第一篇:公开课《解一元一次方程——去分母》说课稿
解一元一次方程——去分母的说课稿
我说课的内容是人教版九年义务教育七年级教科书数学第一册第三章第三节“解一元一次方程
(二)——去分母”的内容。本次讲课从四大方面讲解:
一、教材分析
地位与作用:本节内容在全书及章节的地位:《解一元一次方程——去分母》是初中七年级数学人教版上册第三章第三节。前面几节我们学习了《解一元一次方程——去括号》,这节是解一元一次方程的延伸及应用。通过这节我们对解一元一次方程有了更新的步骤。它在教材中起着承前启后的作用,一方面加深对一元一次方程的解法认识,另一方面为接下来讲解实际问题做了铺垫。所以说这节课内容非常重要。
二、教学目标
根据上述教材结构内容简析,考虑到学生的认识结构心理特征,教学目标确定如下:① 知识与能力:形成并掌握解一元一次方程的规范步骤,理解去分母的注意事项,并通过对比加深对带系数的去分母方法。
② 过程与方法:逐步培养学生观察、归纳、类比、联想等发现规律的一般方法 ③ 情感态度与价值观:通过分析解有括号的一元一次方程的过程,让学生体会整洁的内涵,发展有条理地清晰的思维能力,提高人的一般素质。
三、教学重难点确定
弄清列方程解应用题的思想方法;用去分母解一元一次方程是这节课的重点。弄清题意,寻找等量关系是这节课的难点
四、学情分析
(1)知识掌握上,七年级学生刚刚学习一元一次方程,解一元一次方程的步骤和实际问题的找等量关系掌握不一定很深刻,尤其是应用题的等量关系的寻找不容易,所以应全面系统的去讲述。(2)学生学习本节课的知识障碍。学生在知识的结合上不是很顺手,所以教学中教师应予以简单明白、深入浅出的分析。(3)由于七年级学生的理解能力和思维特征和生理特征,学生好动性,注意力易分散,爱发表见解,希望得到老师的表扬等特点,所以在教学中应抓住学生这一生理心理特点,一方面要运用直观生动的形象,引发学生的兴趣,使他们的注意力始终集中在课堂上;另一方面要创造条件和机会,让学生发表见解,发挥学生学习的主动性。(4)心理上,学生对数学课的兴趣,老师应抓住这有利因素认真总结口诀,引导学生认识到数学课的科学性,学好数学有利于其它学科的学习以及学科知识的渗透性。
五、教学策略
由于七年级学生的理解能力和思维特征,他们具有极强的模仿能力,为使课堂生动、有趣、高效,特将整节课以观察、思考、讨论贯穿于整个教学环节之中,采用教学模式,注意师生之间的情感交流,并教给学生“多观察、动脑想、大胆猜、勤钻研”的研讨式学习方法。总结口诀,增加其学习的趣味性,然后加强其对问题总结简洁的习惯。
为充分发挥学生的主体性和教师的主导辅助作用,教学过程中设计六个教学环节:
(一)复习引入,出示目标
(二)自学导航
(三)师生交流,教师点拨
(四)达标测试
(五)小结
(六)布置作业
六、教学程序设计
1、复习引入,出示目标
把教学内容转化为具有潜在意义的问题,让学生产生强烈的问题意识,使学生的整个学习过程成为“猜想、口诀”,继而紧张的深思,期待寻找理由和证明过程 在实际情况下进行学习,可以使学生利用已知知识与经验,同化和索引出当前学习的新知识,这样获取的知识,不但易于保持,而且易于迁移到陌生的问题情境中。
2、自学导航
对于实际问题,同学们在小学时已经接触过,所以并不陌生。另外前面我们已经学过移项及合并同类项,并且总结了一些口诀。
3、师生交流,教师点拨
我们在讲解例题时,不仅在于怎样解,更在于为什么这样解,而及时对解题方法和规律进行概括,有利于发展学生的思维能力。总结口诀有利于增强学生的兴趣性,激发学生学习的热情。在题中,我们采取固定做题框架但是不细说具体步骤,以此达到自由发挥的效果。
4、达标测试
及时练习巩固,小组合作交流,有针对性,有目的的练习公式。再加上口诀的辅助,达到讲练结合的教学宗旨,深化记忆灵活运用的目的。练习的目的就是不怕千招会,就怕一招熟。
5、小结
知识性内容的小结,可把课堂教学传授的知识尽快化为学生的素质;数学思想方法的小结,可使学生更深刻的理解数学思想方法在解题中的地位和应用,并且逐渐培养学生的良好的总结归纳的个性品质目标。
6、布置作业
七、板书设计(略)
第二篇:《解一元一次方程—去分母》教案
教学目标:
知识与技能目标:
1.掌握解一元一次方程中去分母的方法,并能解此类型的方程。
2.了解一元一次方程解法的一般步骤。
数学思考目标:
1.通过去分母,体会划归的数学思想方法。
2.通过归纳一元一次方程解法的一般步骤,体会解方程的程序化思想方法。
解决问题目标:
经历把实际问题抽象为方程的过程,发展用方程方法分析问题、解决问题 的能力。
情感态度目标:
1.通过具体情境引入新问题(如何去分母),激发学生的探究欲望。
2.通过埃及古题的情景感受数学文明。
教学重点:通过去分母解一元一次方程。
教学难点:探究通过去分母的方法解一元一次方程。
教辅工具:多媒体
教学过程设计:
程序
问题与情境
师生行为
设计意图
创设问题情境
引言:这件珍贵的文物是纸莎草文书,师古代埃及人用象形文字在一种特殊的草上的著作,至今已经有3700多年的历史了,在文书中记载了许多有关数学的问题。
问题(1)
一个数,它的三分之二,它的一半,它的七分之一,它的全部,加起来总共是33.能不能用方程解决这个问题?
