第一篇:一元一次方程—去分母教案
一元一次方程
(二)—去分母
张广贺
教学目标:
1.掌握去分母的方法,完善解一元一次方程的方法.2.通过总结概括一元一次方程的解法,进一步体会解方程过程中所蕴涵的化归思想.3.感受等式性质的作用,增进对解方程的理解.教学重点:通过去分母解一元一次方程. 教学难点:“去分母”方法的探索.教学过程:
一、复习提问
问题1:去括号是应该注意什么?
问题2:等式的性质2是怎样叙述的?
问题3:求12、4、9的最小公倍数.二、新课讲解
1、创设问题情境:
引言:在英国伦敦博物馆保存着一部极其珍贵的文物—纸莎草文书,纸莎草文书 是古代埃及人用象形文字写在一种特殊的草上的著作,在文书中记载了许多有关数学的问题·
问题 一个数,它的三分之二,它的一半,它的七分之一,它的全部,加起来总共是33。
提问:(1)能不能用方程解决这个问题?(2)能尝试解这个方程吗?(3)不同的解法有什么各自的特点? 解:设这个数为,x由题意得:
211xxxx33 327这个方程大部分同学是按“合并同类项,系数化为1”的步骤求解。但是多项系数是分数,需要通分,计算量较大。如果能化去分母,把系数化为整数。则可使方程中的计算方便些,那么如何才能化去方程中的分母呢?
根据等式性质2,等式两边同乘以同一个数,结果仍相等,要是方程中得分母去掉,显然只要乘各分母的最小公倍数42。把方程两边同乘42,得到:42(xxxx)=33×42 即42×x+42×x+42×x+42×x=33×42 下面的过程按课本由学生自己完成。为了更全面的讨论问题,再以方程
3x13x22x32为例,归纳***7解有分数系数的一元一次方程的步骤。例解方程3x13x22x32 2105要去掉方程中的分母,就要找到一个数,这个数就是方程中各分母的最小公倍数10,方程两边同时乘以10,于是方程左边就变为:10×(3x13x12)=10×
22-10×2=5(3x1)-10×2同样,右边变为:(3x2)2(2x3)
即:去分母,得5(3x1)-10×2=(3x2)2(2x3)去括号,得15x5203x24x6 移项,得15x3x4x26520 合并同类项,得16x=7 系数化为1,得x=思路点拔:
(1)去分母所选的乘数应是所有分母的最小公倍数,不应遗漏。(2)用分母的最小公倍数去乘方程的两边时i,不要漏掉等号两边不含分母的项。
(3)去掉分母后,分数线也同时去掉,分子上的多项式用括号括起来。
回顾解以上方程的全过程,表示了一元一次方程解法的一般步骤,通过去分母—去括号—移项—合并同类项—系数化为1等步骤,就可以使一元一次方程逐步向着x=a的形式转化。例4:解方程3xx12x13 237 16师生共同完成,讲解时强调:去分母时,方程中不含分母的项也要乘以这个最小公倍数,当分子是多项式是,约去分母后,要用括号把分子括起来。
下面的过程按课本由学生自己完成。
四、课堂小结
1、通过这节课,你在用一元一次方程解决实际问题方面又获得了哪些收获?
2、去括号解一元一次方程要注意什么?
3、去分母解一元一次方程时要注意什么?
4、去分母解一元一次方程时,在方程两边同时乘以各分母最小公倍数的目的是什么?
