3.2.1 几类不同增长的函数模型(第二课时)教学反思

时间:2019-05-15 08:33:20下载本文作者:会员上传
简介:写写帮文库小编为你整理了多篇相关的《3.2.1 几类不同增长的函数模型(第二课时)教学反思》,但愿对你工作学习有帮助,当然你在写写帮文库还可以找到更多《3.2.1 几类不同增长的函数模型(第二课时)教学反思》。

第一篇:3.2.1 几类不同增长的函数模型(第二课时)教学反思

3.2.1 几类不同增长的函数模型(第二课时)

教学反思

参赛编号:24

学校:云南昌宁第一中学

姓名:韩云凤

3.2.1 几类不同增长的函数模型(第二课时)

教学反思

新一轮数学课程改革从理念、内容到实施都有较大变化。要实现数学课程改革的目标,教师是关键。新课程要求教师提高素质、更新观念、转变角色,在对待自我上,新课程还强调反思。教学反思是教师发展和成长的核心因素。在教学后进行反思,能使教学经验理论化,形成反思的意识和自我监控的能力。

针对本节课的教学,我的反思如下:

一、思不足。上完了课,坐下来回想,有很多地方不满意,也有很多地方需要改进,更有许多地方需要学习。

1、刚刚开始的时候因为有点紧张,所以讲话速度快了,可能不专心的同学就会听不懂。后来虽然及时发现,把速度压下来了,可是,还是应该学会任何时候都保持平和的心态;

2、课件制作的时候,字体颜色偏浅了,在我自己的电脑上看得很清楚但是拿到大屏幕上,有些地方对于学生来说看不清了,这也说明我考虑的不周到;

3、在备课的时候,准备在几何画板上演示三种函数模型的增长差异,使分析更直观,但是因为给学生自主学习和讨论交流的时间太多,发现时间不够,所以没有演示,这样可能会使得到结论的说服力就不是那么强。也失去了一些趣味性。这证明,作为年轻老师的我,需要增强课堂的把控能力,在备课时也要尽量宏观考虑,在有限的时间里得 到想要的教学效果;

4、在讲解5个思考的时候,语言不够精炼,有些地方重复太多,有些地方表述又不到位。并且既然给学生小组讨论了,那么应该让他们尽可能多的展示他们自学和交流的结果,根据展示的情况进行精讲,而不是我一个一个的又讲,没有做到“以学定教”,这样也可能会浪费了宝贵的时间;

5、师生的交往互动没有达到很好的状态,虽然很多问题,学生愿意一起回答但是却不太愿意自己站起来回答,特别是抢答题时,学生的积极性没有被调动起来,我想是因为我的亲和力不够,而且引导还不到位;

6、最后的“当堂检测”的第四题的第二个问,有很多同学没有写出来,本来应该讲评一下,但是时间到了,所以没有强调。

总的来说,我的应变能力有待提高,教学机智不够,应该多使用几何画板和EXCEL来使教学增加趣味性和说服力。

二、思成功

1、通过学生自学和讨论交流,以及我的讲解,基本达到教学目标。刚开始,我就展示了这节课的学习目标和重、难点,使学生有目的的学习;抢答题和当堂检测题都和教学目标相呼应,促进教学目标的达成;

2、基本做到以学生为主体,教师为引导。让学生带着问题阅读课本,提高学生的自学能力;让学生讨论交流,不但有利于这节课知识点的探究,也有利于合作交流意识的养成。而我只是引导者、组织者、合 作者;

3、使学生尽可能的单独回答,而不是大合唱,这样可以很好的反馈他们自学和讨论的效果,进而调控我的教学过程;

4、问题串的设置使学生学习得更轻松,也使和我的教学更有条理性和适切性;

5、把“小结”设置在“当堂检测”的前面,不但使前面的结论得到巩固,也使学生在做“当堂检测”时有所依据;

6、“当堂检测”的设置很好的反馈了这节课的教学效果,对我后面的教学具有指导作用。并且题目的设置有针对性和有效性,可以很好的反应学生的学习效果。

7、把我准备的内容在规定的时间内讲完、练完,这节课的教学步骤有了完整性。并且根据学生“当堂检测”结果,证明在有限的时间内,绝大多数同学还是完成了学习目标。这是让我很欣慰的一点。

