第一篇:初三数学几何综合题
Xupeisen110初三数学
初三数学几何综合题
Ⅰ、综合问题精讲:
几何综合题是中考试卷中常见的题型,大致可分为几何计算型综合题与几何论证型综合题,它主要考查学生综合运用几何知识的能力,这类题往往图形较复杂,涉及的知识点较多,题设和结论之间的关系较隐蔽,常常需要添加辅助线来解答.解几何综合题,一要注意图形的直观提示;二要注意分析挖掘题目的隐含条件、发展条件,为解题创造条件打好基础;同时,也要由未知想需要,选择已知条件,转化结论来探求思路,找到解决问题的关键.解几何综合题,还应注意以下几点:
⑴ 基本图形.
⑵ 掌握常规的证题方法和思路.
⑶ 数学思想方法伯数形结合、分类讨论等).
Ⅱ、典型例题剖析
【例1】(南充,10分)⊿ABC中,ABAC与AB相交于点E,点F是BE的中点.
(1)求证:DF是⊙O,BC=12,求BF的长.
解:(1)证明:连接OD,∴ AD⊥BC.AC,∴
又∠BED的外角,∴∠C=∠BED.
故∠B=∠BED,即DE=DB.
点F是BE的中点,DF⊥AB且OA和OD是半径,即∠DAC=∠BAD=∠ODA.
故OD⊥DF,DF是⊙O的切线.
(2)设BF=x,BE=2BF=2x.
又 BD=CD=2BC=6,根据BEABBDBC,2x(2x14)612.
2化简,得 x7x180,解得 x12,x29(不合题意,舍去).
1则 BF的长为2.
点拨:过半径的外端且垂直于半径的直线才是切线,所以要证明一条直线是否是此圆的切线,应满足这两个条件才行.
【例2】
点D在AEBD=CD。
证明所以在△ADB所以 点拨:要想证明BD=CD,应首先观察它们所在的图形之间有什么联系,经观察可得它们所在的三角形有可能全等.所以应从证明两个三角形全等的角度得出,当然此题还可以采用“AAS”来证明.
【例3】(内江,10分)如图⊙O半径为2,弦BD=23C,A为弧
BD的中点,E为弦AC的中点,且在BD上。求:四边形ABCD的面积。
解:连结OA、OB,OA交BD于F。
A为弧BD的中点OFBD,BFFD3 OB2
OF1AF1 SABD12BDAFAECESADESCDE,SABESCBE
S四边形2SABD23 ABCD
【例4】(博兴模拟,10分)国家电力总公司为了改善农村用电电费过高的现状,目前正在全国各地农村进行电网改造.莲花村六组有四个村庄A、B、CD正好位于一个正方形的四个顶点.现计划在四个村庄联合架一条线路,他们设计了四种架设方案,如图2-4-4中的实线部分.请你帮助计算一下,哪种架设方案最省电线.
解3. 图2-4-图2-4-显然图2-4点拨:路长,然后通过比较,得出结论.
【例5】(绍兴)如图矩形ABCD中,过A,B两点的⊙O切CD于E,交BC于F,AH⊥BE于H,连结EF。
⑴求证:∠CEF=∠BAH,⑵若BC=2CE=6,求BF的长。
⑴证明:∵CE切⊙O于E,∴∠CEF=∠EBC,∵四边形ABCD是矩形,∴∠ABC=90°
Xupeisen110初三数学
∴∠ABE+∠EBC=90°,∵AH丄BE,∴∠ABE+∠BAH=90°
∴∠BAH=∠EBC,∴∠CEF=∠BAH
⑵解: ∵CE切⊙O于E
∴CE2=CF·BC,BC=2CE=6
339∴CE2=CF·6,所以CF=∴BF=BC-CF=6- =22
2点拨:熟练掌握切线的性质及切线长定理是解决此题的关键.