五、布置作业。教科书第102页,习题3.3第3、10、13题 六.板书设计
课题一元一次方程的解法
(二)—去分母
问题
例3解方程
解一元一次方程的步骤:
小结
„„
解
注意事项
布置作业
七、教学反思
本节课通过古代埃及的纸莎草文书中的一道题,引出带有分母的一元一次方程,进而讨论用“去分母”的方法解这类方程,并归纳出解一元一次方程的步骤和注意事项,但是这节课我讲太多,主动权没有放心教给学生,否则情况可能会更好,这是我的缺点,应调整,另外我也应该不断充实自己其他方面知识,把数学课上生动活泼。
第二篇:《解一元一次方程—去分母》教案
教学目标:
知识与技能目标:
1.掌握解一元一次方程中去分母的方法,并能解此类型的方程。
2.了解一元一次方程解法的一般步骤。
数学思考目标:
1.通过去分母,体会划归的数学思想方法。
2.通过归纳一元一次方程解法的一般步骤,体会解方程的程序化思想方法。
解决问题目标:
经历把实际问题抽象为方程的过程,发展用方程方法分析问题、解决问题 的能力。
情感态度目标:
1.通过具体情境引入新问题(如何去分母),激发学生的探究欲望。
2.通过埃及古题的情景感受数学文明。
教学重点:通过去分母解一元一次方程。
教学难点:探究通过去分母的方法解一元一次方程。
教辅工具:多媒体
教学过程设计:
程序
问题与情境
师生行为
设计意图
创设问题情境
引言:这件珍贵的文物是纸莎草文书,师古代埃及人用象形文字在一种特殊的草上的著作,至今已经有3700多年的历史了,在文书中记载了许多有关数学的问题。
问题(1)
一个数,它的三分之二,它的一半,它的七分之一,它的全部,加起来总共是33.能不能用方程解决这个问题?
问题(2)
能尝试解这个方程吗?
问题(3)
不同的解法由什么各自的特点?
教师展示幻灯片,呈现问题。
学生思考并回答问题。
教师对学生的回答进行总结。
学生独立完成解方程。
教师巡视,观察学生的解题方法,展示不同解法,并请学生表述解法及解法依据。
1.接合并同类项的方法;
2.去分母的方法。
教师引导学生分析并对比两种解法,得到共识。当方程中含有分数系数时,先去分母可以使解题更加方便、快捷。
教师给出本节课题。
本次活动中,教师应重点关注:
学生能否体会到去分母的必要性;
学生是否明确去分母的可行性;
学生能否总结出去分母的一般方法
学生能否正确表达自己的想法,能否倾听、思考、理解他人的想法。
利用列方程,解方程解决实际问题,再一次让学生感受到方程的优越性,提高学生主动使用方程的意识。
经过对同一方程不同解法的分析,首先让学生亲自感受到去分母能够使解方程的过程更加便捷,明白为什么要去分母,知识去分母这一步骤的必要性,同时,让学生认同去分母是科学的、可行的。明确为什么能去分母。这样,学生就会自觉参与探索去分母的一般做法的活动,从而发现方程两边同时乘以所有分母的最小公倍数这一方法。
通过交流,让学生用自己的语言清楚的表达解决问题的过程,提高学生的语言表达能力。
探究
过程
问题1:下面方程
可以怎样求解?
学生观察方程特点,回答问题。教师提出问题并对学生的回答进行总结,先去分母。
在独立思考的基础上,学生分组交流,并汇总得到去分母的正确方法。
教师深入小组参与活动、指导、倾听学生的交流。
归纳总结去分母的方法,在方程两边同时乘以所有分母的最小公倍数,依据是等式的性质2。
呈现不同学生的阶梯过程,选取学生在去分母过程中出现的典型错误,引导全体学生共同分析错误的原因,发现去分母的易错点。
本次活动是活动1的延续和发展,通过解这个方程,进一步晚上用去分母的方法解方程时具体操作方法及注意事项。
通过对错例的辨析,加深学生对去分母的认识,避免解方程时出现类似错误。
探究过程
解去掉分母后的这个方程
学生独立完成解方程。
教师巡视、指导学生完成解题过程。
师生共同归纳出正确解题过程。