三、思改进

这堂课有成功之处,但是就如我上面所说,不足的地方更多,所以需要改进的地方也很多。

1、多和别的老师进行交流,把握每一次学习的机会,提升自己的应变能力、教学机智和把控能力;

2、认真学习几何画板和EXCEL,熟练操作,增加课堂的趣味性和说服力;

3、在以后上课中,压慢自己的语速;

4、备课时,多方面考虑,包括课件的可操作性、学生的起始能力、教学中会出现的问题等等;

5、多走近学生,增加自己的亲和力,进而提高学生参与课堂的积极性(思维的参与和行动的参与);

6、学着去设置有趣的问题情境,培养学生的问题意识,激发他们学习的积极性;设置有效的例题、练习题、检测题,培养学生的应用意识;

7、学会精讲,多给学生展示和思考的时间,树立学生学习数学的自信心。

总之,只要坚持反思,每一节课都会让我知道我有很多需要改进和学习的地方。作为年轻教师的我,应该做到课前进行备课反思,使反思成为一种自觉实践;课中进行反思,保证教学高质高效的进行,课后进行反思,使我的教学经验理论化。

第二篇:几类不同增长的函数模型第一课时教学设计

《几类不同增长的函数模型(第一课时)》教学设计

孔德学区高一数学备课组 杨旭

一、背景分析

本节是高中数学必修1(人教A版)第三章《函数的应用》的起始课.该课将经历运用和选择函数模型解决实际问题的过程,从而认识在同为增函数的函数模型中,各种函数存在增长的差异;理解直线上升、指数爆炸、对数增长的含义;认识研究函数增长(衰减)差异的方法;感受数学建模的思想.

对不同函数模型在增长差异上的研究,教材围绕函数模型的应用这一核心,结合具体实例展开讨论,让学生在应用函数模型的过程中,体验到指数函数、对数函数、幂函数等函数模型在描述客观世界变化规律时各自的特点.

教材运用自选投资方案和制定奖励方案这两个问题,引出函数模型增长情况比较的问题,接着运用信息技术从数值和图象两个角度比较了指数函数、对数函数、幂函数的增长情况的差异,说明不同函数类型增长的含义.

在必修1前两章,教材安排了函数的性质以及基本初等函数.本节内容是几类不同增长的函数模型,在此之后是研究函数模型的应用,因此,从内容上看,本节课是对前面所学习的几种基本初等函数以及函数的性质的综合应用,从思想方法上讲,是对研究函数的方法的进一步巩固和深化,同时,也在为后面继续学习各种不同的函数模型的应用举例奠定基础,.因此本节内容,既是第二章基本初等函数知识的延续,又是函数模型应用学习的基础,起着承前启后的作用.本节内容所涉及的数学思想方法主要包括:由实际问题抽象为函数模型这一过程中蕴涵的符号化、模型化的思想;在解决问题过程中函数与方程的思想.

二、教学目标

(1)通过实例的解决,运用函数表格、图象,比较一次函数、指数型函数以及对数函数模型等的增长,认识它们的增长差异,体会直线上升、指数爆炸、对数增长等不同增长的函数模型的意义;

(2)通过恰当地运用函数的三种表示方法(解析法、列表法、图象法),表达实际问题中的函数关系的操作,认识函数问题的研究方法:观察—归纳—猜想—证明;

(3)经历建立和运用函数基本模型的过程,初步体验数学建模的基本思想,体会数学的作用与价值,培养分析问题、解决问题的能力.三、教学重难点

教学重点:将实际问题转化为数学模型,在比较常数函数、一次函数、指数函数、对数函数模型增长差异的过程中,体会直线上升、指数爆炸、对数增长等不同类型函数增长的含义.

教学难点:如何结合实际问题让学生体会不同函数模型的增长差异,以及如何利用这种增长差异来解决一些实际问题.

四、教学媒体设计 要让学生较为全面地体会函数模型的思想,特别是本节例题中用函数模型研究实际问题有许多数据、图象等方面处理上的困难,而利用信息技术工具,就可以在不同的范围观察到指数函数、对数函数和幂函数的增长差异.这样,就使学生有机会接触到一些过去难以接触到的数学知识和思想方法.因此在本节内容教学的处理上,通过学生收集数据并建立函数模型,利用计算器和计算机,比较指数函数、对数函数以及幂函数间的增长差异;结合实例体会直线上升、指数爆炸、对数增长等不同函数类型增长的含义.