问题(2)
能尝试解这个方程吗?
问题(3)
不同的解法由什么各自的特点?
教师展示幻灯片,呈现问题。
学生思考并回答问题。
教师对学生的回答进行总结。
学生独立完成解方程。
教师巡视,观察学生的解题方法,展示不同解法,并请学生表述解法及解法依据。
1.接合并同类项的方法;
2.去分母的方法。
教师引导学生分析并对比两种解法,得到共识。当方程中含有分数系数时,先去分母可以使解题更加方便、快捷。
教师给出本节课题。
本次活动中,教师应重点关注:
学生能否体会到去分母的必要性;
学生是否明确去分母的可行性;
学生能否总结出去分母的一般方法
学生能否正确表达自己的想法,能否倾听、思考、理解他人的想法。
利用列方程,解方程解决实际问题,再一次让学生感受到方程的优越性,提高学生主动使用方程的意识。
经过对同一方程不同解法的分析,首先让学生亲自感受到去分母能够使解方程的过程更加便捷,明白为什么要去分母,知识去分母这一步骤的必要性,同时,让学生认同去分母是科学的、可行的。明确为什么能去分母。这样,学生就会自觉参与探索去分母的一般做法的活动,从而发现方程两边同时乘以所有分母的最小公倍数这一方法。
通过交流,让学生用自己的语言清楚的表达解决问题的过程,提高学生的语言表达能力。
探究
过程
问题1:下面方程
可以怎样求解?
学生观察方程特点,回答问题。教师提出问题并对学生的回答进行总结,先去分母。
在独立思考的基础上,学生分组交流,并汇总得到去分母的正确方法。
教师深入小组参与活动、指导、倾听学生的交流。
归纳总结去分母的方法,在方程两边同时乘以所有分母的最小公倍数,依据是等式的性质2。
呈现不同学生的阶梯过程,选取学生在去分母过程中出现的典型错误,引导全体学生共同分析错误的原因,发现去分母的易错点。
本次活动是活动1的延续和发展,通过解这个方程,进一步晚上用去分母的方法解方程时具体操作方法及注意事项。
通过对错例的辨析,加深学生对去分母的认识,避免解方程时出现类似错误。
探究过程
解去掉分母后的这个方程
学生独立完成解方程。
教师巡视、指导学生完成解题过程。
师生共同归纳出正确解题过程。
去掉分母后,方程即转化为熟悉的形式,新旧知识自然衔接,使学生体会到,只要把新问题想办法合理转化为熟悉的知识,问题就能得以解决,通过在解方程过程中去分母这一步骤体会转化思想。
练习巩固
解方程:
学生独立完成解方程过程,教师巡视、指导。
用实践来加深对去分母的方法解一元一次方程的认识。
归纳总结一元一次方程解法的一般步骤,巩固所学的解法。
小结
教师指导学生共同归纳本节的知识。
复习、巩固本节的知识,学会总结反思。
课后反思
第三篇:公开课《解一元一次方程——去括号》说课稿
解一元一次方程——去括号的说课稿
我说课的内容是人教版九年义务教育七年级教科书数学第一册第三章第三节“解一元一次方程——去括号”的第一课时内容。本次讲课从四大方面讲解:
一、教材分析
地位与作用:本节内容在全书及章节的地位:《解一元一次方程——去括号》是初中七年级数学人教版上册第三章第三节。前面几节我们学习了《解一元一次方程——移项及合并同类项》,这节是解一元一次方程的延伸及应用。通过这节我们对解一元一次方程有了更新的步骤。它在教材中起着承前启后的作用,一方面加深对一元一次方程的解法认识,另一方面为接下来讲解去分母做了铺垫。所以说这节课内容非常重要。
二、教学目标
根据上述教材结构内容简析,考虑到学生的认识结构心理特征,教学目标确定如下: ① 知识与能力:形成并掌握解一元一次方程的规范步骤,理解去括号的法则,并通过对比加深对带系数的去括号方法。
② 过程与方法:逐步培养学生观察、归纳、类比、联想等发现规律的一般方法 ③ 情感态度与价值观:通过分析解有括号的一元一次方程的过程,让学生体会整洁的内涵,发展有条理地清晰的思维能力,提高人的一般素质。
三、教学重难点确定
弄清列方程解应用题的思想方法;用去括号解一元一次方程是这节课的重点。弄清题意,寻找等量关系是这节课的难点