去掉分母后,方程即转化为熟悉的形式,新旧知识自然衔接,使学生体会到,只要把新问题想办法合理转化为熟悉的知识,问题就能得以解决,通过在解方程过程中去分母这一步骤体会转化思想。
练习巩固
解方程:
学生独立完成解方程过程,教师巡视、指导。
用实践来加深对去分母的方法解一元一次方程的认识。
归纳总结一元一次方程解法的一般步骤,巩固所学的解法。
小结
教师指导学生共同归纳本节的知识。
复习、巩固本节的知识,学会总结反思。
课后反思
第三篇:解一元一次方程——去分母教学反思
解一元一次方程——去分母教学反思
解一元一次方程——去分母教学反思1
通过上节课学习后,学生已经掌握了用去括号、移项、合并同类项、把系数化为1这四个步骤解一元一次方程,接下来这一节课,我们要重点讨论是:
(1)解方程中的“去分母”。
(2)根据实际问题列方程。这样我们就掌握了解一元一次方程一般都采用的五步变形方法。
由一道著名的求未知数的问题,得到方程,这个方程的特点就是有些系数是分数,这时学生纷纷用合并同类项,把系数化为1的变形方法来解,但在合并同类项时几个分数的求和,有相当一部分学生会感到困难且容易出错,再看方程
怎样解呢?学生困惑了,不知从何处下手了,此时,需要寻求一种新的变形方法来解它,求知的欲望出来了,想到了去分母,就是化去分母,把分数系数化为整数,使解方程中的计算方便些。
在解方程中去分母时,我们发现存在这样的一些问题:
(1)部分学生不会找各分母的最小公倍数,这点要适当指导。
(2)用各分母的`最小公倍数乘以方程两边的项时,漏乘不含分母的项。
(3)当减式中分子是多项式且分母恰好为各分母的最小公倍数时,去分母后,分子没有作为一个整体加上括号,容易错符号。如解方程方程两边都乘以2后,得到2x—x+2=2,其中x+2没有加括号,弄错了符号。
解一元一次方程——去分母教学反思2
在前面的学段中,学生已学习了合并同类项、去括号等整式运算内容。解一元一次方程就成为承上启下的重要内容。因此,它既是重点也是难点。我根据学生认识规律和教学的启发性、直观性和面向全体因材施教等教学原则,积极创设新颖的问题情境,以“学生发展为本,以活动为主线,以创新为主旨”,采用多媒体教学等有效手段,以引导法为主,辅之以直观演示法、讨论法,向学生提供充分从事数学活动的机会,激发学生的学习积极性,使学生主动参与学习的全过程
本节课由一道著名的求未知数的问题,得到方程,这个方程的特点就是有些系数是分数,这时学生纷纷用合并同类项,把系数化为1的变形方法来解,但在合并同类项时几个分数的求和,有相当一部分学生会感到困难且容易出错,再看方程怎样解呢?学生困惑了,不知从何处下手了,此时,需要寻求一种新的变形方法来解它求知的欲望出来了,想到了去分母,就是化去分母,把分数系数化为整数,使解方程中的计算方便些。
在解方程中去分母时,我发现存在这样的一些问题: ① 部分学生不会找各分母的.最小公倍数,这点要适当指导,
② 用各分母的最小公倍数乘以方程两边的项时,漏乘不含分母的项,
③ 当减式中分子是多项式且分母恰好为各分母的最小公倍数时,去分母后,分子没有作为一个整体加上括号,容易错符号。如解方程方程两边都乘以10后,得到5×3x +1-10×2 = 3x -2-2× 2x +3
其中3x +1, 2x +3 没有加括号,弄错了符号对解题步骤的归纳说法基本一致。就学生的表达能力还有些欠佳,需要提高语言组织能力。 本节课习题设计的不够充分,学生在上课的过程中训练强度达不到,当分母是小数时,找最小公倍数是困难的,我们要引导学生: ①把小数的分母化为整数的分母。如 把方程中的前两项分子、分母同乘以10,或前两项分母同乘以 ,则两项的分母分别成为2和5,即原方程变形为整数。
② 想办法将分母变为1。等式两边同乘以分母的最小公倍数10。
③学生有疑惑的是先去括号呢,还是先去分母,怎样计算会简便些呢?