五、教学过程设计

(一)创设情境,引入课题

1.介绍第三章章头图,提出问题.

问题1:澳大利亚的兔子为什么能在短短的几十年中由5只发展到5亿只? 澳大利亚兔子的急剧增长反映了自然界中一种增长现象:指数增长.问题2:在生活中,你还能举出其它增长的例子吗?

2.在学生回答问题的基础上引出各种不同类型的函数增长模型.

3.揭示课题:几类不同增长的函数模型.

【设计意图】运用章头图,形成问题情境,产生应用函数的需要,激发学生的学习愿望.

(二)分析问题,建立模型

(一)提出问题

例1.假如你有一笔资金用于投资,现有三种投资方案供你选择,这三种方案的 回报如下:

方案一:每天回报40元;

方案二:第一天回报10元,以后每天比前一天多回报10元; 方案三:第一天回报0.4元,以后每天的回报比前一天翻一番. 请问:你会选择哪种投资方式?

(二)分析问题

1.引导审题,抓住关键词“回报”

问题3:你选择的是什么样的回报?怎样比较回报资金的大小? 从解决问题的角度看:

(1)比较三种方案的每日回报;

(2)比较三种方案在若干天内的累计回报.2.引导分析数量关系,建立函数模型

仅从日回报的角度引导学生根据数量关系,归纳概括出相应的函数模型,写出每个方案的函数解析式.【设计意图】引发学生思考,经历建立函数基本模型的过程.

【备注】累计回报的本质是数列求和问题,由于学生目前的知识储备还不够,现在仅限于通过对函数模型通过列表计算、图象观察来作出判断和选择.(三)组织探究,感性体验

1.教师提出问题

问题4:你会选择哪种投资方案?请用数学语言呈现你的理由. 2.学生分组操作,比较不同增长

从解决问题的方式上:

(1)用列表方法来比较;

(2)画出函数图象来分析.【设计意图】保成学生合作探究、动手实践,能借助计算器,利用数据表格、函数图象对三种模型进行比较、分析,初步感受直线上升和指数爆炸的意义,初步体验研究函数增长差异的方法.

(四)成果交流,阶段小结

(一)学生交流

让学生交流小组探究的成果(表格、图象、结论)

(二)师生互动

1.阅读教材上例题解答中的数据表格与图象(突出散点图),引导学生关注增长量,感受增长差异.

2.通过教师多媒体动态演示,让学生进一步体会增长差异.

在不同的函数模型下,虽然都有增长,但增长态势各具特点.他们的增长不在同一个“档次”上,当自变量变得很大时,指数型函数比一次函数增长的速度要快得多.

(三)归纳小结

1.通过教师的小结,增强学生对增长差异的认识.

常数函数(没有增长),直线上升(匀速增长),指数爆炸(急剧增长).

2.上述问题的解决,是通过考虑其中的数量关系,把它抽象概括成一个函数问题,用解析式、数据表格、图象这三种函数的表达形式来研究的.

【设计意图】分享学生成果,达到生生互动、师生互动;借助多媒体展示,帮助学生理解不同增长的函数模型的增长差异,并且初步体验数学建模的基本思想,认识函数问题的研究方法.

(五)深入探究,理性分析

(一)提出问题

例2.某公司为了实现1000万元利润的目标,准备制定一个激励销售人员的奖励方案:在销售利润达到10万元时,按销售利润进行奖励,且奖金

(单位:万元)随销售利润(单位:万元)的增加而增加,但奖金总数不超过5万元,同时奖金不超过利润的25%.现有三个奖励模型:求?

(二)引导分析

问题5:你能立刻做出选择吗?选择的依据是什么? 问题6:公司的要求到底意味着怎样的数学关系?

问题7:我们提供的三个增长型函数哪一个符合限制条件?

(三)解决问题

1.通过多媒体演示,发现增长差异;

2.结合限制条件,初步作出选择;

.其中哪个模型能符合公司的要3.通过计算,进一步确认,验证所得结论;

4.体会对数增长模型的增长特征:当自变量变得很大时平缓增长;

5.揭示函数问题的研究方法(观察—归纳—猜想—证明).