Ⅲ、综合巩固练习:(100分;90分钟)
一、选择题(每题3分,共21分)
1.如图2-4-6的直径为1.2米,桌面距离地面13地面上阴影部分的面积为()
A.0.036π平方米;B.0.C.2π平方米;D、3.2.同学们设计出正三角形、正方形和圆图案是()
A.正三角形.圆;D.不能确定
3.下列说法:1:2,那么这两个三角形的面积之比是1:4;中错误是()
A.4个B.3个C.2个D.1个
4.等腰三角形的一个内角为70°,则这个三角形其余的内角可能为()
A.700,400B.700,550
C.700,400或550,550D.无法确定
5.如图2-4-7所示,周长为68的矩形被分成了7个全等的矩
形,则矩形ABCD的面积为()
A.98B.196;C.280D.28
4Xupeisen110初三数学
6.在△ABC
中,若|sinA1|2cosB)0,则∠C2的度数为()
A.60oB.30 oC.90 oD.45 o
7.下列命题中是真命题的个数有()
⑴直角三角形的面积为2,两直角边的比为1。2,则它的斜边长为10 ;⑵直角三角形的最大边长为,最短边长为l,则另一边长为2 ;(3)在直角三角形中,若两条直角边为n-1和2n,则斜边长为n+1;⑸等腰三角形面积为12,底边上的高为4,则腰长为5.
A.1个B.2个C.3个D.4个
二、填空题(每题3分,共27分)
8.如图2-4-8所示,在Rt△ABC中,∠C=90°,∠A=60°,AC=.将△ABC绕点B旋转至△A′BC使点A、B、C′三点在一条直线上,则点A线的长度是_____.
9.若正三角形、正方形、正六边形的积分别记为S3,S4,S6,则S3,S4,S6,2210若菱形的一个内角为60__________.已知数4,6是________12一油桶高 0.8m1m,从桶盖小口(小口靠近上壁)斜插入桶内,0.87m,则桶内油面的高度为13 等腰三角形底边中点与一腰的距离为5cm,则腰上的高为__________cm.在平坦的草地上有 A、B、C三个小球,若已知 A球和 B球相距3米,A球与C球相距1米,则B球与C球可能相距________米.(球的半径可忽略不计,只要求填出一个符合条件的数)如果圆的半径为3cm,那么60°的圆心角所对的弧长为____cm.如图2-4-9所示,在正方形 ABCD中,AO⊥BD、OE、FG、HI都
垂直于 AD,EF、GH、IJ都垂直于AO,若已知 SΔAIJ=1,则S
ABCD正方形=______.Xupeisen110初三数学
三、解答题(每题13分,52分)
17.已知:如图 2-4-10所示,在 Rt△ABC中,AB=AC,∠A=90°,点D为BA上任一点,DF⊥AB于F,DE⊥AC于E,M为BC的中点.试判断△MEF是什么形状的三角形,并证明你的结论.
18.今有一片正方形土地,要在其上修筑两条笔直的道路,使道路把这片土地分成形状相同且面积相等的4并简述步骤.
19.如图2-4-11所示,已知测速站P到公路lPO米,一辆汽车在公路l上行驶,测得此车从点A行驶到点BAPO=60○,∠BPO=30○,计算此车从A到B过了每秒22米的限制速度.
20.如图2-4-12为梯形ABCD的中位线.AH平分∠DA B交EF于M,延长DM交AB于N.求证:AADN是等腰三角形.
第二篇:初三几何证明综合题1(xiexiebang推荐)
几何证明综合题(1)
1、将矩形ABCD纸片沿对角线AC剪开,得到△ABC和△A′C′D,如图1所示.将△A′C′D的顶点A′与点A重合,并绕点A按逆时针方向旋转,使点D、A(A′)、B在同一条直线上,如图2所示.
观察图2可知:与BC相等的线段是▲,∠CAC′=▲°.
C'
DCC'CDC
BA BA'ADA(A')B问题探究
图1图
2如图3,△ABC中,AG⊥BC于点G,以A为直角顶点,分别以AB、AC为直角边,向
△ABC外作等腰Rt△ABE和等腰Rt△ACF,过点E、F作射线GA的垂线,垂足分别为P、Q.试探究EP与FQ之间的数量关系,并证明你的结论.E
QP
F
BG
图
3C2、点O是等边△ABC所在平面上的任意一点,连结OA并延长到E,使得AE=OA。以OB、OC为邻边作平行四边形OBFC,连结EF。探究EF与BC的关系。
3、如图12,在△ABC中,D为BC的中点,点E、F分别在边AC、AB上,并且∠ABE=∠ACF,BE、CF交于点O.过点O作OP⊥AC,OQ⊥AB,P、Q为垂足.求证:DP=DQ.