在本节课的教学过程中,我发现学生对以上活动都比较感兴趣,特别是对讨论的环节每个学生都想发表自己的看法。对解题步骤的归纳说法基本一致,就学生的表达能力还有些欠佳,需要提高语言组织能力。只要我们善于引导学生认真观察,多思考多练习,抓住特点,就能找到一些解方程的技巧方,在以后的教学中要给学生准备一部分提高能力的题,达到检测和拓展数学思维的目的。
另外,从学生的作业中反馈出:对去分母的第一步还存在较大的问题,是不是说明过程的叙述不太清楚,部分学生摸棱两可,真真自己做的时候就会暴露出不懂的,这也提醒我今后的教学中在关键的知识点上要下“功夫”,切不可轻易的解决问题。备课时应该多多思考学生的具体情况,然后再修改初备的教案,尽量完善,尽量完美。
但我还是感觉到:我讲的太多;主动权还没有放心大胆地交还给学生,否则情况会可能会更好。这也是我的缺点,应该化大力气来调整自己。另外也应该不断地充实自己其他方面地知识,把数学课上地生动活泼。
(1)基本体现自主探究教学模式,逐步引导学生学习。
(2)对学情分析不准确,本来认为学生对工程问题会掌握的很好,不会出现问题,课堂会相对很轻松,但结果是学生早就忘了工程问题中的基本数量关系,复习2的填空都不能完成,严重影响了后续知识的学习。教师在课上临时调节不到位,使一堂本应轻松的课变得沉闷、不能有效推进。
(3)从学习有效性考虑,对教学设计可做如下改进,一是复习中工程问题可利用例题分解完成,这样可以为例题做铺垫,提高审题效率,降低学习难度,使例题学习更顺畅。二是例题后的变式,一道是在例题基础上的变结论题,另一道是单独的一道题,但是条件与例题有变化。此题不如在例题基础上直接变条件,节省审题时间,让学生充分体会工程问题中的数量关系的变化规律,提高学习效率。
(4)教学方法要改进,学生学习困难时研讨是必要的,但不是所有问题研讨都可以得出结论,所以教师点拨的作用要适时体现。如,学生对工程问题中的相等关系认识有困难时,教师可以通过力求方法表示整体1与各部分关系,这样学生可以很轻松理解。
解一元一次方程——去分母教学反思3
由数学文化中的实际问题导入,一个数,它的三分之二,它的二分之一,它的全部,它们总共是33,求这个数。
师引导学生分析,设元,列方程,解方程,作答。
重点分析了如何去分母。可是大部分的.学生不会用短除法找最小公倍数,于是我又给学生补讲短除法。
讲完短除法,再讲去分母的方法。
去分母,就是根据等式的性质2,在方程两边分别乘以最小公倍数后约去分母。学生们在去分母过程中,常踩着几个坑:1,漏乘;2,分子是多项式时忘记加括号。
虽然我一直强调它们,可是初学者都常踩着它们。
我想,虽然强调过,但毕竞这些内容有些抽象,所以学生不易习得。
最终只有通过再针对训练:精讲一个例子,再让生进行只去分母不移项的解一元一次方程的训练,这样更具有针对性,效果更好。
解一元一次方程——去分母教学反思4
本节课的重点是讨论解一元一次方程中的去分母,此节课后就可以解各种各样的一元一次方程,并可以归纳出解一元一次方程的一般步骤。这节课从古代埃及的纸莎草文书中的一道题切入,引出带有分母的一元一次方程,进而讨论解这类方程的方法。这个问题是:一个数,它的三分之二,它的一半,它的七分之一,它的全部,加起来总共是33。求这个数。
这节课讲过之后,我觉得成功之处是:归纳出解一元一次方程的一般步骤之后,我写到黑板上四道题,让四位学生做到黑板上,其他学生做到练习本上。做完后,再选四位学生上去改并且讲评。这样一做一改,这几位学生都对易错处印象深刻,做错题目的学生再让他们结合自己做的题,说说自己容易在哪个步骤出错。然后再集体进行总结,去分母是什么地方易错,去括号什么地方易错。这样的训练之后,我觉得这一届的学生解方程掌握的比以前的学生好。我想,这正是新课改倡导的`精神,让学生自己动手做,思考,归纳,总结,最后变成了自己的东西,不易忘记。
这节课的不足之处在于:这节课从古埃及的纸莎草文书引入,这是能反映古埃及文明的一件珍贵文物,这个选材可以起到介绍悠久的数学文明的作用,可以让学生感受到数学文化的熏陶,而我当时一带而过,只让学生自己看了看文字,忽视了对学生情感价值观的教育。