四、学情分析
(1)知识掌握上,七年级学生刚刚学习一元一次方程,解一元一次方程的步骤和实际问题的找等量关系掌握不一定很深刻,尤其是应用题的等量关系的寻找不容易,所以应全面系统的去讲述。(2)学生学习本节课的知识障碍。学生在知识的结合上不是很顺手,所以教学中教师应予以简单明白、深入浅出的分析。(3)由于七年级学生的理解能力和思维特征和生理特征,学生好动性,注意力易分散,爱发表见解,希望得到老师的表扬等特点,所以在教学中应抓住学生这一生理心理特点,一方面要运用直观生动的形象,引发学生的兴趣,使他们的注意力始终集中在课堂上;另一方面要创造条件和机会,让学生发表见解,发挥学生学习的主动性。(4)心理上,学生对数学课的兴趣,老师应抓住这有利因素认真总结公式和简介的思想,引导学生认识到数学课的科学性,学好数学有利于其他学科的学习以及学科知识的渗透性。
五、教学策略
由于七年级学生的理解能力和思维特征,他们具有极强的模仿能力,为使课堂生动、有趣、高效,特将整节课以观察、思考、讨论贯穿于整个教学环节之中,采用启发式教学法和师生互动式教学模式,注意师生之间的情感交流,并教给学生“多观察、动脑想、大胆猜、勤钻研”的研讨式学习方法。总结口诀,增加其学习的趣味性,然后加强其对问题总结简洁的习惯。
为充分发挥学生的主体性和教师的主导辅助作用,教学过程中设计六个教学环节:
(一)复习引入,出示目标
(二)自学导航
(三)师生交流,教师点拨
(四)达标测试
(五)小结
(六)布置作业
六、教学程序设计
1、复习引入,出示目标
把教学内容转化为具有潜在意义的问题,让学生产生强烈的问题意识,使学生的整个学习过程成为“猜想、口诀”,继而紧张的深思,期待寻找理由和证明过程 在实际情况下进行学习,可以使学生利用已知知识与经验,同化和索引出当前学习的新知识,这样获取的知识,不但易于保持,而且易于迁移到陌生的问题情境中。
2、自学导航
对于实际问题,同学们在小学时已经接触过,所以并不陌生。另外前面我们已经学过移项及合并同类项,并且总结了一些口诀。
3、师生交流,教师点拨
我们在讲解例题时,不仅在于怎样解,更在于为什么这样解,而及时对解题方法和规律进行概括,有利于发展学生的思维能力。总结口诀有利于增强学生的兴趣性,激发学生学习的热情。在题中,我们采取固定做题框架但是不细说具体步骤,以此达到自由发挥的效果。
4、达标测试
及时练习巩固,小组合作交流,有针对性,有目的的练习公式。再加上口诀的辅助,达到讲练结合的教学宗旨,深化记忆灵活运用的目的。练习的目的就是不怕千招会,就怕一招熟。
5、小结
知识性内容的小结,可把课堂教学传授的知识尽快化为学生的素质;数学思想方法的小结,可使学生更深刻的理解数学思想方法在解题中的地位和应用,并且逐渐培养学生的良好的总结归纳的个性品质目标。
6、布置作业
七、板书设计(略)
第四篇:解一元一次方程去分母课件
一、教学目标
1、通过处理实际问题,让学生体验从算术方法到代数方法是一种进步;
2、初步学会如何寻找问题中的相等关系,列出方程,了解方程的概念;
3、培养学生获取信息,分析问题,处理问题的能力。
二、教学难点、知识重点
1、重点:建立一元一次方程的概念。
2、难点:理解用方程来描述和刻画事物间的相等关系。
三、教学方法
讲练结合、注重师生互动。
四、教学准备
课件
五、教学过程(师生活动)
(一)情境引入
教师提出教科收第79页的问题,并用多媒体直观演示。
问题1:从视频中你能获得哪些信息?(必要时可以提示学生从时间、路程、速度、四地的排列顺序等方面去考虑。)
教师可以在学生回答的基础上做回顾小结
问题2:你会用算术方法求出王家庄到翠湖的距离吗·(当学生列出不同算式时,应让他们说明每个式子的含义)
教师可以在学生回答的基础上做回顾小结:
1、问题涉及的三个基本物理量及其关系;
2、从知的信息中可以求出汽车的速度;
3、从路程的角度可以列出不同的算式:
问题3:能否用方程的知识来解决这个问题呢?