4.两块等腰直角三角板△ABC和△DEC如图摆放,其中∠ACB =∠DCE = 90°,F是DE的中点,H是AE的中点,G是BD的中点.
(1)如图1,若点D、E分别在AC、BC的延长线上,通过观察和测量,猜想FH和FG的数量关系为_______和位置关系为______;(2)如图2,若将三角板△DEC绕着点C顺时针旋转至ACE在一条直线上时,其余条件均不变,则(1)中的猜想是否还成立,若成立,请证明,不成立请5.如图。,BD是△ABC的内角平分线,CE是△ABC的外角平分线,过点A作AF⊥BD,AG⊥CE,垂足分别为F、G。
探究:线段FG的长与△ABC三边的关系,并加以证明。
附加题:探究BD、CE满足什么条件时,线段FG的长与△ABC的周长存在一定的数量关系,并给出证明。说明理由;
(2)如图3,将图1中的△DEC绕点C顺时针旋转一个锐角,得到图3,(1)中的猜想还成立吗?直接写出结论,不用证明.图1 A B 图
2图
36.在四边形ABCD中,对角线AC平分∠DAB.
(1)如图①,当∠DAB=120°,∠B=∠D=90°时,求证:AB+AD=AC.(2)如图②,当∠DAB=120°,∠B与∠D互补时,线段AB、AD、AC有怎样的数量关系?写出你的猜想,并给予证明.
(3)如图③,当∠DAB=90°,∠B与∠D互补时,线段AB、AD、AC有怎样7.(1)如图1所示,在四边形ABCD中,AC=BD,AC与BD相交于点O,E、F分别是AD、BC的中点,联结EF,分别交AC、BD于点
M、N,试判断△OMN的形状,并加以证明;(2)如图2,在四边形ABCD中,若ABCD,E、F分别是AD、BC的数量关系?写出你的猜想,并给予证明.的中点,联结FE并延长,分别与BA、CD的延长线交于点M、N,请在图2中画图并观察,图中是否有相等的角,若有,请直接写出结论:;
(3)如图3,在△ABC中,ACAB,点D在AC上,ABCD,E、F分别是AD、BC的中点,联结FE并延长,与BA的延长线交于点M,若FEC45,判断点M与以AD为直径的圆的位置关系,并简要说明理由.A
E
DBF
C
F
图 1图2图
38.如图,△ABC是等边三角形,F是AC的中点,D在线段BC上,连接
DF,以DF为边在DF的右侧作等边△DFE,ED的延长线交AB于H,连
接EC,则以下结论:①∠AHE+∠AFD=180°;②AF=
BC;③D在线段
29、以△ABC中AB、AC为边分别向形外作等腰直角△ABE和等腰直角△ACF,AH是△ABC的高。
1、探究:线段GE、GF的数量关系。
2、若以梯形ABCD的腰AB、DC向形外作等腰直角△ABE、△DCF,G是EF的中点,探究:线段GA、GD的数量关系。(利用中点构造全等三角形)1
BCEC
BC上(不与B,C重合)运动,其他条件不变时DC
是定值;
(1)其中正确的是-------------------;(2)对于(1)中的结论加以说明;
F
H B
G
D
C
E
第三篇:初三数学几何证明
一、精心选一选
1、△ABC中,AB=AC,BD平分∠ABC交AC边于点D,∠BDC=75°,则∠A的度数为()
A35°B40°C70°D110°
2、三角形的三个内角中,锐角的个数不少于()
A1 个B2 个C3个D不确定
3、适合条件∠A =∠B =1∠C的三角形一定是()
3A锐角三角形B钝角三角形C直角三角形D任意三角形
4、用两个全等的直角三角形拼下列图形:①平行四边形(不包含菱形、矩形、正方形);②矩形;③正方形;④等腰三角形,一定可以拼成的图形是()
A①②④B②④C①④D②③
5、如图,D在AB上,E在AC上,且∠B=∠C,那么补充下列一个条件后,仍无法判定△ABE≌△ACD的是()
AAD=AEB∠AEB=∠ADC CBE=CDDAB=AC
