察操作能力,领会割补的实验方法;培养学生灵活运用知识解决实际问题的能力;培养学生空间观念,发展初步的推理能力。
3、培养学生合作意识和严谨的科学态度,渗透转化的数学思想和事物间相互联系的辩证唯物主义观点。
教学重点:探索并掌握平行四边形的面积计算公式。
教学难点:理解平行四边形的面积计算公式的推导过程。
教具学具:课件、长方形、平行四边形卡片、剪刀、直尺等。
教学过程:
一、创设情境,铺垫导入
1、我们学过那些几何图形,学生回答,教师出示课件。
2、你们会计算那些图形的面积。
3、你还知道关于平行四边形的哪些知识?(出示课件平行四边形)
4、我们已经了解了这么多关于平行四边形的知识,这节课就让我们一起来探讨平行四边的面积计算。(板书课题:平行四边形的面积)
二、合作探索,迁移创造
1.用数方格的方法计算平行四边形面积。
(1)出示面积和平行四边形相同的一个长方形。提问:数一数,这个长方形和这个平行四边形的面积相同吗?
(2)小组讨论,观察比较两个图形的关系,提问完成表格。提问:你发现了什么?
引导学生明确:平行四边形的底和长方形的长,平行四边形的高和长方形的宽分别相等,它们的面积也相等。
(3)根据你的发现你能想到什么?
2、图形转换
(1)不数方格能不能计算平行四边形的面积呢?(教师展示一个平行四边形卡片)这是一个平行四边形,我们不知道它的面积如何计算,能不能把这个平行四边形转换成一个与它面积相等的图形来计算它的面积呢?(能)可以转换成什么图形?(长方形)怎样将平行四边形转换成与它面积相等的长方形?
(2)四人小组合作,用课前准备好的平行四边形卡片和剪刀,把平行四边形剪拼成长方形。(学生动手操作,小组汇报上台演示剪拼过程)边剪拼边观察思考:拼出的长方形和原来的平行四边形相比,面积变了没有?拼出的长方形的长和宽与原来的平行四边形的底和高有什么关系?(板书:平行四边形 底 高)
(3)(教师演示说明)这个长方形的面积与原来的平行四边形面积相等,这个长方形的长与原来平行四边形的底相等,这个长方形的宽与原来平行四边形的高相等。(板书连接符号)
3、推导公式
师:我们知道长方形的面积等于长乘宽,那么平行四边形的面积怎样计算?(平行四边形的面积等于底乘高)
(板书:平行四边形的面积=底×高)
师:如果用S表示平行四边形的面积,a表示底,h表示高,怎样用字母来表示这个公式?(引导学生说出用字母表示公式)(教师板书:S=ah)
4、出示例1(课件),例1给出我们什么数学信息呢?我们根据什么公式来列式计算,学生试做,并说说解题方法,指名板书。
5、提问质疑
师:刚才同学们的表现都不错,要求平行四边形的面积,必须知道什么条件?
三、层层递进,拓展深化
1、算一算,填空,(课件出示)指名回答。
(1)一个平行四边形的底是8米,高是5米,这个平行四边形的面积是()平方米。
(2)一个平行四边形的高是6分米,底是9分米,这个平行四边形的面积是()平方分米。
2、用手势判断对错(课件出示),先读题后再判断,并说说错误的原因。
3、想一想
师:你发现了什么规律?(引导学生理解等底等高的平行四边形面积相等)
四、总结全课,提高认识
反思一下刚才我们的学习过程,你有什么收获?
计算平行四边形的面积必须知道什么条件,平行四边形的面积公式是怎样推导出来的?
