初三数学几何证明题(经典)(5篇范例)

时间:2019-05-13 00:35:29下载本文作者:会员上传
简介:写写帮文库小编为你整理了多篇相关的《初三数学几何证明题(经典)》,但愿对你工作学习有帮助,当然你在写写帮文库还可以找到更多《初三数学几何证明题(经典)》。

第一篇:初三数学几何证明题(经典)

如图;已知:在Rt△ABC中,∠ACB=90°,以AC为直径的⊙O

交AB于点D,过点D作⊙O 的切线DE交BC于点E.

求证:BE=CE

证明:连接CD

∵AC是直径

∴∠ADC=90°

∵∠ACB=90°,ED是切线

∴CE=DE

∴∠ECD=∠EDC∵∠ECD+∠B=90°,∠EDC+∠BDE=90°

∴∠B=∠BDE

∴BE=DE

∴BE=CE

如图,半圆O的直径DE=10cm,△ABC中,∠ABC=90°,∠BCA=30°,BC=10cm,半圆O以2cm/s的速度从左向右运动,在运动过程中,D、E始终在直线

BC上,设运动时间为t(s),当t=0(s)时,半圆O在△ABC的左侧且OB=9cm。(1)当t为何值时,△ABC的一边所在的直线与半圆O所在的圆相切;

(2)当△ABC一边所在直线与半圆O所在的圆相切时,如果半圆O与直径DE围成的区域与△ABC的三边围成的区域有重叠部分,求重叠部分的面积。

(1)当t为何值时,△ABC的一边所在的直线与半圆O所在的圆相切;

相切分两种情况,如图,①左图:当t=0时,原图中OB=9,此时圆移动了OB-OE=9-5=4cm

则:t=4/2=2s;

---------------

②右图:设圆O与边AC的切点为F,此问不用三角函数是无法求出的==>∵∠C=30==>∴OC=OF/sinC=5/sin30=10=BC

==>O与B重合,此时圆移动的长即为OB的长,即9cm

==>t=9/2;

=========

(2)如右图:由②得:∠AOE=90==>S阴=(90*π*5^2)/360=6.25π

不明之处请指出~~

第二篇:初三几何证明题

初三数学北师大证明

(三)一、填空题

1、用一把刻度尺来判定一个零件是矩形的方法是

(2)

(1)(3)

2.如果边长分别为4cm和5cm的矩形与一个正方形的面积相等,那么这个正方形的边长为______cm.

3.已知菱形两条对角线的长分别为5cm和8cm,则这个菱形的面积是cm2.

4.如图1,DE∥BC,DF∥AC,EF∥AB,图中共有_______个平行四边形.

5若四边形ABCD是平行四边形,请补充条件(写一个即可),使四边形ABCD是菱形.

6.图2,在平行四边形ABCD中,已知对角线AC和BD相交于点O,△ABO的周长为17,AB=6,那么对角线AC+BD=

7、以正方形ABCD的边BC 为边做等边△BCE,则∠AED的度数

为。

8.如图3,延长正方形ABCD的边AB到E,使BE=AC,(4)则∠E=°

9.已知菱形ABCD的边长为6,∠A=60°,如果点P是菱形内一点,且PB

=PD=2,那么AP的长为.

10.在平面直角坐标系中,点A、B、C的坐标分别是A(-2,5),B(-3,-1),C(1,-1),在第一象限内找一点D,使四边形ABCD是平行四边形,A那么点D的坐标是.

E

二、选择题 B11.如图4在平行四边形ABCD中,∠B=110°,延长AD至F,延长CD至

E,连结EF,则∠E+∠F=()

A.110°B.30°C.50°D.70°

12.菱形具有而矩形不具有的性质是()

A.对角相等B.四边相等

C.对角线互相平分D.四角相等

(5)D G F(6)C

13.如图5,平行四边形ABCD中,对角线AC、BD交于点O,点E是BC的中点.若OE=3 cm,则AB的长为()

A.3 cmB.6 cmC.9 cmD.12 cm

14.已知:如图6,在矩形ABCD中,E、F、G、H分别为边

AB、BC、CD、DA的中点.若AB=2,AD=4,则图中阴影部分的面积为()

A.8B.6C.4D.