(二)学习新知
1、教师引导学生设未知数,并用含未知数的字母表示有关的数量.
如果设王家庄到翠湖的路程为x千米,那么王家庄距青山千米.
2、教师引导学生寻找相等关系,列出方程.
问题1:题目中的“汽车匀速行驶”是什么意思?
问题2:汽车在王家庄至青山这段路上行驶的速度该怎样表示?你能表示其他各段路程的车速吗? 问题3:根据车速相等,你能列出方程吗?
教师根据学生的回答情况进行分析,如:
依据“王家庄至青山路段的车速=王家庄至秀水路段的车速”可列方程:
依据“王家庄至青山路段的车速=青山至秀水路段的车速”可列方程:
3、给出方程的概念,介绍等式、等式的左边、等式的右边等概念.
4、归纳列方程解决实际问题的两个步骤:
(1)用字母表示问题中的未知数(通常用x,y,z等字母);
(2)根据问题中的相等关系,列出方程.
(三)举一反三讨论交流
1、比较列算式和列方程两种方法的特点.建议用小组讨论的方式进行,可以把学生分成两部分分别归纳两种方法的优缺点,也可以每个小组同时讨论两种方法的优缺点,然后向全班汇报.
列算式:只用已知数,表示计算程序,依据是间题中的数量关系;
列方程:可用未知数,表示相等关系,依据是问题中的等量关系。
2、思考:对于上面的问题,你还能列出其他方程吗?如果能,你依据的是哪个相等关系?、建议按以下的顺序进行:!
(1)学生独立思考;
(2)小组合作交流;
(3)全班交流.
如果直接设元,还可列方程:
如果设王家庄到青山的路程为x千米,那么可以列方程:
依据各路段的车速相等,也可以先求出汽车到达翠湖的时刻:,再列出方程 =60
说明:要求出王家庄到翠湖的路程,只要解出方程中的x即可,我们在以后几节课中再来学习.
(四)初步应用、课堂练习
1、例题(补充):根据下列条件,列出关于x的方程:
(1)x与18的和等于54;(2)27与x的差的一半等于x的4倍.
建议:本例题可以先让学生尝试解答,然后教师点评.
解:(1)x+18=54;(2)(27-x)=4x.列出方程后教师说明:“4x"表示4与x的积,当乘数中有字母时,通常省略乘号“X”,并把数字乘数写在字母乘数的前面.
2、练习(补充):
(1)列式表示:
① 比a小9的数; ② x的2倍与3的和;
③ 5与y的差的一半; ④ a与b的7倍的和.
(2)根据下列条件,列出关于x的方程:
(1)12与x的差等于x的2倍;
(2)x的三分之一与5的和等于6.(五)课堂小结
可以采用师生问答的方式或先让学归纳,补充,然后教师补充的方式进行,主要围绕以下问题:
1、本节课我们学了什么知识?
2、你有什么收获?
说明方程解决许多实际问题的工具。
(六)本课作业
1、必做题:第84--85页习题3.1第1,5题。
2、选做题:根据下列条件,用式表示问题的结果:
(1)一打铅笔有12支,m打铅笔有多少支?
(2)某班有a名学生,要求平均每人展出4枚邮票,实际展出的邮标量比要求数多了15枚,问该班共展出多少枚邮票?
(3)根据下列条件列出方程:小青家3月份收入a元,生活费花去了三分之一,还剩2400元,求三月份的收入。
第五篇:解一元一次方程——去分母教学反思
解一元一次方程——去分母教学反思1
本节课由一道著名的求未知数的问题,得到方程,这个方程的特点就是有些系数是分数,这时学生纷纷用合并同类项,把系数化为1的变形方法来解,但在合并同类项时几个分数的求和,有相当一部分学生会感到困难且容易出错,再看方程怎样解呢?学生困惑了,不知从何处下手了,此时,需要寻求一种新的变形方法来解它求知的欲望出来了,想到了去分母,就是化去分母,把分数系数化为整数,使解方程中的计算方便些。 在解方程中去分母时,我发现存在这样的一些问题:
1、部分学生不会找各分母的最小公倍数,这点要适当指导。
2、用各分母的最小公倍数乘以方程两边的项时,漏乘不含分母的项。
3、当减式中分子是多项式且分母恰好为各分母的最小公倍数时,去分母后,分子没有作为一个整体加上括号,容易错符号。如解方程方程两边都乘以10后,得到5×3x+1-10×2=3x-2-2×2x+3其中3x+1,2x+3没有加括号,弄错了符号对解题步骤的归纳说法基本一致。就学生的表达能力还有些欠佳,需要提高语言组织能力。
本节课习题设计的不够充分,学生在上课的过程中训练强度达不到,当分母是小数时,找最小公倍数是困难的,我们要引导学生:
1、把小数的分母化为整数的分母。如把方程中的前两项分子、分母同乘以10,或前两项分母同乘以 ,则两项的分母分别成为2和5,即原方程变形为整数。
2、想办法将分母变为1。等式两边同乘以分母的最小公倍数10。
3、学生有疑惑的是先去括号呢,还是先去分母,怎样计算会简便些呢?