《平行四边形的面积》说课稿
叶长生
我教学的内容是课程标准试验教科书数学五年级上册中的《平行四边形的面积》
一、说教材分析
平行四边形是人教版九年义务教育第九册第五单元多边形面积的计算第一小节的内容。几何知识的初步认识贯穿在整个小学数学教学中,是按由易到难的顺序呈现的。平行四边形面积的计算是在学生已经掌握并能灵活运用长方行面积计算公式,理解平行四边行特征的基础上进行教学的。而且,这部分知识的学习运用会为学生学习后面的三角形,梯形等平面图形的面积奠定良好的基础。由此可见,本节课是促进学生空间观念发展,扎实其几何知识学习的重要环节。
二、说学生
新课程沐浴下成长的五年级学生,在灵活开放的课堂中,学生们善于独立思考,乐于合作交流,课上表现极为活跃,语言表达能力较强,十分愿意发表独立见解,有较好的学习数学的能力。本课学生对数格子法、剪割拼补法有了一定的了解,但是,让学生切实理解由平行四边形剪拼成长方形后,长方形的长和宽与平行四边形底和高的关系是一个难点,需要学生在探索活动中,循序渐进、由浅入深地进行操作与观察,从而使学生进一步理解平面图形之间的变换关系,发展空间观念。
三、说教学目标
根据新课标的要求及教材的特点,以“学生的全面发展”作为标准,从“知识与技能,过程与方法,情感、态度与价值观” 三个维度确定如下教学目标: 知识目标:使学生在理解的基础上掌握平行四边形面积的计算公式,能正确计算平行四边形面积。能力目标:通过对图形的观察,比较和动手操作,发展学生的空间观念,渗透转化和平移的思想,并培养学生的分析,综合,抽象概括和动手解决实际问题的能力。情感目标:通过活动,激发学习兴趣,培养探索的精神,感受数学与生活的密切联系。四、说教学重点难点
依据新课程对图形与空间的教学要突出探究性活动的要求,体现《数学课程》的“过程性”目标,同时根据学生已有的知识水平,我确立了本节课教学的重难点重点:平行四边形面积计算公式的推导。难点:使学生切实理解由平行四边形剪拼成长方形后,长方形的长和宽与平行四边形底和高的关系。
五、说教学方式、学习方式
标准中指出:有效的数学活动不能单纯地靠模仿与记忆,动手操作、自主探索与合作交流是学习数学的重要方式。本节课,采用了情境教学法和引导探究法,组织学生开展丰富多彩的数学活动。学习方式:数学学习活动充满着观察、操作、推理、比较、交流模拟等探索性与挑战性的活动,本课多次鼓励学生自主探究、合作交流,组织学生认真观察、分析和讨论,在解决生活实际问题的过程中,通过动手实践、合作梳理来完成探究任务。
六、说教学流程 为了能更好地凸显“自主探究”的教学理念,高效完成教学目标,结合本班学生特点,设计如下环节。
(一)在新课开始时,我利用长方形的面积计算和平行四边形的不稳定性,将长方形框架拉成平行四边形,质疑面积是否改变激发学生学习兴趣的同时,还拉近了新旧知识之间的联系。然后用数方格的方法验证学生面积不变的猜想,产生矛盾猜想后,引出本课的学习内容。
(二)动手实践,多维探究。出示另一个与长方形面积相等的平行四边形,要求认真观察,用数方格的方法再比较它们的面积大小,并填写表格,最后讨论发现:即长方形的长和平行四边形的底相等,长方形的宽和平行四边形的高相等,并得出两个图形面积相同的答案。紧接着提问:根据这个发现你想到了什么?这一组实践操作,实际上是组织学生从感性认识长方形的长与平行四边形的底、宽与高相同的内在联系。我随机接着提问:能否将平行四边形转化成与它面积相等的图形来计算它的面积,学生积极讨论后再动手操作,用割补法探究平行四边形的面积计算公式。学生在充足的时间里进行合作探究,他们学习的主动性和学习的潜能得到充分的发挥,学生的个性得到彰显。汇报交流时,他们争先恐后发表自己的见解,课堂气氛异常活跃,民主、宽松、和谐、愉悦的氛围自然形成,学生获得积极的情感体验,同时,也为下一步推导平行四边面积计算公式做好充分的准备。
(三)分层运用新知,逐步理解内化,对于新知需要及时组织学生巩固运用,才能得到理解内化效果。我本着“重基础、验能力、拓思维”的原则,设计如下几道练习题:
1、基础练习出示填空题、判断题,巩固平行四边形面积公式推导过程。
2、提升练习出示例1及生活中的数学题。熟练平行四边形面积计算公式。
3、发散练习下面平行四边形的面积相等吗?为什么?此题需要学生综合运用知识,进行逻辑推理,使学生明白等地等高平行四边形的面积相等。整个习题设计部分,虽然题量不大,但却涵盖了本节课的所有知识点,题目呈现方式的多样,吸引了学生的注意力,使学生面对挑战充满信心,激发了学生兴趣、引发了思考、发展了思维。同时练习题排列遵循由易到难的原则,层层深入,也有效的培养了学生创新意识和解决问题的能力。
《平行四边形面积》的教学反思
叶长生
教学反思:
1、注重学法的指导,将“转化”思想进行了有效的渗透,让学生学会用以前的知识来解决现有的问题。
在一堂新授课中,找准知识的生长点是很重要的。长方形的面积的计算是平行四边形面积计算的生长点,是认知前提,是可以利用的起固定作用的知识。因此,开始,先复习长方形面积的计算方法,让学生实现知识的迁移。“转化”方法是研究和解决数学问题的一种有效的思考方法。在本课的重点就在于将平行四边形转化成长方形,进而推导出平行四边形面积的计算公式。在比较长方形和平行四边形两个图形的大小这一教学环节中,学生用了数方格和将图形重叠比较这两种方法。学生上台汇报时充分利用投影仪演示操作,突出怎样去数方格。通过图形的重叠观察,使学生发现多出的三角形与缺的三角形大小相等,如果剪下来平移到缺的地方可以转化成长方形,有了这样的感悟,然后放手让学生将自己准备的平行四边形通过剪拼转化成长方形,这样将操作、理解、表述有机地结合起来,学生有非常直观的“转化”感受。将平行四边形转化成学生学过的长方形来计算它们的面积,这时教师可以进行适时的小结:探索图形的面积公式,我们可以把没学过的图形转化为已经学的图形来研究。学生比较容易掌握把新的、陌生的问题转化成学生相对熟悉的问题的方法。我们可以将数学方法传递给学生,而数学眼光却无法传递,故应着重把握好对数学思想的教学。
2、教学体现学生的主体性。
学生是数学学习的主人,先让学生大胆猜测,再通过小组合作剪一剪,拼一拼互相交流总结,得到平行四边形的面积公式。完成了本节课的知识目标教学。给学生提供了充分的从事数学活动的机会,帮助他们在自主探索、动手操作、合作交流的过程中真正理解和掌握了基本的数学知识与技能,数学思想和方法,努力使学生的主体性得以体现。
3、注重学生数学思维的发展,重视了对学生学习知识水平的进一步深化,通过有梯度的练习设计,提高学生对平行四边形面积计算掌握水平。
教学讨论面积公式后,以开放练习的形式,出示
1、选择,使学生关注这个平行四边形的底和对应的高分别是多少,再让学生指一指底和对应的高分别在什么位置,问问学生用底和不对应的高相乘可不可以,这样就强调了用底和对应的高相乘,学生对平行四边形的面积计算的认识也会更深。
2、讨论,下列平行四边形的面积大小相等吗?使学生明白等底等高的平行四边形面积相等。这些练习进一步丰富了学生的认识,有效的提高了课堂教学的效率。
4、在课堂教学中,教师的应变能力十分重要,有效的把握学生课堂生成,灵活应对课堂突发的情况,是我教学中应注重的。
第三篇:三角形面积教案
《三角形的面积》教案
【教学内容】
教科书第82页例1和试一试、课堂活动第1题和练习二十第2题。【教学目标】
1.运用已有经验推导出三角形的面积计算公式,并能应用这个公式熟练地求出三角形面积。
2.培养学生的动手操作能力,发展学生的创新意识。
3.在探究过程中让学生获得成功体验,坚定学生学好数学的信心。【教具学具】
教师准备多媒体课件。每个学生准备形状大小相同的直角三角形、锐角三角形、钝角三角形纸片各两张。【教学过程】
一、引入课题
教师:同学们,前面我们学习了平行四边形面积的计算方法:底乘以高等于面积,这节课我们就利用学过的平行四边形面积来研究三角形的面积,(板书课题)。
二、新课教学
1、你能用两个完全一样的直角三角形,拼成一个学过的图形吗?