其次,方程列出后,我提出问题,引导学生来思考怎样把方程简化,化成能够解决的一元一次方程,但给学生留下的思维空间较少。有几个思维敏捷的学生很快想到了解决问题的方法,我就没有等更多的学生深入思考,自己得出结论。这样造成多数学生跟着少数学生思维跑的局面,忽视了大部分学生思考---得出结论---体验成功的过程,只照顾了少部分学生,这会导致数学的两极分化。一部分学生总是体验不到自己经过认真思考,得出结论的成就感,慢慢会失去学习兴趣。这是我今后应该努力解决的问题。
解一元一次方程——去分母教学反思5
本节课由一道著名的求未知数的问题,得到方程,这个方程的特点就是有些系数是分数,这时学生纷纷用合并同类项,把系数化为1的变形方法来解,但在合并同类项时几个分数的求和,有相当一部分学生会感到困难且容易出错,再看方程怎样解呢?学生困惑了,不知从何处下手了,此时,需要寻求一种新的变形方法来解它求知的欲望出来了,想到了去分母,就是化去分母,把分数系数化为整数,使解方程中的计算方便些。 在解方程中去分母时,我发现存在这样的一些问题:
1、部分学生不会找各分母的最小公倍数,这点要适当指导。
2、用各分母的最小公倍数乘以方程两边的项时,漏乘不含分母的项。
3、当减式中分子是多项式且分母恰好为各分母的'最小公倍数时,去分母后,分子没有作为一个整体加上括号,容易错符号。如解方程方程两边都乘以10后,得到5×3x+1-10×2=3x-2-2×2x+3其中3x+1,2x+3没有加括号,弄错了符号对解题步骤的归纳说法基本一致。就学生的表达能力还有些欠佳,需要提高语言组织能力。
本节课习题设计的不够充分,学生在上课的过程中训练强度达不到,当分母是小数时,找最小公倍数是困难的,我们要引导学生:
1、把小数的分母化为整数的分母。如把方程中的前两项分子、分母同乘以10,或前两项分母同乘以 ,则两项的分母分别成为2和5,即原方程变形为整数。
2、想办法将分母变为1。等式两边同乘以分母的最小公倍数10。
3、学生有疑惑的是先去括号呢,还是先去分母,怎样计算会简便些呢?
在本节课的教学过程中,我发现学生对以上活动都比较感兴趣,特别是对讨论的环节每个学生都想发表自己的看法。对解题步骤的归纳说法基本一致,就学生的表达能力还有些欠佳,需要提高语言组织能力。只要我们善于引导学生认真观察,多思考多练习,抓住特点,就能找到一些解方程的技巧方,在以后的教学中要给学生准备一部分提高能力的题,达到检测和拓展数学思维的目的。
另外,从学生的作业中反馈出:对去分母的第一步还存在较大的问题,是不是说明过程的叙述不太清楚,部分学生摸棱两可,真真自己做的时候就会暴露出不懂的,这也提醒我今后的教学中在关键的知识点上要下“功夫”,切不可轻易的解决问题。备课时应该多多思考学生的具体情况,然后再修改初备的教案,尽量完善,尽量完美。
但我还是感觉到:我讲的太多;主动权还没有放心大胆地交还给学生,否则情况会可能会更好。这也是我的缺点,应该化大力气来调整自己。另外也应该不断地充实自己其他方面地知识,把数学课上地生动活泼。
解一元一次方程——去分母教学反思6
在学生学习了解一元一次方程一般都采用的五步变形方法以后,这节课重点探讨解下列方程的技巧方法,
如在解方程30%x+70%(200-x)=200×70%中,在去分母时,方程两边都乘以100,化去%得:
30x+70(200-x)=200×70,有部分学生就提出疑问,为什么在200那里不乘以100?在(200-x)的里面又不乘以100呢?为了能让学生明白,我想是否要将原方程变形为,然后再各项乘以100,写成,最后化去分母。
又在解方程中,怎样去分母呢?最小公倍数是什么呢?学生是有疑惑的,当分母是小数时,找最小公倍数是困难的,我们要引导学生:
①把小数的'分母化为整数的分母。如把方程中的前二项都分别分子分母同乘以10,则二项的分母分别成为5和1,即原方程变形为
②想办法将分母变为1,即把左边第一项分子、分母都乘以2,右边第一项分子、分母都乘
10,则三项的分母都为1。原方程变形为2(4x-1.5)=10(1.2-x)+2
又如在解方程中,是先去括号呢,还是先去分母,怎样计算会简便些呢?
