初三数学几何部分第一轮复习圆教案(精选五篇)

时间:2019-05-15 07:55:18下载本文作者:会员上传
简介:写写帮文库小编为你整理了多篇相关的《初三数学几何部分第一轮复习圆教案》,但愿对你工作学习有帮助,当然你在写写帮文库还可以找到更多《初三数学几何部分第一轮复习圆教案》。

第一篇:初三数学几何部分第一轮复习圆教案

初三数学几何部分第一轮复习教案——第六章:圆

上传: 黄水才

更新时间:2012-5-28 15:28:00

教学目的:

1、理解圆、等圆、等孤等概念及圆的对称性。

2、掌握点和圆的位置关系,会用尺规作经过不在同一直线上三点的圆,掌握五种常见的轨迹。

3、掌握垂径定理及其推论以及圆心角、孤、弦、弦心距的相关定理,并会用它们进行论证和计算。

4、理解圆心角、圆周角、弦切角及多边形外接圆和圆内接多边形的概念。

5、掌握圆周角定理和弦切角定理以及它们的推论,掌握圆内接四边形性质定理,并能熟练地运用这些知识进行有关证题和计算,会作两条线段的比例中项。

6、掌握直线和圆的位置关系,掌握切线的判定定理和性质定理及其推论,掌握切线长定理;掌握切点和圆心的连线与切线垂直等性质,并会利用它们进行有关的证明和计算。

7、会过一点画圆的切线,会用尺规作三角形的内切圆。

8、掌握国与圆的位置关系,掌握相交丙圆的连心线垂直平分两回的公共弦,相切而圆的连心线经过切点和公切线长定理;并会利用它们进行有关的证明和计算;会画而圆的公切线。

9、掌握圆与三角形、四边形关系,掌握三角形内心概念和外切四边形的性质。

10、掌握相交弦定理,割线定理、切割线定理及其推论,灵活运用这些定理证明圆的有关线段的比例式或等积式问题。

11、理解正多边形及正多边形的中心、半径、边心距、中心角等概念、会进行正多边形的边长、半径、边心距和中心角的有关计算。

12、会计算圆的周长,孤长及简单组合圆形的周长;会计算圆的面积、弓形的面积及简单组合图形的面积。

13、会计算圆柱和圆锥的侧面积和全面积。知识点:

一、圆

1、圆的有关性质

在一个平面内,线段oa绕它固定的一个端点o旋转一周,另一个端点a随之旋转所形成的图形叫圆,固定的端点o叫圆心,线段oa叫半径。

由圆的意义可知:

圆上各点到定点(圆心o)的距离等于定长的点都在圆上。

就是说:圆是到定点的距离等于定长的点的集合,圆的内部可以看作是到圆。心的距离小于半径的点的集合。

圆的外部可以看作是到圆心的距离大于半径的点的集合。连结圆上任意两点的线段叫做弦,经过圆心的弦叫直径。圆上任意两点间的部分叫圆弧,简称弧。

圆的任意一条直径的两个端点分圆成两条弧,每一条弧都叫半圆,大于半圆的弧叫优弧;小于半圆的弧叫劣弧。由弦及其所对的弧组成的圆形叫弓形。

圆心相同,半径不相等的两个圆叫同心圆。

能够重合的两个圆叫等圆。

同圆或等圆的半径相等。

在同圆或等圆中,能够互相重合的弧叫等弧。

二、过三点的圆 l、过三点的圆

过三点的圆的作法:利用中垂线找圆心

定理不在同一直线上的三个点确定一个圆。经过三角形各顶点的圆叫三角形的外接圆,外接圆的圆心叫外心,这个三角形叫圆的内接三角形。

2、反证法

反证法的三个步骤:

①假设命题的结论不成立;

②从这个假设出发,经过推理论证,得出矛盾;

③由矛盾得出假设不正确,从而肯定命题的结论正确。

例如:求证三角形中最多只有一个角是钝角。

证明:设有两个以上是钝角

则两个钝角之和>180 °

与三角形内角和等于180 ° 矛盾。∴不可能有二个以上是钝角。

即最多只能有一个是钝角。

三、垂直于弦的直径

圆是轴对称图形,经过圆心的每一条直线都是它的对称轴。

垂径定理:垂直于弦的直径平分这条弦,并且平分弦所对的两条弧。

推理1:平分弦(不是直径)的直径垂直于弦,并且平分弦所对两条弧。

弦的垂直平分线经过圆心,并且平分弦所对的两条弧。

平分弦所对的一条弧的直径,垂直平分弦,并且平分弦所对的另一个条弧。

推理2:圆两条平行弦所夹的弧相等。

四、圆心角、弧、弦、弦心距之间的关系

圆是以圆心为对称中心的中心对称图形。

实际上,圆绕圆心旋转任意一个角度,都能够与原来的图形重合。

顶点是圆心的角叫圆心角,从圆心到弦的距离叫弦心距。

定理:在同圆或等圆中,相等的圆心角所对的弧相等,所对的弦相等,所对的弦心距相等。

推理:在同圆或等圆中,如果两个圆心角、两条弧、两条弦或两条弦的弦心距中,有一组量相等,那么它们所对应的其余各组量都分别相等。

五、圆周角

顶点在圆上,并且两边都和圆相交的角叫圆周角。

推理1:同弧或等弧所对的圆周角相等;同圆或等圆中,相等的圆周角所对的弧也相等。

推理2:半圆(或直径)所对的圆周角是直角;90 ° 的圆周角所对的弦是直径。

推理3:如果三角形一边上的中线等于这边的一半,那么这个三角形是直角三角形。

由于以上的定理、推理,所添加辅助线往往是添加能构成直径上的圆周角的辅助线。

六、圆的内接四边形

多边形的所有顶点都在同一个圆上,这个多边形叫圆内接多边形,这个圆叫这个多边形的外接圆 定理:圆的内接四边形的对角互补,并且任何一个外角都等于它的内对角。

例如图6—1,连ef后,可得:

∠def=∠b ∠def+∠a=180 ° ∴∠a+∠b=18ry ∴bc∥da

七、直线和圆的位置关系

1、直线和圆有两个公共点时,叫做直线和圆相交,这时直线叫圆的割线

直线和圆有唯一公共点时,叫做直线和圆相切,这时直线叫圆的切线,唯一的公共点叫切点。

直线和圆没有公共点时,叫直线和圆相离。

2、若圆的半径为r,圆心到直线的距离为d,则:

直线和圆相交 d<r;直线和圆相切 d=r;直线和圆相离 d>r;直线和圆相交 d<r 例如:图6-2中,直线与圆o相割,有:r>d 图6-3中,直线与圆o相切,r=d 图6-4中,直线与圆o相离,r<d

八、切线的判定和性质

切线的判定:经过半径的外端并且垂直于这条半径的直线是圆的切线。

切线的性质:圆的切线垂直于经过切点的半径 推理1:经过圆心且垂直干切线的直线必经过切点。

推理2:经过切点且垂直于切线的直线必经过圆心。

例如图6-5中,o为圆心,ac是切线,d为切点。

∠b=90 °

则有bc是切线 od是半径 od⊥ac 九、三角形的内切圆

要求会作图,使它和己知三角形的各边都相切

∵分角线上的点到角的两边距离相等。∴两条分角线的交点就是圆心。

这样作出的圆是三角形的内切圆,其圆心叫内心,三角形叫圆的外切三角形。

和多边形各边都相切的圆叫多边形的内切圆,多边形叫圆的外切多边形。

十、切线长定理

经过圆外一点可作圆的两条切线。在经过圆外一点的圆的切线上,这点和切点之间的线段的长,叫这点到圆的切线长。

切线长定理从圆外一点引圆的两条切线,它们的切线长相等。圆心和这一点的连线平分两条切线的夹角,如图6- 6 b、c为切点,o为圆心。ab=ac,∠1=∠2

十一、弦切角

顶点在圆上,一边和圆相交,另一边和圆相切的角叫弦切角。

弦切角定理弦切角等于它所央的弧对的圆周角。

推理如果两个弦切角所央的弧相等,那么这两个弦切角也相等。例如图6-7,ab为切线,则有:∠c=∠bae,∠bae=∠d ∴∠c=∠d

十二、和圆有关的比例线段

相交弦定理:圆内的两条相交弦,被交点分成的两条线段长的积相等。

推理:如果弦与直径垂直相交,那么弦的一半是它分直径所成的两条线段的比例中项。

切割线定理:从圆外一点引圆的切线和割线,切线长是这点到割线与圆交点的两条线段长的比例中项。

推理:从圆外一点引两条割线,这一点到每条割线与圆的交点的两条线段长的积相等,如图6-8,若f为切点

则有:af2=ah·ac,ag·ab=af2 em·md=bm·mg cn·nh=dn·ne

十三、圆和圆的位置关系如图6-9 若连心线长为d,两圆的半径分别为r,r,则:

1、两圆外离 d >r+r;

2、两圆外切 d = r+r;

3、两圆相交 r-r<d<r+r(r>r)

4、两圆内切 d = r-r;(r>r)

5、两圆内含 d<r-r。(r>r)

定理相交两圆的连心线垂直平分丙两圆的公共弦。

如图6-10,o1,o2为圆心,则有:ab⊥o1o2,且ab被o1o2平分

十四、两圆的公切线

和两个圆都相切的直线叫两圆的公切线,两圆在公切线同旁时,叫外公切线,在公切线两旁时,叫内公切线,公切线上两个切点的距离叫公切线的长。

如图6-11,若 a、b、c、d为切点,则ab为内公切线长,cd为外公切线长

内外公切线中的重要直角三角形,如图6-12,oo1a为直角三角形。d2=(r-r)2+e2为外公切线长,又如图 6-13,oo1c为直角三角形。d 2=(r十r)2+ e ’ 2为内公切线长。

十五、相切在作图中的应用

生活、生产中常常需要由一条线(线段或孤)平滑地渡到另一条线上,通常称为圆弧连接,简称连接,连接时,线段与圆弧,圆弧与圆弧在连接外相切,如图 6- 14

十六、正多边形和圆

各边相等,各角也相等的多边形叫正多边形。

定理:把圆分成n(n>3)等分:

(l)依次连结各分点所得的多边形是这个圆的内按正多边形;

(2)经过各分点作圆的切线,以相邻切线的交点为顶点的多边形是这个圆的外切正n边形。

定理:任何正多边形都有一个外接圆和一个内切圆,这两个圆是同心圆。

正多边形的外接(或内切)圆的圆心叫正多边形的中心。外接圆的半径叫正多边形的半径,内切圆的半径叫正多边形的边心距。

正多边形各边所对的外接圆的圆心角都相等,叫正多边形的中心角。

正n边形的每个中心角等于

正多边形都是轴对称图形,一个正n边形共有n条对称轴,每条对称轴都通过正n边形的中心。

若n为偶数,则正n边形又是中心对称图形,它的中心就是对称中心。

边数相同的正多边形相似,所以周长的比等于边长的比,面积的比等于边长平方的比。

十七、正多边形的有关计算

正n边形的每个内角都等于

定理:正n边形的半径和边心距把正n边形分成2n个全等的直角三角形。正多边形的有关计算都归结为解直角三角形的计算。

十八、画正多边形

1、用量角器等分圆

2、用尺规等分圆

三、正

六、正

八、正四及其倍数(正多边形)。

正五边形的近似作法;

二十、圆周长、弧长

1、圆周长c=2πr;

2、弧长 二

十一、圆扇形,弓形的面积 l、圆面积: ;

2、扇形面积:一条弧和经过这条弧的端点的两条半径所组成的图形叫做扇形。

在半径为r的圆中,圆心角为n ° 的扇形面积s扇形的计算公式为:

注意:因为扇形的弧长。所以扇形的面积公式又可写为

(3)弓形的面积

由弦及其所对的弧组成的圆形叫做弓形。

弓形面积可以在计算扇形面积和三角形面积的基础上求得。如果弓形的弧是劣弧,则弓形面积等于扇形面积减去三角形面积。若弓形的弧是优弧,则弓形面积等于扇形面积加上三角形面积。