在本节课的教学过程中,我发现学生对以上活动都比较感兴趣,特别是对讨论的环节每个学生都想发表自己的看法。对解题步骤的归纳说法基本一致,就学生的表达能力还有些欠佳,需要提高语言组织能力。只要我们善于引导学生认真观察,多思考多练习,抓住特点,就能找到一些解方程的技巧方,在以后的教学中要给学生准备一部分提高能力的题,达到检测和拓展数学思维的目的。
另外,从学生的作业中反馈出:对去分母的第一步还存在较大的问题,是不是说明过程的叙述不太清楚,部分学生摸棱两可,真真自己做的时候就会暴露出不懂的,这也提醒我今后的教学中在关键的知识点上要下“功夫”,切不可轻易的解决问题。备课时应该多多思考学生的具体情况,然后再修改初备的教案,尽量完善,尽量完美。
但我还是感觉到:我讲的太多;主动权还没有放心大胆地交还给学生,否则情况会可能会更好。这也是我的缺点,应该化大力气来调整自己。另外也应该不断地充实自己其他方面地知识,把数学课上地生动活泼。
解一元一次方程——去分母教学反思2
在前面的学段中,学生已学习了合并同类项、去括号等整式运算内容。解一元一次方程就成为承上启下的重要内容。因此,它既是重点也是难点。我根据学生认识规律和教学的启发性、直观性和面向全体因材施教等教学原则,积极创设新颖的问题情境,以“学生发展为本,以活动为主线,以创新为主旨”,采用多媒体教学等有效手段,以引导法为主,辅之以直观演示法、讨论法,向学生提供充分从事数学活动的机会,激发学生的学习积极性,使学生主动参与学习的全过程
本节课由一道著名的求未知数的问题,得到方程,这个方程的特点就是有些系数是分数,这时学生纷纷用合并同类项,把系数化为1的变形方法来解,但在合并同类项时几个分数的求和,有相当一部分学生会感到困难且容易出错,再看方程怎样解呢?学生困惑了,不知从何处下手了,此时,需要寻求一种新的变形方法来解它求知的欲望出来了,想到了去分母,就是化去分母,把分数系数化为整数,使解方程中的计算方便些。
在解方程中去分母时,我发现存在这样的一些问题: ① 部分学生不会找各分母的最小公倍数,这点要适当指导,
② 用各分母的最小公倍数乘以方程两边的.项时,漏乘不含分母的项,
③ 当减式中分子是多项式且分母恰好为各分母的最小公倍数时,去分母后,分子没有作为一个整体加上括号,容易错符号。如解方程方程两边都乘以10后,得到5×3x +1-10×2 = 3x -2-2× 2x +3
其中3x +1, 2x +3 没有加括号,弄错了符号对解题步骤的归纳说法基本一致。就学生的表达能力还有些欠佳,需要提高语言组织能力。 本节课习题设计的不够充分,学生在上课的过程中训练强度达不到,当分母是小数时,找最小公倍数是困难的,我们要引导学生: ①把小数的分母化为整数的分母。如 把方程中的前两项分子、分母同乘以10,或前两项分母同乘以 ,则两项的分母分别成为2和5,即原方程变形为整数。
② 想办法将分母变为1。等式两边同乘以分母的最小公倍数10。
③学生有疑惑的是先去括号呢,还是先去分母,怎样计算会简便些呢?