只要我们善于引导学生认真观察,多思考多练习,抓住特点,就能找到一些解方程的技巧方
法。解一元一次方程一般都采用五步变形灵活应用,除此之外,据不同题型,运用一些技巧方法,就能快捷地求出其解。
解一元一次方程——去分母教学反思7
通过上节课学习后,学生已经掌握了用去括号、移项、合并同类项、把系数化为1这四个步骤解一元一次方程。
接下来这一节课,我们要重点讨论是;
①解方程中的“去分母”,
②根据实际问题列方程。这样我们就掌握了解一元一次方程一般都采用的五步变形方法。
由一道著名的求未知数的问题,得到方程,这个方程的.特点就是有些系数是分数,这时学生纷纷用合并同类项,把系数化为1的变形方法来解,但在合并同类项时几个分数的求和,有相当一部分学生会感到困难且容易出错,再看方程
怎样解呢?学生困惑了,不知从何处下手了,此时,需要寻求一种新的变形方法来解它,求知的欲望出来了,想到了去分母,就是化去分母,把分数系数化为整数,使解方程中的计算方便些。
在解方程中去分母时,我们发现存在这样的一些问题:
①部分学生不会找各分母的最小公倍数,这点要适当指导,
②用各分母的最小公倍数乘以方程两边的项时,漏乘不含分母的项,
③当减式中分子是多项式且分母恰好为各分母的最小公倍数时,去分母后,分子没有作为一个整体加上括号,容易错符号。如解方程方程两边都乘以2后,得到2x-x+2=2,其中x+2没有加括号,弄错了符号。
解一元一次方程——去分母教学反思8
从学生的作业中反馈出:对去分母的第一步还存在较大的问题,是不是说明过程的叙述不太清楚,部分学生摸棱两可,真真自己做的时候就会暴露出不懂的,这也提醒我今后的教学中在关键的知识点上要下“功夫”,切不可轻易的解决问题(想当然)。备课时应该多多思考学生的具体情况,然后再修改初备的教案,尽量完善,尽量完美。
在评课中,尽管其他老师没有多提意见,但我还是感觉到:我讲的太多;主动权还没有放心大胆地交还给学生,否则情况会可能会更好。这也是我的缺点,应该化大力气来调整自己。另外也应该不断地充实自己其他方面地知识,把数学课上地生动活泼
1.去分母后原来的'分子没有添加括号
例1解方程: .
分析:分数线实际上包含括号的意思,去分母后原来的分子应该添上括号。
2.去分母时最小公倍数没有乘到每一项
例2解方程:.
分析:去分母时最小公倍数没有乘到每一项,特别是不含有分数的项。
3.去括号导致错误
4.运用乘法分配律时,漏乘括号里的项。
例3解方程:.
分析:去括号时没有把括号外的数分配到括号中的每一项。
5.括号前面是“-”号时,去括号要使括号里的每一项变号。
解一元一次方程——去分母教学反思9
这点要适当指导,② 用各分母的最小公倍数乘以方程两边的项时,漏乘不含分母的项,③ 当减式中分子是多项式且分母恰好为各分母的最小公倍数时,去分母后,分子没有作为一个整体加上括号,容易错符号。如解方程方程两边都乘以10后,得到 5×3x +1-10×2 = 3x -2-2× 2x +3其中3x +1, 2x +3 没有加括号,弄错了符号对解题步骤的归纳说法基本一致。就学生的表达能力还有些欠佳,需要提高语言组织能力。
本节课习题设计的不够充分,学生在上课的过程中训练强度达不到,当分母是小数时,找最小公倍数是困难的,我们要引导学生:
①把小数的分母化为整数的分母。如 把方程中的前两项分子、分母同乘以10,或前两项分母同乘以 ,则两项的分母分别成为2和5,即原方程变形为整数。
②想办法将分母变为1。等式两边同乘以分母的最小公倍数10。
③学生有疑惑的是先去括号呢,还是先去分母,怎样计算会简便些呢?