二十二、圆柱和圆锥的侧面展开图

1、圆柱的侧面展开图

圆柱可以看作是由一个矩形旋转得到的,如把矩形abcd绕边ab旋转一周得到的图形是一个圆柱。(图6一16)

ab叫圆柱的轴,圆柱侧面上平行轴的线段cd,c ’ d ’,…都叫圆柱的母线。

圆柱的母线长都相等,等于圆柱的高。

圆柱的两个底面是平行的。

圆柱的侧面展开图是一个长方形,如图6-17,其中ab=高,ac=底面圆周长。

∴s侧面=2πrh

圆柱的轴截面是长方形一边长为h,一边长为2r r是圆柱底半径,h是圆柱的高。见图6-8

(2)圆锥的侧面展开图

圆锥可以看作由一个直角三角形旋转得到。

如图6-19,把rt△oas绕直线so旋转一周得到的图形就是圆锥。

旋转轴so叫圆锥的轴,连通过底面圆的圆心,且垂直底面。

连结圆锥顶点和底面圆的任意一点的sa、sa ’、…都叫圆锥的母线,母线长都相等。

圆锥的侧面展开图如图6一19是一个扇形sab 半径是母线长,ab是2πr。(底面的周长),所以圆锥侧面积为s侧面=πrl 例题:

1、如图7.2-1,ab是⊙o的直径,ad⊥cd,bc⊥cd,且ad+bc=ab,1、求证:⊙o与cd相切;

2、若cd=3,求ad?bc.[特色]本题来源于教材,主要考查切线的判定方法及相似三角形的知识.[解答](1)过o点作oe⊥cd于e.∵ ad⊥cd,bc⊥cd,∴ ad∥oe∥bc,又∵ao=bo,∴de=ce,∴ oe=(ad+bc).而ab=ad+bc,∴ oe=oa,而oe⊥cd,∴⊙o与cd相切.(2)连结ae、be,∵⊙o与cd相切,∴ oe⊥cd,∠ bae=∠bec.而∠ bae=∠ oea,∠ oea+∠ dea=90,∴∠ dea+∠bec=90.又∵ad⊥cd,∴∠ dea+∠ dae=90,∴∠ dae=∠bec,∴ △aed∽△ebc,∴ad?ec=de?bc,即ad?bc=de?ec= =.例

2、如图7.1-2.已知,ab 为⊙ o 的直径,d 为弦 ac 的中点,bc=6cm, 则 od=.[ 特色] 以上几道中考题均为直接运用圆的有关性质解题.[解答]由三角形的中位线定理知 od=bc 例

3、如图7.3-1 ⊙ o 为△ abc 的内切圆,∠ c=,ao 的延长线交 bc 于点 d,ac=4,cd=1, 则⊙ o 的半径等于().a、b、c、d、[ 特色]本题考查内心的性质.[解答] 过点 o 半径 oe, 则 oe ∥ cd,ae ∶ ac=oe ∶ cd, 设半径为 r, 则(4-r)∶4= r ∶ 1, 解之得r= , 选 a.例

4、圆内接四边形 abcd,∠ a、∠ b、∠ c 的度数的比是 1 ∶ 2 ∶ 3,则这个四边形的最大角是.[特色]运用圆内接四边形的性质进行简单计算.[解答]设 a=x,则∠ b=2x, ∠ c=3x.∵∠ a+ ∠ c=180,∴ x+3x=180,∴ x=45.∴∠ a=45,∠ b=90,∠ c=135,∠ d=90.∴ 最大角为 135.例

5、如图7.5-1,o 和 o 外切于点 c,直线 ab 分别外切⊙ o 于 a,⊙ o 于 b,⊙ o 的半径为 1,ab=2,则⊙ o 的半径是.[特色]以上各题都是圆与圆的位置关系中常见的基本题型,着眼于考查学生对两圆的位置关系的理解及运用.[解答](1)选 b,利用两圆相交,连心线垂直平分公共弦,再根据勾股定理可求得.例

6、将两边长分别为4 cm 和6 cm 的矩形以其一边所在的直线为轴旋转一周,所得圆柱的表面积为 cm.[ 特色]考查圆柱的表面积的计算,着眼于考查学生思维的全面性.[解答]以边长为4 cm 作母线所得到的圆柱的表面积为80 ;以边长为6 cm 作母线所得到的圆柱的表面积为120.例

7、如图7.6-2,正六边形内接于半径为1的圆,其中阴影部分的面积是.[特色]考查学生对基本概念的理解以及基本运算能力.[解答] 答案:.作半径,用扇形的面积减去三角形的面积.

第二篇:初三数学第一轮复习教案9

初三数学第一轮复习教案

几何部分 第二章:三角形

教学目的:

1、掌握三角形的分类、边角关系、三条线段构成三角形的条件,内角和定理。

2、熟练掌握并灵活运用全等三角形的判定和性质来证明有关对应角,对应线段相等和线段平行与垂直及线段的和差、倍、分关系,并进行有关计算。

3、掌握有关三角形的数学思想和方法。

4、熟练掌握特殊三角形的判定和性质,勾股定理及其逆定理,并能灵活运用。

5、掌握线段的垂直平分线、角的平分线的性质定理和逆定理,并能熟练灵活地加以运用。

6、会用尺规完成基本作图,能利用基本作图和已知条件作一般三角形,等腰三角形,直角三角形;会写已知,求作,作法。知识点:

一、关于三角形的一些概念

由不在同一条直线上的三条线段首尾顺次相接所组成的图形叫做三角形。

组成三角形的线段叫三角形的边;相邻两边的公共端点叫三角形的顶点;相邻两边所组成的角叫三角形的内角,简称三角形的角。

1、三角形的角平分线。

三角形的角平分线是一条线段(顶点与内角平分线和对边交线间的距离)

2、三角形的中线

三角形的中线也是一条线段(顶点到对边中点间的距离)

3.三角形的高

三角形的高线也是一条线段(顶点到对边的距离)

注意:三角形的中线和角平分线都在三角形内。

如图 2-l,AD、BE、CF都是么ABC的角平分线,它们都在△ABC内

如图2-2,AD、BE、CF都是△ABC的中线,它们都在△ABC内

而图2-3,说明高线不一定在 △ABC内,图2—3—(1)

图2—3—(2)

图2-3一(3)

图2-3—(1),中三条高线都在△ ABC内,图2-3-(2),中高线CD在△ABC内,而高线AC与BC是三角形的边;

图2-3一(3),中高线BE在△ABC内,而高线AD、CF在△ABC外。

三、三角形三条边的关系

三角形三边都不相等,叫不等边三角形;有两条边相等的叫等腰三角形;三边都相等的则叫等边三角形。

等腰三角形中,相等的两条边叫腰,另一边叫底边,腰和底边的夹角叫底角,两腰的夹角叫项角。

三角形接边相等关系来分类:

不等边三角形

三角形三角形底边和腰不相等的等腰等腰三角形等边三角形三角形

用集合表示,见图2-4

推论三角形两边的差小于第三边。

不符合定理的三条线段,不能组成三角形的三边。

例如三条线段长分别为5,6,1人因为5+6<12,所以这三条线段,不能作为三角形的三边。三、三角形的内角和

定理三角形三个内角的和等于180°

由定理可知,三角形的二个角已知,那么第三角可以由定理求得。

如已知△ABC的两个角为∠A=90°,∠B=40°,则∠C=180°–90°–40°=50°

由定理可以知道,三角形的三个内角中,只可能有一个内角是直角或钝角。

推论1:直角三角形的两个锐角互余。

三角形按角分类:

直角三角形

三角形锐角三角形斜三角形钝角三角形

用集合表示,见图

三角形一边与另一边的延长线组成的角,叫三角形的外角。

推论2:三角形的一个外角等于和它不相邻的两个内角的和。

推论3:三角形的一个外角大于任何一个和它不相邻的内角。

例如图2—6中

∠1 >∠3;∠1=∠3+∠4;∠5>∠3+∠8;∠5=∠3+∠7+∠8;

∠2>∠8;∠2=∠7+∠8;∠4>∠9;∠4=∠9+∠10等等。

四、全等三角形

能够完全重合的两个图形叫全等形。

两个全等三角形重合时,互相重合的顶点叫对应顶点,互相重合的边叫对应边,互相重合的角叫对应角。

全等用符号“≌”表示

△ABC≌△A `B`C`表示 A和 A`,B和B`,C和C`是对应点。

全等三角形的对应边相等;全等三角形的对应角相等。

如图2—7,△ABC≌△A `B`C`,则有A、B、C的对应点A`、B`、C`;AB、BC、CA的对应边是A`B`、B`C`、C`A`。∠A,∠B,∠C的对应角是∠A`、∠B`、∠C`。

∴AB=A`B`,BC=B`C`,CA=C`A`;∠A=∠A`,∠ B=∠B`,∠C=∠C`

五、全等三角形的判定

1、边角边公理:有两边和它们的夹角对应相等的两个三角形全等(可以简写成“边角边”或“SAS”)

注意:一定要是两边夹角,而不能是边边角。

2、角边角公理:有两角和它们的夹边对应相等的两个三角形全等(可以简写成“角边角“或“ASA”)

3、推论有两角和其中一角的对边对应相等的两个三角形全等(可以简写成“角角边’域“AAS”)

4、边边边公理有三边对应相等的两个三角形全等(可以简写成“边边边”或“SSS”)

由边边边公理可知,三角形的重要性质:三角形的稳定性。

除了上面的判定定理外,“边边角”或“角角角”都不能保证两个三角形全等。

5、直角三角形全等的判定:斜边、直角边公理有斜边和一条直角边对应相等的两个直角三角形全等(可以简写成“斜边,直角边”或“HL”)

六、角的平分线

定理

1、在角的平分线上的点到这个角的两边的距离相等。

定理

2、一个角的两边的距离相等的点,在这个角的平分线上。

由定理1、2可知:角的平分线是到角的两边距离相等的所有点的集合。

可以证明三角形内存在一个点,它到三角形的三边的距离相等这个点就是三角形的三条角平分线的交点(交于一点)

在两个命题中,如果第一个命题的题设是第二个命题的结论,而第一个命题的结论又是第二个命题的题设,那么这两个命题叫做互为逆命题,如果把其中的一个做原命题,那么另一个叫它的逆命题。

如果一个定理的逆命题经过证明是真命题,那么它也是一个定理,这两个定理叫互逆定理,其中一个叫另一个的逆定 理。

例如:“两直线平行,同位角相等”和“同位角相等,两直线平行”是互逆定理。

一个定理不一定有逆定理,例如定理:“对顶角相等”就没逆定理,因为“相等的角是对顶角”这是一个假命颗。

七、基本作图

限定用直尺和圆规来画图,称为尺规作网_

最基本、最常用的尺规作图.通常称为基本作图,例如做一条线段等于己知线段。

1、作一个角等于已知角:作法是使三角形全等(SSS),从而得到对应角相等;

2、平分已知角:作法仍是使三角形全等(SSS).从而得到对应角相等。

3、经过一点作已知直线的垂线:(1)若点在已知直线上,可看作是平分已知角平角;(2)若点在已知直线外,可用类似平分已知角的方法去做:已知点 C为圆心,适当长为半径作弧交已知真线于A、B两点,再以A、B为圆心,用相同的长为半径分别作弧交于D点,连结CD即为所求垂线。

4、作线段的垂直平分线: 线段的垂直平分线也叫中垂线。

做法的实质仍是全等三角形(SSS)。也可以用这个方法作线段的中点。

八、作图题举例

重要解决求作三角形的问题

1、已知两边一夹角,求作三角形 .

2、已知底边上的高,求作等腰三角形

九、等腰三角形的性质定理

等腰三角形的性质定理:等腰三角形的两个底角相等(简写成“等边对等角”)