在本节课的教学过程中,我发现学生对以上活动都比较感兴趣,特别是对讨论的环节每个学生都想发表自己的看法。对解题步骤的归纳说法基本一致,就学生的表达能力还有些欠佳,需要提高语言组织能力。只要我们善于引导学生认真观察,多思考多练习,抓住特点,就能找到一些解方程的技巧方,在以后的教学中要给学生准备一部分提高能力的题,达到检测和拓展数学思维的目的。
另外,从学生的作业中反馈出:对去分母的第一步还存在较大的问题,是不是说明过程的叙述不太清楚,部分学生摸棱两可,真真自己做的时候就会暴露出不懂的,这也提醒我今后的教学中在关键的知识点上要下“功夫”,切不可轻易的解决问题。备课时应该多多思考学生的具体情况,然后再修改初备的教案,尽量完善,尽量完美。
但我还是感觉到:我讲的太多;主动权还没有放心大胆地交还给学生,否则情况会可能会更好。这也是我的缺点,应该化大力气来调整自己。另外也应该不断地充实自己其他方面地知识,把数学课上地生动活泼。
(1)基本体现自主探究教学模式,逐步引导学生学习。
(2)对学情分析不准确,本来认为学生对工程问题会掌握的很好,不会出现问题,课堂会相对很轻松,但结果是学生早就忘了工程问题中的基本数量关系,复习2的填空都不能完成,严重影响了后续知识的学习。教师在课上临时调节不到位,使一堂本应轻松的课变得沉闷、不能有效推进。
(3)从学习有效性考虑,对教学设计可做如下改进,一是复习中工程问题可利用例题分解完成,这样可以为例题做铺垫,提高审题效率,降低学习难度,使例题学习更顺畅。二是例题后的变式,一道是在例题基础上的变结论题,另一道是单独的一道题,但是条件与例题有变化。此题不如在例题基础上直接变条件,节省审题时间,让学生充分体会工程问题中的数量关系的变化规律,提高学习效率。
(4)教学方法要改进,学生学习困难时研讨是必要的,但不是所有问题研讨都可以得出结论,所以教师点拨的作用要适时体现。如,学生对工程问题中的相等关系认识有困难时,教师可以通过力求方法表示整体1与各部分关系,这样学生可以很轻松理解。
解一元一次方程——去分母教学反思3
通过上节课学习后,学生已经掌握了用去括号、移项、合并同类项、把系数化为1这四个步骤解一元一次方程。
接下来这一节课,我们要重点讨论是;
①解方程中的“去分母”,
②根据实际问题列方程。这样我们就掌握了解一元一次方程一般都采用的五步变形方法。
由一道著名的求未知数的问题,得到方程,这个方程的特点就是有些系数是分数,这时学生纷纷用合并同类项,把系数化为1的变形方法来解,但在合并同类项时几个分数的求和,有相当一部分学生会感到困难且容易出错,再看方程
怎样解呢?学生困惑了,不知从何处下手了,此时,需要寻求一种新的变形方法来解它,求知的欲望出来了,想到了去分母,就是化去分母,把分数系数化为整数,使解方程中的计算方便些。
在解方程中去分母时,我们发现存在这样的一些问题:
①部分学生不会找各分母的最小公倍数,这点要适当指导,
②用各分母的最小公倍数乘以方程两边的项时,漏乘不含分母的项,
③当减式中分子是多项式且分母恰好为各分母的最小公倍数时,去分母后,分子没有作为一个整体加上括号,容易错符号。如解方程方程两边都乘以2后,得到2x-x+2=2,其中x+2没有加括号,弄错了符号。
解一元一次方程——去分母教学反思4
通过上节课学习后,学生已经掌握了用去括号、移项、合并同类项、把系数化为1这四个步骤解一元一次方程,接下来这一节课,我们要重点讨论是:
(1)解方程中的“去分母”。
(2)根据实际问题列方程。这样我们就掌握了解一元一次方程一般都采用的五步变形方法。
由一道著名的求未知数的问题,得到方程,这个方程的特点就是有些系数是分数,这时学生纷纷用合并同类项,把系数化为1的变形方法来解,但在合并同类项时几个分数的求和,有相当一部分学生会感到困难且容易出错,再看方程
怎样解呢?学生困惑了,不知从何处下手了,此时,需要寻求一种新的变形方法来解它,求知的欲望出来了,想到了去分母,就是化去分母,把分数系数化为整数,使解方程中的计算方便些。
在解方程中去分母时,我们发现存在这样的一些问题:
(1)部分学生不会找各分母的最小公倍数,这点要适当指导。
(2)用各分母的最小公倍数乘以方程两边的项时,漏乘不含分母的项。
(3)当减式中分子是多项式且分母恰好为各分母的最小公倍数时,去分母后,分子没有作为一个整体加上括号,容易错符号。如解方程方程两边都乘以2后,得到2x—x+2=2,其中x+2没有加括号,弄错了符号。
解一元一次方程——去分母教学反思5