在 本节课的教学过程中,我发现学生对以上活动都比较感兴趣,特别是对讨论的环节每个学生都想发表自己的看法。对解题步骤的归纳说法基本一致,就学生的表达能 力还有些欠佳,需要提高语言组织能力。只要我们善于引导学生认真观察,多思考多练习,抓住特点,就能找到一些解方程的技巧方,在以后的.教学中要给学生准备 一部分提高能力的题,达到检测和拓展数学思维的目的。
另外,从学生的作业中反馈出:对去分母的第一步还存在较大的问题,是不是说 明过程的叙述不太清楚,部分学生摸棱两可,真真自己做的时候就会暴露出不懂的,这也提醒我今后的教学中在关键的知识点上要下“功夫”,切不可轻易的解决问 题。备课时应该多多思考学生的具体情况,然后再修改初备的教案,尽量完善,尽量完美。
但我还是感觉到:我讲的太多;主动权还没有放心大胆地交还给学生,否则情况会可能会更好。这也是我的缺点,应该化大力气来调整自己。另外也应该不断地充实自己其他方面地知识,把数学课上地生动活泼。
反思五:解一元一次方程——去分母教学反思
本节课是在学习了一元一次方程解法的基础上学习的,它与前面所学的知识之间有着紧密的联系,学生在学习本节课之后会初步了解了“建模”的数学思想及基本步骤。因此本节内容的教学首先复习一元一次方程解法的步骤,通过把实际问题用一元一次方程的解决,不仅巩固了一元一次方程的解法,并且加深了对“建模”思想的理解。
本节课的设计思路是从实际问题出发,引导学生自主学习,积极探究,合作交流,总结提高。用列方程的方法解决实际问题,在教学过程中通过连串问题去引导学生审题、分析题意、寻找等量关系等,使学生初步了解“建模”的数学思想。在课堂中让学生带着思考,带着问题,教师组织学生讨论的目的是为了充分暴露出学生的问题,让学生在谈论、合作、交流的过程中解决问题,在通过老师的总结归纳,学生的认识得到升华,因此本节课采取的是学生合作探究的教学方法。
在教学过程中,教师不断地提出问题,明确要达到的目的,并在学生遇到困难的时候提供指导性建议,但不提供具体的解决过程和问题的答案。学生则围绕确定的问题,在教师的指导性帮助下,通过自己的思考和相互间的交流,达到预定的目标。
显然,这样的教学给学生带来的发展是多方面、多层次的,不同的学生在学习过程中都有不同程度的收获。
这节课学生大多能积极思考,认真学习,课后作业都能及时完成。作业质量较好,基本达到了预定的教学目标,主要存在问题是去括号时个别同学不注意符号或出现漏乘情况。
上了这节课,我觉得上好一节课的因素很多,也发现了自己很多不足的地方,在平时上课的时候,对提问的形式和语言还嫌单一。在现行的开放式的课堂中,关键是放的出去的同时要收的回来,可能是平时注入式的简单易行,或者是不大重视,上课中的语言的漏洞很多,在以后的教学中要多加揣摩和重视,多点听其他老师的课,尽量把他们对课堂教学处理的优点溶进自己的教学中,进一步提高自己的教育教学水平。
解一元一次方程——去分母教学反思10
从学生的作业中反馈出:对去分母的第一步还存在较大的问题,是不是说明过程的`叙述不太清楚,部分学生摸棱两可,真真自己做的时候就会暴露出不懂的,这也提醒我今后的教学中在关键的知识点上要下“功夫”,切不可轻易的解决问题(想当然)。备课时应该多多思考学生的具体情况,然后再修改初备的教案,尽量完善,尽量完美。
1、去分母后原来的分子没有添加括号。
例1:解方程。
分数线实际上包含括号的意思,去分母后原来的分子应该添上括号。
2、去分母时最小公倍数没有乘到每一项。
例2:解方程。
去分母时最小公倍数没有乘到每一项,特别是不含有分数的项。
3、去括号导致错误。
4、运用乘法分配律时,漏乘括号里的项。