推论1:等腰三角形顶角的平分线平分底边并且垂直于底边,就是说:等腰三角形的顶角的平分线、底边上的中线、底边上的高互相重合。

推论2:等边三角形的各角都相等,并且每一个角都等于60°

例如:等腰三角形底边中线上的任一点到两腰的距离相等,因为等腰三角形底边中线就是顶角的角平分线、而角平分线上的点到角的两边距离相等n

十、等腰三角形的判定

定理:如果一个三角形有两个角相,那这两个角所对的两条边也相等。(简写成“等角对等动”)。

推论1:三个角都相等的三角形是等边三角形

推论2:有一个角等于60°的等腰三角形是等边三角形

推论3:在直角三角形中,如果一个锐角等于3O°,那么它所对的直角边等于斜边的一半。

十一、线段的垂直平分线

定理:线段垂直平分线上的点和这条线段两个端点的距离相等

逆定理:和一条线段两个端点距离相等的点,在这条线段的垂直平分线上。

就是说:线段的垂直平分线可以看作是和线段两个端点距离相等的所有点的集合。

十二、轴对称和轴对称图形

把一个图形沿着某一条直线折叠二如果能够与另一个图形重合,那么就说这两个图形关于这条直线轴对称,两个图形中的对应点叫关于这条直线的对称点,这条直线叫对称轴。

两个图形关于直线对称也叫轴对称。

定理1:关于某条直线对称的两个图形是全等形。

定理2:如果两个图形关于某条直线对称,那么对称轴是对应点连线的垂直平分线。

定理3:两个图形关于某条直线对称,如果它们的对应线段或延长相交。那么交点在对称轴上。

逆定理:如果两个图形的对应点连线被一条直线垂直平分,那么这两个图形关于这条直线对称。

如果一个图形沿着一条直线折叠,直线两旁的部分能够互相重合,那么这个图形叫做轴对称图形,这条直线就是对称轴。

例如:等腰三角形顶角的分角线就具有上面所述的特点,所以等腰三角形顶角的分角线是等腰三角形的一条对称轴,而等腰三角形是轴对称图形。

十三、勾股定理 勾股定理:直角三角形两直角边a、b的平方和等于斜边c的平方:abc

勾股定理的逆定理:如果三角形的三边长a、b、c有下面关系: abc

那么这个三角形是直角三角形 例题:

1、已知:AB、CD相交于点O,AC∥DB,OC=OD,E、F为AB上两点,且AE=BF.求证:CE=DF 分析:要证CE=DF,可证△ACE≌△BDF,但由已知条件直接证不出全等,这时由已知条件可先证出△AOC≌△BOD,得出AC=BD,从而证出△ACE≌△BDF.证明:略

2、已知:如图,AB=CD,BC=DA,E、F是AC上两点,且AE=CF。求证:BF=DE 分析:观察图形,BF和DE分别在△CFB和△AED(或△ABF和△CDE)中,由已知条件不能直接证明这两个三角形全等。这时可由已知条件先证明△ABC≌△CDA,由此得∠1=∠2,从而证出△CFB≌△AED。

证明:略

3、已知:∠CAE是三角形ABC的外角, ∠1=∠2,AD∥BC。求证:AB=AC 证明:略

4、已知:如图 3- 89,OE平分∠AOB,EC⊥OA于 C,ED⊥OB于 D.求证:(1)OC=OD;(2)OE垂直平分CD.

分析:证明第(1)题时,利用“等角的余角相等”可得到∠OEC=∠OED,再利用角平分线的性质定理得到 OC=OD.这样处理,可避免证明两个三角形全等.

证明:略

22222

第三篇:初三数学第一轮复习教案3

初三数学第一轮复习教案

代数部分 第三章:方程和方程组

教学目的:

1、了解等式、方程和方程组的有关概念;

2、熟练掌握一元一次、一元二次方程的解法,会灵活运用各种解法求方程的根;

3、熟练掌握分式方程一般解法及换元法,并掌握分式方程验根的方法;

4、能灵活运用代入法和加减法解二元一次方程组及解简单的三元一次方程组;

5、会用代入法解由一个二元二次方程和一个二元一次方程组成的二元二次方程组;

6、理解一元二次方程根的判别式,会根据根的判别式判定数字系数的一元二次方程根的情况,会运用它解决一些简单问题;

7、掌握一元二次方程根与系数的关系,会用它由已知一元二次方程的一个根求出另一个根与未知系数,会求一元二次方程有关两个根的对称式的值等。基础知识点:

一、方程有关概念

1、方程:含有未知数的等式叫做方程。

2、方程的解:使方程左右两边的值相等的未知数的值叫方程的解,含有一个未知数的方程的解也叫做方程的根。

3、解方程:求方程的解或方判断方程无解的过程叫做解方程。

4、方程的增根:在方程变形时,产生的不适合原方程的根叫做原方程的增根。

二、一元方程

1、一元一次方程

(1)一元一次方程的标准形式:ax+b=0(其中x是未知数,a、b是已知数,a≠0)

(2)一玩一次方程的最简形式:ax=b(其中x是未知数,a、b是已知数,a≠0)

(3)解一元一次方程的一般步骤:去分母、去括号、移项、合并同类项和系数化为1。

(4)一元一次方程有唯一的一个解。

2、一元二次方程

(1)一元二次方程的一般形式:axbxc0(其中x是未知数,a、b、c是已知数,a≠0)

(2)一元二次方程的解法: 直接开平方法、配方法、公式法、因式分解法

(3)一元二次方程解法的选择顺序是:先特殊后一般,如果没有要求,一般不用配方法。

(4)一元二次方程的根的判别式:b4ac

2当Δ>0时方程有两个不相等的实数根;

当Δ=0时方程有两个相等的实数根;

当Δ< 0时方程没有实数根,无解;

当Δ≥0时方程有两个实数根

(5)一元二次方程根与系数的关系:

2若x1,x2是一元二次方程axbxc0的两个根,那么:x1x2b,ax1x2c a

(6)以两个数x1,x2为根的一元二次方程(二次项系数为1)是:x2(x1x2)xx1x20

三、分式方程

(1)定义:分母中含有未知数的方程叫做分式方程。

(2)分式方程的解法:

一般解法:去分母法,方程两边都乘以最简公分母。

特殊方法:换元法。

(3)检验方法:一般把求得的未知数的值代入最简公分母,使最简公分母不为0的就是原方程的根;使得最简公分母为0的就是原方程的增根,增根必须舍去,也可以把求得的未知数的值代入原方程检验。

四、方程组

1、方程组的解:方程组中各方程的公共解叫做方程组的解。

2、解方程组:求方程组的解或判断方程组无解的过程叫做解方程组

3、一次方程组:

(1)二元一次方程组:

a1xb1yc

1一般形式:(a1,a2,b1,b2,c1,c2不全为0)

axbyc22

2解法:代入消远法和加减消元法

解的个数:有唯一的解,或无解,当两个方程相同时有无数的解。

(2)三元一次方程组:

解法:代入消元法和加减消元法

4、二元二次方程组:

(1)定义:由一个二元一次方程和一个二元二次方程组成的方程组以及由两个二元二次方程组成的方程组叫做二元二次方程组。

(2)解法:消元,转化为解一元二次方程,或者降次,转化为二元一次方程组。考点与命题趋向分析 例题: 一、一元二次方程的解法

1、解下列方程:

(1)12(x3)22;(2)2x3x1;(3)4(x3)225(x2)2 2分析:(1)用直接开方法解;(2)用公式法;(3)用因式分解法 解:略

[规律总结]如果一元二次方程形如(xm)2n(n0),就可以用直接开方法来解;利用公式法可以解任何一个有解的一元二次方程,运用公式法解一元二次方程时,一定要把方程化成一般形式。例