315.将两块能完全重合的两张等腰直角三角形纸片拼成下列图形:①平行四边形(不包括菱形、矩形、正方形)②矩形③正方形④等边三角形⑤等腰直角三角形()

A.①③⑤B.②③⑤C.①②③D.①③④⑤

19、四边形ABCD,仅从下列条件中任取两个加以组合,使得ABCD是平行四边形,一共有多少种不同的组合?()

AB∥CDBC∥ADAB=CDBC=AD

(A)2组(B)3组(C)4组(D)6组

20、下列说法错误的是()

(A)一组对边平行且一组对角相等的四边形是平行四边形。

(B)每组邻边都相等的四边形是菱形。

(C)对角线互相垂直的平行四边形是正方形。图8

(D)四个角都相等的四边形是矩形。

三、阅读理解题

21、如图8,在四边形ABCD中,E、F、G、H分别是AB、BC、CD、DA边上的中点,阅读下列材料,回答问题:

⑴连结AC、BD,由三角形中位线的性质定理可证四边形 EFGH是。⑵对角线AC、BD满足条件时,四边形 EFGH是矩形。

⑶对角线AC、BD满足条件时,四边形 EFGH是菱形。

⑷对角线AC、BD满足条件时,四边形 EFGH是正方形。

22、如图9,四边形ABCD是菱形,对角线AC=8 cm ,BD=6cm,DH⊥AB于H,求:DH的长

23、已知:如图10,菱形ABCD的周长为16cm,∠ABC=60°,对角线AC和BD相交于点O,求AC和BD的长。

四、证明题

24、如图11,在正方形ABCD中,P为对角线BD上一点,PE⊥BC,垂足为E,PF⊥CD,垂足为F,求证:EF=AP25、如图12,在△ABC中,AB=AC,D是BC的中点,DE⊥AB, DF⊥AC,垂足分别是E,F.⑴试说明:DE=DF

⑵只添加一个条件,使四边形EDFA是正方形.请你至少写出两种不同的添加方法.(不另外

添加辅助线,无需证明

26.如图13,E,F是平行四边形ABCD的对角线AC上的点,CEAF.请你猜想:BE与DF有怎样的位置关系和数量关系? ....并对你的猜想加以证明:

B 图13 F C D

第三篇:初中数学几何证明题

初中数学几何证明题

分析已知、求证与图形,探索证明的思路。

对于证明题,有三种思考方式:

(1)正向思维。对于一般简单的题目,我们正向思考,轻而易举可以做出,这里就不详细讲述了。

(2)逆向思维。顾名思义,就是从相反的方向思考问题。运用逆向思维解题,能使学生从不同角度,不同方向思考问题,探索解题方法,从而拓宽学生的解题思路。这种方法是推荐学生一定要掌握的。在初中数学中,逆向思维是非常重要的思维方式,在证明题中体现的更加明显,数学这门学科知识点很少,关键是怎样运用,对于初中几何证明题,最好用的方法就是用逆向思维法。如果你已经上初三了,几何学的不好,做题没有思路,那你一定要注意了:从现在开始,总结做题方法。同学们认真读完一道题的题干后,不知道从何入手,建议你从结论出发。例如:可以有这样的思考过程:要证明某两条边相等,那么结合图形可以看出,只要证出某两个三角形相等即可;要证三角形全等,结合所给的条件,看还缺少什么条件需要证明,证明这个条件又需要怎样做辅助线,这样思考下去……这样我们就找到了解题的思路,然后把过程正着写出来就可以了。这是非常好用的方法,同学们一定要试一试。

(3)正逆结合。对于从结论很难分析出思路的题目,同学们可以结合结论和已知条件认真的分析,初中数学中,一般所给的已知条件都是解题过程中要用到的,所以可以从已知条件中寻找思路,比如给我们三角形某边中点,我们就要想到是否要连出中位线,或者是否要用到中点倍长法。给我们梯形,我们就要想到是否要做高,或平移腰,或平移对角线,或补形等等。正逆结合,战无不胜。

几何证明题入门难,证明题难做,是许多初中生在学习中的共识,这里面有很多因素,有主观的、也有客观的,学习不得法,没有适当的解题思路则是其中的一个重要原因。掌握证明题的一般思路、探讨证题过程中的数学思维、总结证题的基本规律是求解几何证明题的关键。在这里结合自己的教学经验,谈谈自己的一些方法与大家一起分享。