例3:解方程。
去括号时没有把括号外的数分配到括号中的每一项。
5、括号前面是“-”号时,去括号要使括号里的每一项变号。
第四篇:去分母解一元一次方程教学反思
合并同类项教学反思
在教学这节课之前,我做了大量的工作,汲取同事的建议,尽量使预设达到完美。
教学设施中,我非常重视开头的引入教学,激发学生学习的兴趣。注意鼓励学生大胆发言,注意从现实生活出发,展现知识的形成过程,使学生能够利用已有的生活知识和数学知识,通过知识迁移、类比的方法归纳得出同类项的概念以及合并同类项的概念。使他们不会觉得数学概念学习的单调乏味,逐步提高学生抽象概括的能力。教学同类项的概念时,利用字母a和x2分别代替“笑脸”和“鸭子”的感性材料的作用,以启发和讨论交流为主,让学生自己观察,总结出合并同类项的特征。“总结出两不变,两无关”的观点介绍给大家,利于大加深对概念的理解。对于例题的教学,我也是充分发挥学生的主体性,启发学生进行化简时,要先观察,再下手,归纳出一找、二移、三并的步骤,我觉的课堂的有效性效果还可以。
讲完这节课后,我觉得自己设计时想得太多了,有点怕这怕那的感觉,造成前松后紧的局面。自己讲得有点多,虽然学生思考的时间多,但学生没有板演的机会,所以有些问题只能在作业中才能发现。成功之处有:通过本节课的教学,让学生进一步体会,数学来源于生活,又作用于生活,提供学生生活中熟悉的材料作背景,学生学习兴趣很高,同时教学的设计比较合理。首先电脑出示一幅图片,图片上有葡萄、梨、蘑菇、香蕉,让学生根据自己的想法分类,并说明理由;接着,利用元和元,角和角可以相加,为下面同类项可以合并打下基
础;最后用一个多项式,让同学们先写出其中的项,再将这些项根据自己的思路进行分类,引出同类项的概念。
第五篇:去分母解一元一次方程教学反思
去分母解一元一次方程教学反思
陈华
本节课的重点是讨论解一元一次方程中的去分母,此节课后就可以解各种各样的一元一次方程,并可以归纳出解一元一次方程的一般步骤。这节课从古代埃及的纸莎草文书中的一道题切入,引出带有分母的一元一次方程,进而讨论解这类方程的方法。这个问题是:一个数,它的三分之二,它的一半,它的七分之一,它的全部,加起来总共是33。求这个数。
这节课讲过之后,我觉得成功之处是:归纳出解一元一次方程的一般步骤之后,我写到黑板上四道题,让四位学生做到黑板上,其他学生做到练习本上。做完后,再选四位学生上去改并且讲评。这样一做一改,这几位学生都对易错处印象深刻,做错题目的学生再让他们结合自己做的题,说说自己容易在哪个步骤出错。然后再集体进行总结,去分母是什么地方易错,去括号什么地方易错。这样的训练之后,我觉得学生解方程掌握的比以前的学生好。我想,这正是新课改倡导的精神,让学生自己动手做,思考,归纳,总结,最后变成了自己的东西,不易忘记。
这节课的不足之处在于:这节课从古埃及的纸莎草文书引入,这是能反映古埃及文明的一件珍贵文物,这个选材可以起到介绍悠久的数学文明的作用,可以让学生感受到数学文化的熏陶,而我当时一带而过,只让学生自己看了看文字,忽视了对学生情感价值观的教育。
其次,方程列出后,我提出问题,引导学生来思考怎样把方程简化,化成能够解决的一元一次方程,但给学生留下的思维空间较少。有几个思维敏捷的学生很快想到了解决问题的方法,我就没有等更多的学生深入思考,自己得出结论。这样造成多数学生跟着少数学生思维跑的局面,忽视了大部分学生思考---得出结论---体验成功的过程,只照顾了少部分学生,这会导致数学的两极分化。一部分学生总是体验不到自己经过认真思考,得出结论的成就感,慢慢会失去学习兴趣。这是我今后应该努力解决的问题。