本节课的重点是讨论解一元一次方程中的去分母,此节课后就可以解各种各样的一元一次方程,并可以归纳出解一元一次方程的一般步骤。这节课从古代埃及的纸莎草文书中的一道题切入,引出带有分母的一元一次方程,进而讨论解这类方程的方法。这个问题是:一个数,它的三分之二,它的一半,它的七分之一,它的全部,加起来总共是33。求这个数。
这节课讲过之后,我觉得成功之处是:归纳出解一元一次方程的一般步骤之后,我写到黑板上四道题,让四位学生做到黑板上,其他学生做到练习本上。做完后,再选四位学生上去改并且讲评。这样一做一改,这几位学生都对易错处印象深刻,做错题目的学生再让他们结合自己做的题,说说自己容易在哪个步骤出错。然后再集体进行总结,去分母是什么地方易错,去括号什么地方易错。这样的训练之后,我觉得这一届的学生解方程掌握的比以前的学生好。我想,这正是新课改倡导的精神,让学生自己动手做,思考,归纳,总结,最后变成了自己的东西,不易忘记。
这节课的不足之处在于:这节课从古埃及的纸莎草文书引入,这是能反映古埃及文明的一件珍贵文物,这个选材可以起到介绍悠久的数学文明的作用,可以让学生感受到数学文化的熏陶,而我当时一带而过,只让学生自己看了看文字,忽视了对学生情感价值观的教育。
其次,方程列出后,我提出问题,引导学生来思考怎样把方程简化,化成能够解决的一元一次方程,但给学生留下的思维空间较少。有几个思维敏捷的学生很快想到了解决问题的方法,我就没有等更多的学生深入思考,自己得出结论。这样造成多数学生跟着少数学生思维跑的局面,忽视了大部分学生思考---得出结论---体验成功的过程,只照顾了少部分学生,这会导致数学的两极分化。一部分学生总是体验不到自己经过认真思考,得出结论的成就感,慢慢会失去学习兴趣。这是我今后应该努力解决的问题。
解一元一次方程——去分母教学反思6
这点要适当指导,② 用各分母的最小公倍数乘以方程两边的项时,漏乘不含分母的项,③ 当减式中分子是多项式且分母恰好为各分母的最小公倍数时,去分母后,分子没有作为一个整体加上括号,容易错符号。如解方程方程两边都乘以10后,得到 5×3x +1-10×2 = 3x -2-2× 2x +3其中3x +1, 2x +3 没有加括号,弄错了符号对解题步骤的归纳说法基本一致。就学生的表达能力还有些欠佳,需要提高语言组织能力。
本节课习题设计的不够充分,学生在上课的过程中训练强度达不到,当分母是小数时,找最小公倍数是困难的,我们要引导学生:
①把小数的分母化为整数的分母。如 把方程中的前两项分子、分母同乘以10,或前两项分母同乘以 ,则两项的分母分别成为2和5,即原方程变形为整数。
②想办法将分母变为1。等式两边同乘以分母的最小公倍数10。
③学生有疑惑的是先去括号呢,还是先去分母,怎样计算会简便些呢?
在 本节课的教学过程中,我发现学生对以上活动都比较感兴趣,特别是对讨论的环节每个学生都想发表自己的看法。对解题步骤的归纳说法基本一致,就学生的表达能 力还有些欠佳,需要提高语言组织能力。只要我们善于引导学生认真观察,多思考多练习,抓住特点,就能找到一些解方程的技巧方,在以后的教学中要给学生准备 一部分提高能力的题,达到检测和拓展数学思维的目的。
另外,从学生的作业中反馈出:对去分母的第一步还存在较大的问题,是不是说 明过程的叙述不太清楚,部分学生摸棱两可,真真自己做的时候就会暴露出不懂的,这也提醒我今后的教学中在关键的知识点上要下“功夫”,切不可轻易的解决问 题。备课时应该多多思考学生的具体情况,然后再修改初备的教案,尽量完善,尽量完美。
但我还是感觉到:我讲的太多;主动权还没有放心大胆地交还给学生,否则情况会可能会更好。这也是我的缺点,应该化大力气来调整自己。另外也应该不断地充实自己其他方面地知识,把数学课上地生动活泼。
反思五:解一元一次方程——去分母教学反思
本节课是在学习了一元一次方程解法的基础上学习的,它与前面所学的知识之间有着紧密的联系,学生在学习本节课之后会初步了解了“建模”的数学思想及基本步骤。因此本节内容的教学首先复习一元一次方程解法的步骤,通过把实际问题用一元一次方程的解决,不仅巩固了一元一次方程的解法,并且加深了对“建模”思想的理解。
本节课的设计思路是从实际问题出发,引导学生自主学习,积极探究,合作交流,总结提高。用列方程的方法解决实际问题,在教学过程中通过连串问题去引导学生审题、分析题意、寻找等量关系等,使学生初步了解“建模”的数学思想。在课堂中让学生带着思考,带着问题,教师组织学生讨论的目的是为了充分暴露出学生的问题,让学生在谈论、合作、交流的过程中解决问题,在通过老师的总结归纳,学生的认识得到升华,因此本节课采取的是学生合作探究的教学方法。