学生利用学具操作,教师巡视指导,然后交流汇报。教师:你们都把三角形转化成了哪些图形? 学生到视频展示台上展示。教师:真了不起,同学们把三角形转化成了平行四边形和长方形。下面请你们拿出你们的锐角三角形拼一拼,看还能拼出哪些图形?(信封里的三角形都事先编上了序号)学生通过拼学具发现①号和③号三角形能拼成正方形,②号和⑤号三角形能拼成长方形。
教师:为什么①号和③号三角形能拼成正方形,②号和⑤号三角形能拼成长方形呢?
引导学生讨论得出:因为①号和③号是两个完全一样的等腰直角三角形,②号和⑤号是两个完全一样的直角三角形。
教师:也就是说,它们都是一些特殊的三角形,所以能拼出特殊的图形。3.推导
教师:同学们转化的这些图形都非常漂亮,而且都能够用它们推导出三角形面积计算公式,但由于时间有限,我们只选其中的两个图形来推导三角形的面积公式。大家觉得选哪个图形好呢?
如果学生选择的不是特殊三角形拼组的图形,教师则用这个图形进行推导,如果学生选择的是特殊的三角形拼组的图形,教师则告诉学生最好选一般的三角形,因为这样推导出来的面积计算公式更有代表意义。把用方法1和方法2转化成的平行四边形都分别贴到黑板上。教师:请同学们仔细观察,思考转化后的图形和原来的三角形有什么联系?
引导学生思考后讨论得出:方法1中平行四边形的底就是三角形的底,平行四边形的高是原来三角形的高的一半;方法2中两个完全一样的三角形拼成一个平行四边形,原来的三角形的面积是平行四边形面积的一半。
(课件根据学生的回答,重复演示)教师:同学们观察得真仔细,我们能根据这些关系推导出三角形的面积计算公式吗? 学生:能。
教师:请左边大组的同学用第1个转化后的图形推导三角形的面积公式,请右边大组的同学用第2个转化后的图形推导三角形的面积公式。学生分组行动,教师巡视指导,然后全班汇报。教师:请问左边大组的同学你们推导出来的公式是什么? 学生1:三角形的面积=底×(高÷2)。教师:能说说这个公式表示的意思吗?
学生1:转化后的平行四边形的高是原来三角形的一半,所以用“高÷2”,平行四边形的底是原来三角形的底,所以三角形的面积=底×(高÷2)。(教师板书在相应的位置)教师:右边大组的同学你们推导出来的三角形的面积公式又是怎样的呢?
学生2:我们推导出的公式是:三角形的面积=(底×高)÷2。教师:你们的公式又是什么意思呢?
学生2:“底×高”是平行四边形的面积,原来三角形的面积是它的一半,所以是(底×高)÷2。(教师在相应的位置板书)教师:两大组的同学都说得有道理,你们推导出来的公式是一样的吗? 教师可引导学生用两种方法验证两个公式是否一样:(1)把底和高都分别设定为相应的数,如把底设为4cm,高设为2cm,由学生分别代到两个公式中去算,看结果是否一样;(2)从算式的意义来推导,看两个公式是否一样。
学生通过实践,知道底×(高÷2)=(底×高)÷2。
教师:两个公式都是一样的,我们都把它们写作三角形的面积=底×高÷2。(板书公式)这个公式是什么意思呢?