一要审题。很多学生在把一个题目读完后,还没有弄清楚题目讲的是什么意思,题目让你求证的是什么都不知道,这非常不可龋我们应该逐个条件的读,给的条件有什么用,在脑海中打个问号,再对应图形来对号入座,结论从什么地方入手去寻找,也在图中找到位置。

二要记。这里的记有两层意思。第一层意思是要标记,在读题的时候每个条件,你要在所给的图形中标记出来。如给出对边相等,就用边相等的符号来表示。第二层意思是要牢记,题目给出的条件不仅要标记,还要记在脑海中,做到不看题,就可以把题目复述出来。

三要引申。难度大一点的题目往往把一些条件隐藏起来,所以我们要会引申,那么这里的引申就需要平时的积累,平时在课堂上学的基本知识点掌握牢固,平时训练的一些特殊图形要熟记,在审题与记的时候要想到由这些条件你还可以得到哪些结论(就像电脑一下,你一点击开始立刻弹出对应的菜单),然后在图形旁边标注,虽然有些条件在证明时可能用不上,但是这样长期的积累,便于以后难题的学习。

四要分析综合法。分析综合法也就是要逆向推理,从题目要你证明的结论出发往回推理。看看结论是要证明角相等,还是边相等,等等,如证明角相等的方法有(1.对顶角相等2.平行线里同位角相等、内错角相等3.余角、补角定理4.角平分线定义5.等腰三角形6.全等三角形的对应角等等方法。然后结合题意选出其中的一种方法,然后再考虑用这种方法证明还缺少哪些条件,把题目转换成证明其他的结论,通常缺少的条件会在第三步引申出的条件和题目中出现,这时再把这些条件综合在一起,很条理的写出证明过程。

五要归纳总结。很多同学把一个题做出来,长长的松了一口气,接下来去做其他的,这个也是不可取的,应该花上几分钟的时间,回过头来找找所用的定理、公理、定义,重新审视这个题,总结这个题的解题思路,往后出现同样类型的题该怎样入手。

第四篇:中考数学几何证明题

中考数学几何证明题

在▱ABCD中,∠BAD的平分线交直线BC于点E,交直线DC于点F.(1)在图1中证明CE=CF;

(2)若∠ABC=90°,G是EF的中点(如图2),直接写出∠BDG的度数;

第一个问我会,求第二个问。需要过程,快呀!

连接GC、BG

∵四边形ABCD为平行四边形,∠ABC=90°

∴四边形ABCD为矩形

∵AF平分∠BAD

∴∠DAF=∠BAF=45°

∵∠DCB=90°,DF∥AB

∴∠DFA=45°,∠ECF=90°

∴△ECF为等腰Rt△

∵G为EF中点

∴EG=CG=FG

∵△ABE为等腰Rt△,AB=DC

∴BE=DC

∵∠CEF=∠GCF=45°→∠BEG=∠DCG=135°

∴△BEG≌△DCG

∴BG=DG

∵CG⊥EF→∠DGC+∠DGB=90°

又∵∠DGC=∠BGE

∴∠BGE+∠DGB=90°

∴△DGB为等腰Rt△

∴∠BDG=45°

分析已知、求证与图形,探索证明的思路。

对于证明题,有三种思考方式:

(1)正向思维。对于一般简单的题目,我们正向思考,轻而易举可以做出,这里就不详细讲述了。

(2)逆向思维。顾名思义,就是从相反的方向思考问题。运用逆向思维解题,能使学生从不同角度,不同方向思考问题,探索解题方法,从而拓宽学生的解题思路。这种方法是推荐学生一定要掌握的。在初中数学中,逆向思维是非常重要的思维方式,在证明题中体现的更加明显,数学这门学科知识点很少,关键是怎样运用,对于初中几何证明题,最好用的方法就是用逆向思维法。如果你已经上初三了,几何学的不好,做题没有思路,那你一定要注意了:从现在开始,总结做题方法。同学们认真读完一道题的题干后,不知道从何入手,建议你从结论出发。例如:可以有这样的思考过程:要证明某两条边相等,那么结合图形可以看出,只要证出某两个三角形相等即可;要证三角形全等,结合所给的条件,看还缺少什么条件需要证明,证明这个条件又需要怎样做辅助线,这样思考下去……这样我们就找到了解题的思路,然后把过程正着写出来就可以了。这是非常好用的方法,同学们一定要试一试。