在教学过程中,教师不断地提出问题,明确要达到的目的,并在学生遇到困难的时候提供指导性建议,但不提供具体的解决过程和问题的答案。学生则围绕确定的问题,在教师的指导性帮助下,通过自己的思考和相互间的交流,达到预定的目标。
显然,这样的教学给学生带来的发展是多方面、多层次的,不同的学生在学习过程中都有不同程度的收获。
这节课学生大多能积极思考,认真学习,课后作业都能及时完成。作业质量较好,基本达到了预定的教学目标,主要存在问题是去括号时个别同学不注意符号或出现漏乘情况。
上了这节课,我觉得上好一节课的因素很多,也发现了自己很多不足的地方,在平时上课的时候,对提问的形式和语言还嫌单一。在现行的开放式的课堂中,关键是放的出去的同时要收的回来,可能是平时注入式的简单易行,或者是不大重视,上课中的语言的漏洞很多,在以后的教学中要多加揣摩和重视,多点听其他老师的课,尽量把他们对课堂教学处理的优点溶进自己的教学中,进一步提高自己的教育教学水平。
解一元一次方程——去分母教学反思7
从学生的作业中反馈出:对去分母的第一步还存在较大的问题,是不是说明过程的叙述不太清楚,部分学生摸棱两可,真真自己做的时候就会暴露出不懂的,这也提醒我今后的教学中在关键的知识点上要下“功夫”,切不可轻易的解决问题(想当然)。备课时应该多多思考学生的具体情况,然后再修改初备的教案,尽量完善,尽量完美。
在评课中,尽管其他老师没有多提意见,但我还是感觉到:我讲的太多;主动权还没有放心大胆地交还给学生,否则情况会可能会更好。这也是我的缺点,应该化大力气来调整自己。另外也应该不断地充实自己其他方面地知识,把数学课上地生动活泼
1.去分母后原来的分子没有添加括号
例1解方程: .
分析:分数线实际上包含括号的意思,去分母后原来的分子应该添上括号。
2.去分母时最小公倍数没有乘到每一项
例2解方程:.
分析:去分母时最小公倍数没有乘到每一项,特别是不含有分数的项。
3.去括号导致错误
4.运用乘法分配律时,漏乘括号里的项。
例3解方程:.
分析:去括号时没有把括号外的数分配到括号中的每一项。
5.括号前面是“-”号时,去括号要使括号里的每一项变号。
解一元一次方程——去分母教学反思8
从学生的作业中反馈出:对去分母的第一步还存在较大的问题,是不是说明过程的叙述不太清楚,部分学生摸棱两可,真真自己做的时候就会暴露出不懂的,这也提醒我今后的教学中在关键的知识点上要下“功夫”,切不可轻易的解决问题(想当然)。备课时应该多多思考学生的具体情况,然后再修改初备的教案,尽量完善,尽量完美。
1、去分母后原来的分子没有添加括号。
例1:解方程。
分数线实际上包含括号的意思,去分母后原来的分子应该添上括号。
2、去分母时最小公倍数没有乘到每一项。
例2:解方程。
去分母时最小公倍数没有乘到每一项,特别是不含有分数的项。
3、去括号导致错误。
4、运用乘法分配律时,漏乘括号里的项。
例3:解方程。
去括号时没有把括号外的数分配到括号中的每一项。
5、括号前面是“-”号时,去括号要使括号里的每一项变号。
解一元一次方程——去分母教学反思9
在学生学习了解一元一次方程一般都采用的五步变形方法以后,这节课重点探讨解下列方程的技巧方法,
如在解方程30%x+70%(200-x)=200×70%中,在去分母时,方程两边都乘以100,化去%得:
30x+70(200-x)=200×70,有部分学生就提出疑问,为什么在200那里不乘以100?在(200-x)的里面又不乘以100呢?为了能让学生明白,我想是否要将原方程变形为,然后再各项乘以100,写成,最后化去分母。
又在解方程中,怎样去分母呢?最小公倍数是什么呢?学生是有疑惑的,当分母是小数时,找最小公倍数是困难的,我们要引导学生:
①把小数的分母化为整数的分母。如把方程中的前二项都分别分子分母同乘以10,则二项的分母分别成为5和1,即原方程变形为
②想办法将分母变为1,即把左边第一项分子、分母都乘以2,右边第一项分子、分母都乘
10,则三项的分母都为1。原方程变形为2(4x-1.5)=10(1.2-x)+2
又如在解方程中,是先去括号呢,还是先去分母,怎样计算会简便些呢?
只要我们善于引导学生认真观察,多思考多练习,抓住特点,就能找到一些解方程的技巧方
法。解一元一次方程一般都采用五步变形灵活应用,除此之外,据不同题型,运用一些技巧方法,就能快捷地求出其解。