引导学生思考后讨论得出:公式的意思是三角形的面积等于平行四边形的面积的一半。
教师:这个公式对吗?我们来验证一下,请拿出你们的平行四边形,沿对角线把它剪开。你发现了什么? 学生操作后讨论。
学生:我发现剪出的两个三角形的面积是相等的,也就是说三角形的面积确实等于平行四边形面积的一半。我们推导出的公式是正确的。4.例2教学
教师:要求三角形的面积我们必须知道哪些条件? 引导学生思考后讨论汇报。
学生:要求三角形的面积必须知道三角形的底和高。教师:想试试用公式来计算三角形的面积吗? 学生:想。
教师:(课件出示例2)三角形的高和底分别是多少? 学生:三角形的高是4cm,底是5cm。教师:能算出三角形的面积吗?
学生计算后汇报,三角形的面积是10cm2。教师:你是怎么算出结果的呢?(学生汇报,略)
三、巩固练习
(1)练习十九第1题。(学生思考后讨论,并全班汇报)(2)练习十九第2题。(先学生独立完成,再全班交流)
四、课堂总结
教师:这节课学到了什么?三角形的面积公式是怎样的?我们是怎样探讨出三角形的面积公式的?通过对公式的探讨你有哪些体会?
五、教学反思
第四篇:三角形面积教案
《三角形面积》教案
教师:严贵军
一、教学内容:三角形的面积
二、教学目标:
1.使学生理解、掌握三角形面积计算公式,并能运用它正确计算三角形的面积;
2.通过指导实际操作,培养学生抽象、概括能力和思维的创造性,发展空间观念;
3.使学生明白事物之间是相互联系,可以转化和变换的。
三、教学重点难点:
1.重点:理解、掌握三角形面积计算公式,并能运用它正确计算三角形的面积;
2.难点:明白事物之间是相互联系,可以转化和变换的四、教学过程:
(一)复习引入
1.出示平行四边形,复习它的计算公式。
2.投影锐角三角形,直角三角形,钝角三角形,看图辨识三角形各条边上的高?
师:我们已经掌握了长方形、正方形、平行四边形面积的计算方法,那么怎样计算三角形的面积呢?这节 课我们就来解决这个问题。
(二)新授 1.操作学具。
师:你能用学具袋中的两个三角形拼成一个熟知的平面图形吗?
学生拿出学具动手操作拼成一个学过的图形。
(用两个三角形拼成一个三角形示意图)
出示学生拼出的图形。2.观察与思考。
师提出问题引导学生观察:①用两个什么样的三角形才能拼成一个学过的平面图形?②平行四边形、长方 形、正方形的面积与三角形的面积有什么关系?为什么?③三角形的底和高与平行四边形的底和高有什么关系 ?与长方形的长和宽有什么关系?与正方形的边长有什么关系?
学生观察、讨论、相互交流、弄清楚面积关系以及底、高之间的关系。
师小结板书:
平行四边形面积=底×高
长方形面积=长×宽
正方形面积=边长×边长 2个三角形面积=底×高
三角形面积=底×高÷2 3.推导公式。
(1)怎么求平行四边形的面积?长方形面积?正方形面积?
(2)平行四边形面积,长方形面积,正方形面积都是由几个完全一样的三角形组成的?
(3)怎么求一个三角形的面积?
师随着完成上面的板书并引导学生小结:怎么求三角形面积?为什么? 4.深化认识。
师启发回忆
学习习近平行四边形面积时,我们运用割补的办法把平行四边形转化成了长方形,那么运用割补的办法能不能 把一个三角形转化成一个平行四边形或长方形呢?
学生动手操作、研究、讨论、相互交流,教师辅导提示,得出下图。
(割补法求三角形面积示意图)
三角形面积=底×高的一半 ;三角形面积=底的一半×高
=底×高÷2 =底×高÷2(1)说一说你是怎么割补的?
(2)议一议平行四边形的面积、长方形面积与三角形面积的关系,平行四边形的底和高,长方形的长和 宽与三角形底和高的关系?得出什么结论?
(3)师整理公式(完成上面的板书)
(4)师总结:三角形面积等于底乘以高除以2。(板书字母公式:S=ah÷2),可以理解为底×高乘积的 一半,也可以理解为底×高的一半,还可以理解为底的一半×高。
五、巩固练习
(一)理解性练习(口答)
1.三角形的底乘以高得到的是什么图形的面积?再怎么求才能得到三角形面积? 答:得到与三角形等底等高的平行四边形的面积;再将此面积除以2即得三角形面积。
2.三角形面积等于平行四边形面积的一半;对不对?为什么?