E
A(第5题图)(第6题图)
6、如图,⊿ABC⊿FED,那么下列结论正确的是()
AEC = BDBEF∥AB
CDE = BDDAC∥ED7、等腰三角形的一边为4,另一边为9,则这个三角形的周长为()
A17B22C13D17或228、有两个角和其中一个角的对边对应相等的两个三角形()
A必定全等B必定不全等C不一定全等D以上答案都不对
9、以下命题中,真命题的是()
A两条直线相交只有一个交点B同位角相等
C两边和一角对应相等的两个三角形全等D等腰三角形底边中点到两腰相等
10、面积相等的两个三角形()
A必定全等B必定不全等C不一定全等D以上答案都不对
二、耐心填一填:
11、如果等腰三角形的一个底角是80°,那么顶角是.12、⊿ABC中,∠A是∠B的2倍,∠C比∠A + ∠
B还大12,那么∠B =度
13、在方格纸上有一三角形ABC,它的顶点位置如图所示,则这个三角形是三角形
.(第12题图)(第13题图)
第 19页
14、如图:△ABC中,AD⊥BC,CE⊥AB,垂足分别为D、E,AD、CE交于点H,请你添加一个适当的条件:,使△AEH≌△CEB。
15、等腰直角三角形一条直角边的长为1cm,那么它斜边长上的高是cm.16、在△ABC和△ADC中,下列论断:①AB=AD;②∠BAC=∠DAC;③BC=DC,把其中两个论断作为条件,另一个论断作为结论,写出一个真命题:
17、在△ABC中,边AB、BC、AC的垂直平分线相交于P,则PA、PB、PC的大小关系是.18、已知⊿ABC中,∠A = 90,角平分线BE、CF交于点O,则∠BOC =
三、细心做一做:(本大题共5小题,每小题6分,共30分)
19、如图,在△ABC中,AD⊥BC于D,BE⊥AC于E,AD与BE相交于F,若BF=AC,求∠ABC的度数是
20、如图,△ABC中,∠C=Rt∠,AD平分∠BAC交BC于点D,BD
∶
DC=
2∶1,BC=7.8cm,求D到AB的距离
21、已知:如图,∠A=∠D=90°,AC=BD.求证:OB=OC
第 20页 022、已知:如图,P、Q是△ABC边BC上两点,且BP=PQ=QC=AP=AQ,求∠BAC的度数.23、已知:如图,等腰梯形ABCD中,AD∥BC,AB=CD,点E为梯形外一点,且AE=DE.求证:BE=CE.
四、勇敢闯一闯:(本大题共 2小题,每小题
8分,共
16分)
24、已知:如图,CE⊥AB,BF⊥AC,CE与BF相交于D,且BD=CD.求证:D在∠BAC的平分线上.第 21页
25、已知:如图,D是等腰ABC底边BC上一点,它到两腰AB、AC的距离分别为DE、DF。当D点在什么位置时,DE=DF?并加以证明.26、如图1,点C为线段AB上一点,△ACM,△CBN是等边三角形,直线AN,MC交于点F。
(1)求证:AN=BM;
(2)求证: △CEF
为等边三角形;
(3)将△ACM绕点C按逆时针方向旋转900,其他条件不变,在图2中补出符合要求的图形,并判断第(1)、(2)两小题的结论是否仍然成立(不要求证明)
第 22页
第四篇:初三几何教案
初三几何教案 第六章:解直角三角形
第7课时:解直角三角形应用举例(二)
教学目标:
1、使学生会把实际问题转化为解直角三角形问题,从而会把实际问题转化为数学问题来解决.
2、逐步培养学生分析问题、解决问题的能力. 教学重点:
要求学生善于将某些实际问题中的数量关系,归结为直角三角形元素之间的关系,从而利用所学知识把实际问题解决. 教学难点:
要求学生善于将某些实际问题中的数量关系,归结为直角三角形中元素之间的关系,从而利用所学知识把实际问题解决. 教学过程:
一、新课引入:
1、直角三角形中除直角外五个元素之间具有什么关系?请学生口答.
2、等腰三角形具有什么性质?