(3)正逆结合。对于从结论很难分析出思路的题目,同学们可以结合结论和已知条件认真的分析,初中数学中,一般所给的已知条件都是解题过程中要用到的,所以可以从已知条件中寻找思路,比如给我们三角形某边中点,我们就要想到是否要连出中位线,或者是否要用到中点倍长法。给我们梯形,我们就要想到是否要做高,或平移腰,或平移对角线,或补形等等。正逆结合,战无不胜。

第五篇:初中数学几何证明题

平面几何大题 几何是丰富的变换

多边形平面几何有两种基本入手方式:从边入手、从角入手

注意哪些角相等哪些边相等,用标记。进而看出哪些三角形全等。平行四边形所有的判断方式?

难题

下载初三数学几何证明题(经典)(5篇范例)word格式文档
下载初三数学几何证明题(经典)(5篇范例).doc
将本文档下载到自己电脑,方便修改和收藏,请勿使用迅雷等下载。
点此处下载文档

文档为doc格式


声明:本文内容由互联网用户自发贡献自行上传,本网站不拥有所有权,未作人工编辑处理,也不承担相关法律责任。如果您发现有涉嫌版权的内容,欢迎发送邮件至:645879355@qq.com 进行举报,并提供相关证据,工作人员会在5个工作日内联系你,一经查实,本站将立刻删除涉嫌侵权内容。

相关范文推荐

    中考数学经典几何证明题

    2011年中考数学经典几何证明题(一)1.(1)如图1所示,在四边形ABCD中,AC=BD,AC与BD相交于点O,E、F分别是AD、BC的中点,联结EF,分别交AC、BD于点M、N,试判断△OMN的形状,并加以证明;(2)如图2,在......

    初一数学几何证明题

    初一数学几何证明题一般认为,要提升数学能力就是要多做,培养兴趣。事实上,兴趣不是培养出来的,而是每次考试都要考得好,产生信心,才能生出兴趣来。所以数学不好,问题不在自信,而是要......

    几何证明题大全

    几何证明题1.在三角形ABC中,BD,CE是边AC,AB上的中点,BD与CE相交于点O,BO与OD的长度有什么关系?BC边上的中线是否一定过点O?为什么?答题要求:请写出详细的证明过程,越详细越好......

    几何证明题

    几何证明题集(七年级下册)姓名:_________班级:_______一、互补”。ED二、 证明下列各题:1、如图,已知∠1=∠2,∠3=∠D,求证:DB//EC.E D 3ACB2、如图,已知AD//BC,∠1=∠B,求证:AB//DE.AD 1......

    中考数学几何证明题「含答案」

    重庆中考(往届)数学24题专题练习1、如图,等腰梯形ABCD中,AD∥BC,AB=DC,E为AD中点,连接BE,CE(1)求证:BE=CE;(2)若∠BEC=90°,过点B作BF⊥CD,垂足为点F,交CE于点G,连接DG,求证:BG=DG+CD.在BG上取BH=......

    数学几何证明题(提高篇)

    1.已知:如图,P是正方形ABCD内点,∠PAD=∠PDA=15°.求证:△PBC是正三角形.2. 已知:如图,在四边形ABCD中,AD=BC,M、N分别是AB、CD的中点,AD、BC的延长线交MN于E、F.求证:∠DEN=∠F.3.如图,分别以......

    初二数学几何证明题(5篇可选)

    1. 在△ABC中,AB=AC,D在AB上,E在AC的延长线上,且BD=CE,线段DE交BC于点F,说明:DF=EF。2.已知:在正方形ABCD中,M是AB的中点,E是AB延长线上的一点,MN垂直DM于点M,且交∠CBE的平分线于点N.(1)......

    中考数学几何证明题(5篇)

    中考几何证明题一、证明两线段相等1、真题再现18.如图3,在梯形ABCD中,AD∥BC,EA⊥AD,M是AE上一点,2.如图,在△ABC中,点P是边AC上的一个动点,过点P作直线MN∥BC,设MN交∠BCA的平分线于点......