答:对的;因为平行四边形可以分为等底等高的2个三角形。
(二)运用公式的练习(口答列式)
(三)灵活运用知识的练习
已知:(如下图)正方形和一个长方形求阴影面积?
五、全课总结(略)
第五篇:扇形面积教案
《扇形统计图》教学案例
和美实验学校 王巧丽
教学内容:教科书106-107页,例题及做一做
教学目的:认识扇形统计图的特点和作用,能看懂并能简单地分析扇形统计图所反映的情况。
教学重点:认识扇形统计图的特点和作用,从扇形统计图中获取信息。
教学难点:认识扇形统计图的特点和作用,正确的描述扇形统计图所反映的问题。
教具准备:多媒体课件、EXCL表格。教学过程:
一、情境导入,激发兴趣。
1、谈话:同学们你们喜欢什么运动项目?我想很快知道喜欢每个项目的人数怎么办?《统计》
2、出示事先调查好的统计表计算:“喜欢的项目占全班人数的百分比”并说一说百分比的含义
3、刚才我们用学过的百分数的知识做完了统计表,那么我们利用以前学过的的知识能不能很好的表示出喜欢这些项目的人数情况呢?<形成条形统计图>
二、对比分析,生成新知。
1、观察条形统计图,你从中得到了哪些有用的信息?条形统计图有什么优势?
2、从条形统计图中,还有那些信息不容易表示出来?引发思考(不能很好的表是所占总数的百分比的情况)
3、生成扇形统计图,引导观察你得到了哪些有用的数学信息?(生发表见解)
4、根据统计图上表示的情况,你对我们班的同学有哪些建议?
5、回顾知识生成归纳扇形统计图的特点和作用。
6、做一做,自主看图,说一说你从图中得到了哪些有价值的数学信息?
7、根据题意计算,全班订正。
三、知识应用解决问题。
1、练习二十五1题(自主看图,说一说李明同学一天的作息时间安排的是否合理,从中你能提出哪些合理化建议。)
2、练习二十五2题(自主看图,说一说,从图中得到哪些信息,自主根据给出的条件计算出各项支出金额。
四、总结概括拓展应用
1、总结统计图的特点及运用结合练习二十五4题
2、展示小知识 《扇形统计图》教学反思
1、疏漏与失误
充分体现多媒体电化教学带来的优势,课堂上利用excl表格现场制作条形统计图、扇形统计图对高年级学生的吸引力很大。但是由于准备不够充分,多媒体不够清晰,表格展示数字较小学生看不清楚,造成学生回答问题不积极,影响了正常的教学。
2、成功之处
预设学生学习中存在的问题,打好基础,引导学生学会运用旧知解决新的问题。比如利用百分数的含义理解扇形统计图的特点。利用统计表生成条形统计图对比发现条形统计图的缺陷,引出需要一种新的统计图表现部分数量与总量的百分比从而引出课题需要扇形统计图。为什么叫扇形统计图?理解一个圆形表示的含义、每个扇形表示的含义,从而认识扇形统计图。
3、教学机智的生成
教学实践中教育机智问题还要很好的修炼,做到很好的预设才能生成更好地教学问题,比如在提问条形统计图的局限性时,学生说它不能表现数据的变化趋势,的确是但是没有把握好这一问题,如果再问一问,喜欢每个项目的人数需要用折线统计图来表示吗?在什么情况下要用到折线统计图?这样不仅解决了书上练习二十五第四题的教学重点,同时也是根据统计的不同特点制作统计图综合分析能力的应用意识的培养。
4、再教设计
1、课堂上生成学生资源统计表显然内容浅显,浪费时间,不如将此部分内容放到课前准备好。
2、将估算教学作为一种渗透思想涉及在每个教学环节中,比如当出现算一算所占百分比的时候可以选择性的让学生先估一估。