上节课我们解决的实际问题是应用正弦及余弦解直角三角形,在实际问题中有时还经常应用正切和余切来解直角三角形,从而使问题得到解决.
二、新课讲解:
1、例1如图6-21,厂房屋顶人字架(等腰三角形)的跨度为10米,∠A-26°,求中柱BC(C为底边中点)和上弦AB的长(精确到0.01米).
分析:上图是本题的示意图,同学们对照图形,根据题意思考题目中的每句话对应图中的哪个角或边,本题已知什么,求什么?
由题意知,△ABC为直角三角形,∠ACB=90°,∠A=26°,AC=5米,可利用解Rt△ABC的方法求出BC和AB.
学生在把实际问题转化为数学问题后,大部分学生可自行完成.
∴BC=AC·tgA=5×tg26°≈2.44(米).
答:中柱BC约长2.44米,上弦AB约长5.56米.
例题小结:求出中柱BC的长为2.44米后,我们也可以利用正弦计
这个结果与例1中所得的结果相比较,相差0.01米,这两个结果都可认为是正确的,因为cos26°、sin26°都取近似值,相除以后又取近似值,经过两次近似后,出现0.01米的差异,在本例中认为是可以的.
但是在求AB时,我们应尽量应用题目中原有的已知量,也就是选用关系式
如果在引导学生讨论后小结,效果会更好,不仅使学生掌握选何关系式,更重要的是知道为什么选这个关系式,以培养学生分析问题、解决问题的能力及计算能力,形成良好的学习习惯.
另外,本题是把解等腰三角形的问题转化为直角三角形的问题,渗透了转化的数学思想.
2、巩固练习
教材P.38练习.
引导学生根据示意图,说明本题已知什么,求什么,利用哪个三角形来求解,用正弦、余弦、正切、余切中的哪一种解较为简便?
3、补充例题2 为测量松树AB的高度,一个人站在距松树15米的E处,测得仰角∠ACD=52°,已知人的高度是1.72米,求树高(精确到0.01米).
首先请学生结合题意画几何图形,并把实际问题转化为数学问题.
Rt△ACD中,∠D=Rt∠,∠ACD=52°,CD=BE=15米,CE=DB=1.72米,求AB?
∴AD=CD·tgC=BE·tgC =15×tg52°=15×1.2799 ≈19.20(米).
∴AB=AD+BD=19.20+1.72 =20.92(米).
答:树高20.92米.
三、课堂小结:
请学生总结:通过学习两个例题,初步学会把一些实际问题转化为数学问题,通过解直角三角形来解决,具体说,本节课通过让学生把实际问题转化为数学问题,利用正切或余切解直角三角形,从而把问题解决.
本课涉及到一种重要教学思想:转化.
四、布置作业
1.某一时刻,太阳光线与地平面的夹角为78°,此时测得烟囱的影长为5米,求烟囱的高(精确到0.1米).
2.如图6-24,在高出地平面50米的小山上有一塔AB,在地面D测得塔顶A和塔基B的仰面分别为50°和45°,求塔高.
3.在宽为30米的街道东西两旁各有一楼房,从东楼底望西楼顶仰角为45°,从西楼顶望东楼顶,俯角为10°,求西楼高(精确到0.1米).
第五篇:初三几何教案
初三几何教案 第七章:圆
第10课时:圆周角
(二)教学目标:
1、本节课使学生在掌握圆周角的定义和圆周角定理的基础上,进一步学习圆周角定理的三个推论;
2、掌握三个推论的内容,并会熟练运用推论
1、推论2证明一些问题.
3、通过推论
1、推论2的教学,培养学生动手操作能力和独立获得知识的能力.
4、结合例2的教学进一步培养学生观察、分析及解决问题的能力及逻辑推理能力. 教学重点:
圆周角定理的三个推论的应用. 教学难点:
理解三个推论的“题设”和“结论”. 教学过程:
一、新课引入:
同学们,上节课我们学习了圆周角的概念及圆周角定理,请两位中等学生回答这两个问题. 接着请同学们看这样一个问题:
已知:如图7-34,在⊙O中,弦AB与CD相交于点E,求证:AE·EB=DE·EC.