2、解下列方程:

(1)x2a(3x2ab)0(x为未知数(2)x2ax8a0);分析:(1)先化为一般形式,再用公式法解;(2)直接可以十字相乘法因式分解后可求解。解:略

[规律总结]对于带字母系数的方程解法和一般的方程没有什么区别,在用公式法时要注意判断△的正负。

二、分式方程的解法: 例

3、解下列方程:

2221x226x15(2);(2)22x11xxx2分析:(1)用去分母的方法;(2)用换元法

解:略

[规律总结]一般的分式方程用去分母法来解,一些具有特殊关系如:有平方关系,倒数关系等的分式方程,可采用换元法来解。

三、根的判别式及根与系数的关系

4、已知关于x的方程:(p1)x2pxp30有两个相等的实数根,求p的值。

分析:由题意可得=0,把各系数代入=0中就可求出p,但要先化为一般形式。解:略

[规律总结]对于根的判别式的三种情况要很熟练,还有要特别留意二次项系数不能为0 例

5、已知a、b是方程x2x10的两个根,求下列各式的值:(1)ab;(2)222211 ab分析:先算出a+b和ab的值,再代入把(1)(2)变形后的式子就可求出解。[规律总结]此类题目都是先算出两根之和和两根之积,再把要求的式子变形成含有两根之和和两根之积的形式,再代入计算。但要注意检验一下方程是否有解。例

6、求作一个一元二次方程,使它的两个根分别比方程xx50的两个根小3 分析:先出求原方程的两根之和x1x2和两根之积x1x2再代入求出

2(x13)(x22)和(x13)(x23)的值,所求的方程也就容易写出来。

解:略

[规律总结]此类题目可以先解出第一方程的两个解,但有时这样又太复杂,用根与系数的关系就比较简单。

三、方程组

7、解下列方程组:

xy2z12x3y3(1);

(2)2xyz5

x2y5xy3z4分析:(1)用加减消元法消x较简单;(2)应该先用加减消元法消去y,变成二元一次方程组,较易求解。解:略

[规律总结]加减消元法是最常用的消元方法,消元时那个未知数的系数最简单就先消那个未知数。

8、解下列方程组:

22xy73xxy4y3x4y0(1);

(2)2 2xy12xy25分析:(1)可用代入消远法,也可用根与系数的关系来求解;(2)要先把第一个方程因式分解化成两个二元一次方程,再与第二个方程分别组成两个方程组来解。解:略

[规律总结]对于一个二元一次方程和一个二元二次方程组成的方程组一般用代入消元法,对于两个二元二次方程组成的方程组,一定要先把其中一个方程因式分解化为两个一次方程再和第二个方程组成两个方程组来求解。

第四篇:初三数学第一轮复习教案8

初三数学第一轮复习教案

几何部分

第一章:线段、角、相交线、平行线

教学目的:

1、理解线段的和与差,线段中点、两点问的距离,掌握直线公理、会比较线段的大小。

2、理解角、周角、平角、锐角、直角、钝角、余角、补角、角的平分线等概念。

3.掌握度、分秒的换算,会计算角度的和、差、倍、分会比较角的大小,会画角的平分线。

4、理解对顶角片卜确、垂线、垂线段、点到直线的距离等概念掌握垂线性质。

5、会识别同位角、内错角、同旁内角、会用平行线的判定和性质进行解(证)题。; 知识点:

一、直线:直线是几何中不加定义的基本概念,直线的两大特征是“直”和“向两方无限延伸”。

二、直线的性质:经过两点有一条直线,并且只有一条直线,直线的这条性质是以公理的形式给出的,可简述为:过两点有且只有一条直线,两直线相交,只有一个交点。

三、射线:

1、射线的定义:直线上一点和它们的一旁的部分叫做射线。

2.射线的特征:“向一方无限延伸,它有一个端点。”

四、线段:

1、线段的定义:直线上两点和它之间的部分叫做线段,这两点叫做线段的端点。

2、线段的性质(公理):所有连接两点的线中,线段最短。

五、线段的中点:

1、定义如图1一1中,点B把线段AC分成两条相等的线段,点B叫做线段图1-1AC的中点。

2、表示法:

∵AB=BC ∴点 B为 AC的中点

或∵ AB= 12MAC

∴点 B为AC的中点,或∵AC=2AB,∴点B为AC的中点

反之也成立

∵点 B为AC的中点,∴AB=BC

或∵点B为AC的中点,∴AB=

12AC

或∵点B为AC的中点,∴AC=2BC

六、角

1、角的两种定义:一种是有公共端点的两条射线所组成的图形叫做角。要弄清定义中的两个重点①角是由两条射线组成的图形;②这两条射线必须有一个公共端点。另一种是一条射线绕着端点从一个位置旋转到另一个位置所形成的图形。可以看出在起始位置的射线与终止位置的射线就形成了一个角。

2.角的平分线定义:一条射线把一个角分成两个相等的角,这条射线叫做这个角的平分线。表示法有三种:如图1—2

(1)∠AOC=∠BOC

(2)∠AOB=2∠AOC= 2∠COB(3)∠AOC=∠COB=

12∠AOB

七、角的度量:度量角的大小,可用“度”作为度量单位。把一个圆周分成360等份,每一份叫做一度的角。1度=60分;1分=60秒。

八、角的分类:

(1)锐角:小于直角的角叫做锐角

(2)直角:平角的一半叫做直角

(3)钝角:大于直角而小于平角的角

(4)平角:把一条射线,绕着它的端点顺着一个方向旋转,当终止位置和起始位置成一直线时,所成的角叫做平角。

(5)周角:把一条射线,绕着它的端点顺着一个方向旋转,当终边和始边重合时,所成的角叫做周角。

(6)周角、平角、直角的关系是: l周角=2平角=4直角=360°

九、相关的角:

1、对顶角:一个角的两边分别是另一个角的两边的反向延长线,这两个角叫做对顶角。

2、互为补角:如果两个角的和是一个平角,这两个角做互为补角。

3、互为余角:如果两个角的和是一个直角,这两个角叫做互为余角。

4、邻补角:有公共顶点,一条公共边,另两条边互为反向延长线的两个角做互为邻补角。

注意:互余、互补是指两个角的数量关系,与两个角的位置无关,而互为邻补角则要求两个角有特殊的位置关系。

十、角的性质

1、对顶角相等。

2、同角或等角的余角相等。

3、同角或等角的补角相等。

十一、相交线

1、斜线:两条直线相交不成直角时,其中一条直线叫做另一条直线的斜线。它们的交点叫做斜足。

2、两条直线互相垂直:当两条直线相交所成的四个角中,有一个角是直角时,就说这两条直线互相垂直。

3、垂线:当两条直线互相垂直时,其中的一条直线叫做另一条直线的垂线,它们的交点叫做垂足。

4、垂线的性质

(l)过一点有且只有一条直线与己知直线垂直。

(2)直线外一点与直线上各点连结的所有线段中,垂线段最短。简单说:垂线段最短。

十二、距离

1、两点的距离:连结两点的线段的长度叫做两点的距离。

2、从直线外一点到这条直线的垂线段的长度叫做点到直线的距离。

3、两条平行线的距离:两条直线平行,从一条直线上的任意一点向另一条直线引垂线,垂线段的长度,叫做两条平行线的距离。

说明:点到直线的距离和平行线的距离实际上是两个特殊点之间的距离,它们与点到直线的垂线段是分不开的。

十三、平行线

1、定义:在同一平面内,不相交的两条直线叫做平行线。

2、平行公理:经过直线外一点,有且只有一条直线与这条直线平行。

3、平行公理的推论:如果两条直线都和第三条直线平行,那么这两条直线也互相平行。

说明:也可以说两条射线或两条线段平行,这实际上是指它们所在的直线平行。

4、平行线的判定:

(1)同位角相等,两直线平行。

(2)内错角相等,两直线平行。

(3)同旁内角互补,两直线平行。

5、平行线的性质

(1)两直线平行,同位角相等。

(2)两直线平行,内错角相等。

(3)两直线平行,同旁内角互补。

说明:要证明两条直线平行,用判定公理(或定理)在已知条件中有两条直线平行时,则应用性质定理。

6、如果一个角的两边分别平行于另一个角的两边,那么这两个角相等或互补。

注意:当角的两边平行且方向相同(或相反)时,这两个角相等。当角的两边平行且一边方向相同另一方向相反时,这两个角互补。例题:

方法1:利用特殊“点”和线段的长

1、已知:如图1-3,C是线段AB的中点,D是线段CB 的中点,BD=1.2cm。求:AD的长。

[思路分析]由D是CB中点,DB已知可求出CB,再由C点 是AB中点可求出AB长,用AB减减去DB可求AD。

解:略 [规律总结]利用线段的特殊点如“中点”“比例点”求线段的长的方法是较为简便的解法。

方法2:如何辨别角的个数与线段条数。

2、如图1-4在线段AE上共有5个点A、B、C、D、E怎样才数出所有线段,[思路分析]本问题如不认真审题会误以为有4点恰有4个空就是4条线段即AB、BC、CD、ED;而如果从一个端点出发、再找出另一个端点确定线段,就会发现有10条线段:

即:AB、AC、AD、AE、BC、BD、BE、CD、CE、DE共10条。

[规律总结]此类型题如果做到不重不漏,最好方法是先从一个端点出发,再找出另一个端点确定线段。

3、如图1一5指出图形中直

线AB上方角的个数(不含平角)

[思路分析]此题有些同学不认真分析误认为就4个角,其实共有9个角。即:∠AOC、∠AOD、∠AOE、∠COD、∠COE、∠COB、∠DOE、∠DOB、∠EOB共9个角。

[规律总结]从一个顶点引出多条射线时.为了确定角的个数,一般按边顺序分类统计,避免既不重复又不遗漏。

方法3:用代数法求角度

4、已知一个锐角的余角,是这个锐角的补角的16,求这个角。

[思路分析]本题涉及到的角是锐角同它的余角及补角。根据互为余角,互为补角的概念,考虑它们在数量上有什么关系?设锐角为x,则它的余角为90 – x。,它的补角为180 – x,这就可以列方程了。

解:略

[规律总结]有关余角、补角的问题,一般都用代数方法先设未知数,再依题意列出方程,求出结果。

方法4:添加辅助线平移角

5、已知:如图l—6,AB∥ED

求证:∠B+∠BCD+∠D=360°

[思路分析]我们知道只有周角是等于360°,而图中又出现了与∠BCD相关的以C为顶点的周角,若能把∠B、∠D移到与∠BCD相邻且以C为顶点的位置,即可把∠B、∠BCD和∠D三个角组成一分周角,则可推出结论。

证时:略

规律总结]此题虽是三种证法但思想是一样的,都是通过加辅助线,平移角达到目的,这种处理方法在几何中常常用到。

第五篇:初三数学第一轮复习教案1

九一班数学第一轮复习教案

代数部分 第一章:实数

教学目的:

1、掌握数的概念及分类,正确理解和运用数学概念;

2、熟练掌握数轴、相反数、绝对值、倒数的概念,灵活运用这些知识解决实际问题。

3、会进行实数的大小比较。

4、理解近似数与有效数字、指数、科学记数法等概念。

5、会熟练灵活正确地进行有理数的运算。

6、了解平方根、算术平方根、立方根的概念,会用平方运算求某些非负数的平方根和算术平方根。基础知识点:

一、实数的分类:

正整数整数零负整数有限小数或无限循环小有理数数实数 正分数分数负分数正无理数无理数无限不循环小数负无理数

1、有理数:任何一个有理数总可以写成p的形式,其中p、q是互质的整数,这是有理数的重要特征。q2、无理数:初中遇到的无理数有三种:开不尽的方根,如2、34;特定结构的不限环无限小数,如1.***……;特定意义的数,如π、sin45°等。

3、判断一个实数的数性不能仅凭表面上的感觉,往往要经过整理化简后才下结论。

二、实数中的几个概念

1、相反数:只有符号不同的两个数叫做互为相反数。

(1)实数a的相反数是-a;(2)a和b互为相反数a+b=0

2、倒数:

(1)实数a(a≠0)的倒数是

1;(2)a和b 互为倒数ab1;(3)注意0没有倒数 a3、绝对值:

(1)一个数a 的绝对值有以下三种情况:

a,a0,a,a0a0a0

(2)实数的绝对值是一个非负数,从数轴上看,一个实数的绝对值,就是数轴上表示这个数的点到原点的距离。

(3)去掉绝对值符号(化简)必须要对绝对值符号里面的实数进行数性(正、负)确认,再去掉绝对值符号。

4、n次方根

(1)平方根,算术平方根:设a≥0,称a叫a的平方根,a叫a的算术平方根。

(2)正数的平方根有两个,它们互为相反数;0的平方根是0;负数没有平方根。(3)立方根:3a叫实数a的立方根。

(4)一个正数有一个正的立方根;0的立方根是0;一个负数有一个负的立方根。

三、实数与数轴

1、数轴:规定了原点、正方向、单位长度的直线称为数轴。原点、正方向、单位长度是数轴的三要素。

2、数轴上的点和实数的对应关系:数轴上的每一个点都表示一个实数,而每一个实数都可以用数轴上的唯一的点来表示。实数和数轴上的点是一一对应的关系。

四、实数大小的比较

1、在数轴上表示两个数,右边的数总比左边的数大。

2、正数大于0;负数小于0;正数大于一切负数;两个负数绝对值大的反而小。

五、实数的运算

1、加法:

(1)同号两数相加,取原来的符号,并把它们的绝对值相加;

(2)异号两数相加,取绝对值大的加数的符号,并用较大的绝对值减去较小的绝对值。可使用加法交换律、结合律。

2、减法:

减去一个数等于加上这个数的相反数。

3、乘法:

(1)两数相乘,同号取正,异号取负,并把绝对值相乘。

(2)n个实数相乘,有一个因数为0,积就为0;若n个非0的实数相乘,积的符号由负因数的个数决定,当负因数有偶数个时,积为正;当负因数为奇数个时,积为负。(3)乘法可使用乘法交换律、乘法结合律、乘法分配律。

4、除法:

(1)两数相除,同号得正,异号得负,并把绝对值相除。(2)除以一个数等于乘以这个数的倒数。

(3)0除以任何数都等于0,0不能做被除数。

5、乘方与开方:乘方与开方互为逆运算。

6、实数的运算顺序:乘方、开方为三级运算,乘、除为二级运算,加、减是一级运算,如果没有括号,在同一级运算中要从左到右依次运算,不同级的运算,先算高级的运算再算低级的运算,有括号的先算括号里的运算。无论何种运算,都要注意先定符号后运算。

六、有效数字和科学记数法

1、科学记数法:设N>0,则N= a×10(其中1≤a<10,n为整数)。

2、有效数字:一个近似数,从左边第一个不是0的数,到精确到的数位为止,所有的数字,叫做这个数的有效数字。精确度的形式有两种:(1)精确到那一位;(2)保留几个有效数字。例题:

1、已知实数a、b在数轴上的对应点的位置如图所示,且ab。化简:aabba

n分析:从数轴上a、b两点的位置可以看到:a<0,b>0且ab 所以可得:

解:原式aabbaa 例

2、若a(),3433b()3,433c()3,比较a、b、c的大小。

4433分析:a()1;b1且b0;c>0;所以容易得出:

34a<b<c。

解:略

3、若a2与b2互为相反数,求a+b的值 分析:由绝对值非负特性,可知a20,b20,又由题意可知:a2b20

所以只能是:a–2=0,b+2=0,即a=2,b= –2,所以a+b=0 解:略

4、已知a与b互为相反数,c与d互为倒数,m的绝对值是1,求解:原式=0110

abcdm2的值。m11ee1994ee 0.125199

4(2)例

5、计算:(1)822解:(1)原式=(80.125)199422119941

1111eeeeeeee=e11 (2)原式=e2222

下载初三数学几何部分第一轮复习圆教案(精选五篇)word格式文档
下载初三数学几何部分第一轮复习圆教案(精选五篇).doc
将本文档下载到自己电脑,方便修改和收藏,请勿使用迅雷等下载。
点此处下载文档

文档为doc格式


声明:本文内容由互联网用户自发贡献自行上传,本网站不拥有所有权,未作人工编辑处理,也不承担相关法律责任。如果您发现有涉嫌版权的内容,欢迎发送邮件至:645879355@qq.com 进行举报,并提供相关证据,工作人员会在5个工作日内联系你,一经查实,本站将立刻删除涉嫌侵权内容。

相关范文推荐

    初三数学第一轮复习教案11

    中小学教学资源网【www.jiaoxue.info】天天更新全部精品 初三数学第一轮复习教案 几何部分 第四章:相似形 教学目的: 1、掌握比例的性质,会运用比例的性质进行简单的比例变形,......

    初三中考第一轮复习教案

    初三中考第一轮复习教案 七年级 1、适应新生活 2、完善自我 3、孝敬父母 4、新型的师生关系 5、尊重生命,善待生命,生命的意义和价值 6、自强自立 7、法律的含义、特征 8、未......

    初三数学圆的综合复习教案

    精品讲义 贡献人:蜀道鹏 圆综合复习一、本章知识框架 二、本章重点 1.圆的定义: 线段OA绕着它的一个端点O旋转一周,另一个端点A所形成的封闭曲线,叫做圆. 圆是到定点的距......

    初三数学圆的综合复习教案

    圆的有关性质 本章重点 1.圆的定义: 线段OA绕着它的一个端点O旋转一周,另一个端点A所形成的封闭曲线,叫做圆. 圆是到定点的距离等于定长的点的集合. 2.判定一个点P是否在⊙O......

    初三数学第一轮复习教学反思

    初三数学第一轮复习教学反思 刘春喜 1、重视课本,系统复习。现在中考命题仍然以基础题为主,有些基础题是课本上的原题或改造,后面的大题虽高于教材,但原型一般还是教材中的例题......

    初三数学第一轮复习教学反思

    博林中学九年级数学第一轮复习教学反思 夏光福2012.5.23 九年级毕业班总复习,教学时间紧,任务重,要求高,学生对学过的知识早已忘记。如何提高数学总复习的质量和效益,是每位毕业......

    初三数学第一轮复习教案10(精选五篇)

    初三数学第一轮复习教案 几何部分 第三章:四边形 教学目的: 1、理解多边形的有关概念及多边形的内角和定理。 2、理解平行四边形的概念,掌握其性质和判定,能熟练地运用它们进行......

    初三数学第一轮复习教案统计初步教案精品

    初三数学第一轮复习教案 代数部分 第七章:统计初步 教学目的: 1、了解总体、个体、样本、样本容量等概念。 2、理解平均数的意义,了解总体平均数和样本平均数的意义,掌握平均数......