师生共同分析:欲证明AE·EB=DE·EC,只有化乘积式为比例
角形相似条件为∠AED=∠CEB.
当学生分析得到∠AED=∠CEB,发现两个三角形相似条件不充分,只有一对角相等,不符合相似三角形的判定,这时教师补充到:如能填加∠A=∠C这个条件,能不能得到这两个三角形相似呢?请同学观察∠A、∠C是什么角呢?这节课我们继续学习“7.5圆周角
(二)”本节课我们就来解决∠A=∠C的问题.教师利用一道题创设问题的情境,有意制造一种悬念,就是为了以需要激发学生的情趣,用需要这个动力源泉激发学生的积极性.
二、新课讲解:
为了把教师的教变成学生自己要学习.学生们带着要解决∠A=∠C的问题,思维处于积极探索状态时,教师及时提出问题:
请同学们画一个圆,以B、C为弧的端点能画多少个圆周角?
这时教师要求学生至少画出三个,要求学生用量角器度量一个这三个角有什么关系?
请三名同学将量得答案公布于众.得到结果都是一致的,三个角均相等.通过度量我们可以知道∠A=∠A1=∠A2,想一想还有没有别的方法来证明这三个角相等呢?
学生分析证明思路,师生共同评价.教师概括总结出方法:要证明∠A=∠A1=∠A2,只要构造圆心角进行过渡即可.
接下来引导学生观察图形;在⊙O中,若 否得到
若 = =
=,能否得到∠C=∠G呢?根据什么?反过来,若∠C=∠G,是呢?学生思考,议论,最后得到结论.,则∠C=∠G,反过来当∠C=∠G,在同圆或等圆中,可得若
=,否则不一定成立.
这时教师要求学生举出反面例子: 若∠C=∠G,则 ≠,从而得到圆周角的又一条性质.
推论1:同弧或等弧所对的圆周角相等;在同圆或等圆中,相等的圆周角所对的弧也相等. 强调:同弧说明是“同一个圆”;
等弧说明是“在同圆或等圆中”.
“同弧”能否改成“同弦”呢?同弦所对的圆周角一定相等吗?教师提出这样的问题后,学生通过争论得到的看法一致.
接下来出示一组练习题:
1.半圆所对的圆心角是多少度?半圆所对的圆周角呢?为什么? 2.90°的圆周角所对的弧是什么?所对的弦呢?为什么? 由学生自己证明得到了推论2:
推论2:半圆或(直径)所对的圆周角是直角;90°的圆周角所对的弦是直径. 巩固练习1:判断题:
1.等弧所对的圆周角相等;()
2.相等的圆周角所对的弧也相等;()3.90°的角所对的弦是直径;()4.同弦所对的圆周角相等.()
这组练习题的目的是强化对圆周角定理的推论
1、推论2的理解,加深对推论
1、推论2的理解,掌握并准确运用.
接下来出示幻灯片:
形呢?
O上.
∴∠ACB=90°,∴△ACB是直角三角形.于是得到推论3.
推论3:如果三角形一边上的中线等于这边的一半,那么这个三角形是直角三角形. 数学表达式:
教师告诉学生这是证明一个三角形是直角三角形的判定定理.
这时教师提醒学生开课时的问题能否解决:学生回答出解决思路和方法,最后教师强调. 接下来教师给出例1
已知:如图7-41,AD是△ABC的高,AE是△ABC的外接圆的直径. 求证:AB·AC=AE·AD.
由学生分析证明思路,教师把分析过程写在黑板上:
有证明△ABE~△ADC即可.
引导学生总结:在解决圆的有关问题中,常常需要添加辅助线,构成直径上的圆周角. 接下来教师提示,把例1中的AD延长交⊙O于F,求证:BE=FC. 由学生分析,两名同学证明出两种不同方法写在黑板上.(法一):连结EF.
EF∥BC = BE=FC ∠BAE=∠FAC
=
BE=FC.(法二):△ABE~△ACF 巩固练习P.95中1、2、3.
三、课堂小结: 本节课知识点:
本节课所学方法:
常用引辅助线的方法①构造直径上的圆周角;②构造同弧所对的圆周角.
四、布置作业
教材P.100中8、9、10、11、12.