【设计意图】让学生在观察和探究的过程中,学会理性分析,体会对数增长模型的特点.

【备注】对判断模型二

是否满足限制条件“

”,考虑到学生现在知识储备和接受水平,只能采用了直观教学,通过构造新函数,观察新函数的图象来解决(因为该函数单调性的判定,必须运用高二数学中的导数知识与方法才能解决).

(六)拓展延伸,创新设计

这个奖励方案实施以后,立刻调动了员工的积极性,企业发展蒸蒸日上,但随着时间的推移,又出现了新的问题,员工缺乏创造高销售额的积极性.问题8:我们的奖励方案有什么弊端? 问题9:你能否设计出更合理的奖励模型?

【创新设计】为了实现1000万元利润的目标,在销售利润达到10万元时,按销售利润进行奖励,且奖金y(单位:万元)随着销售利润x(单位:万元)的增加而增加,要求如下:

10万~ 50万,奖金不超过2万;50万~ 200万,奖金不超过4万;200万~ 1000万,奖金不超过20万.请选择适当的函数模型,用图象表达你的设计方案.(四人一组,合作完成)

【设计意图】设计开放性问题对例2拓展延伸,既检测了学生对几类不同模型增长差异的掌握情况,又鼓励学生学以致用,用以致优,使学生的学习过程成为在教师引导下的“再创造”过程.

(七)归纳总结,提炼升华

问题10:通过本节课的学习,你有哪些收获?请你从知识、方法、思想方面作一个小结. 1.知识:对函数的性质有了进一步的了解,我们体会到同是增长型函数,但其增长差异却很大:常数函数(没有增长);一次函数(直线上升);指数函数(爆炸增长);对数函数(平缓增长).

2.方法:函数有三种表示方法(解析法、列表法、图象法);函数问题的一般研究方法(观察—归纳—猜想—证明)

3.思想:两个例题都体现了数学建模的思想,即把实际问题数学化:面对实际问题,我们要读懂问题,运用所学知识,将其转化成数学模型,最终得到实际问题的解.【设计意图】理解几类不同增长的函数模型的增长差异,提炼数学思想方法,认识数学的应用价值.

(八)布置作业,巩固提高

1.课本98页课后练习1,2;课本107页习题3.2(A组)第1题; 2.收集一些社会生活中递增的一次函数、指数函数、对数函数的实例,对它们的增长速度进行比较,了解函数模型的广泛应用.

【设计意图】进一步体验函数是描述客观世界变化规律的基本数学模型,不同的变化规律需要用不同的函数模型来描述;培养学生对数学学科的深刻认识,体会数学的应用价值.

第三篇:几类不同增长的函数模型的教学设计与反思

“几类不同增长的函数模型”的教学设计与反思

台州市第一中学

一、教学内容与内容解析

几类不同增长的函数模型是必修1第三章“函数的应用”的重要内容.它比较指数函数、对数函数以及幂函数间的增长差异,并结合实例体会直线上升、指数爆炸、对数增长等不同函数类型增长的含义.对于函数增长的比较分为三个层次:(1)以实例为载体让学生切实感受不同函数模型的增长差异;(2)采用图、表两种方法比较三个函数(yx2,y2x,ylog2x)的增长差异;(3)将结论推广到一般的指数函数、对数函数以及幂函数间的增长差异.其中(1)为第一课时的内容,(2)、(3)为第二课时的内容.学生在本节内容学习之前,已经有了指数函数、对数函数以及幂函数的相关知识,在这里进一步研究几类不同增长的函数模型的增长差异有着承上启下的作用.让学生在应用函数模型的过程中,体验到指数函数、对数函数、幂函数等函数模型在描述客观世界变化规律时各自的特点与差异,同时将感受到的这种差异应用在后续的函数模型实例中.二、教学目标与目标解析 1.教学目标:

(1)借助信息技术,利用函数图像及数据表格,比较指数函数、对数函数以及幂函数间的增长差异.(2)结合实例体会直线上升、指数爆炸、对数增长等不同函数类型增长的含义.(3)恰当运用函数的三种表示法(解析式、图象、表格),并借助信息技术解决一些实际问题.(4)在实际问题解决过程中,体会数学的作用与价值,形成分析问题、解决问题的能力.2.教学目标解析:

目标(1)、(2)是教学的重点,落实好目标(1)、(2)是实现教学目标(3)、(4)的前提与保证.落实目标(1)、(2)的过程中可以创设问题情景,并通过层层递进的问题串,让学生在不断观察、思考和探究的过程中,弄清几个函数间的增长差异,并培养分析问题、解决问题的能力,实现目标(4).目标(3)要求“恰当运用”对于学生初学时是不易达到的目标,教学时通过学生自主探究,相互交流,教师适时提问引导,合作完成.另外利用信息技术工具,就可以在不同的范围观察到指数函数、对数函数和幂函数的增长差异.还使学生接触到更多的数学知识和思想方法.三、教学问题诊断分析

诊断1:本课中,学生对指数爆炸的认识缺乏一定的基础,本课先让学生利用表格读表,并在分析表格的过程中发现要分析增加量,通过数据对指数爆炸有了一种感性认识,再结合图像分析,从感性认识上升到理性认识,实现自我完善.诊断2:在公司奖励模型问题的解决过程中,教材中对判断模型二ylog7x1是否满足约束条件log7x10.25x是采用了“构造函数的思想方法”,我认为就高一年级学生而言,这种处理方法在理解上会有困难,所以宜采用两种方法进行求解:方法一,利用数形结合,学生能很直观地感受y0.25x在图像ylog7x1的上方;有此基础后,再讲解方法二,即“构造函数的思想方法”,通过板书详细分析这一过程,帮助学生对“构造函数的思想方法”留下一个美好又深刻的第一印象.诊断3:本节课教学的内容为教材中的例1、例2,为了激发学生的学习兴趣,并保障课堂的连续性,设计了“大学生自主创业情境”、“公司奖励情境”,可将例题的题意较好地表达出来,并符合学生的认知规律.诊断4:学生在学习时,可能会因更多地关注解决数学计算问题而忽略数学思想的提炼,这个教学问题的解决,需要教师有目的地进行引导.四、教学支持条件

1.在进行几类不同增长的函数模型的教学时,学生已经学习了函数概念、表示法及性质,指数函数、对数函数以及幂函数的相关知识,这些内容是学生分析不同函数增长差异的重要条件,因此教学时应予以充分注意,引导学生多进行归纳与概括.2.为了能很好地帮助学生理解、反思学习内容,体会新学知识的要点,教学中需要用函数表格、图象来帮助学生理解分析问题,所以ppt和几何画板是重要的支持条件.教学时充分注意这一条件,不仅可以加强几何直观,节省大量时间用于学生思考,而且可以对实际问题中的数据不加“修饰”地进行分析.

五、教学设计过程: 1.创设情景 引入课题

[问题1] 在日常生活中,增长的话题比比皆是,而我们学过的函数中有没有呈增长态势发展的呢?如果都是增长型函数,那么它们增长的态势是否都一样呢?

设计意图:通过提问比较自然地引导学生给出一次函数、指数函数、对数函数、幂函数,同时开门见山,直击主题“增长”,自然引出课题.师生活动:教师提问,学生回答,相互补充,教师点评并板书课题:几类不同增长的函数模型.2.组织引导 合作探究

同学们,现在越来越多的大学生毕业以后选择了自主创业,将来你们中的一些也可能会办公司,做老板.现在给大家一个模拟的投资情境.案例 假设你有一笔资金用于投资,现有三种投资方案供你选择,这三种方案的回报如下: 方案一:每天回报40元;

方案二:第一天回报10元,以后每天比前一天多回报10元; 方案三:第一天回报0.4元,以后每天的回报比前一天翻一番. 请问,你会选择哪种投资方案?

[问题2] 你会选择哪种投资方案?选择投资方案的依据是什么?请用数学语言呈现你的理由.设计意图:提此问题让学生先选择好解题的依据,是每天回报量还是累计回报量?还让学生找出问题中的数量关系,也就是函数关系.师生活动:

(1)教师提问,通过学生讨论,具体计算后让学生说说自己会选择哪种投资方案?选择投资方案的依据是什么?用怎样的方式表达数量关系? 学生1:选择累计回报量,用函数解析式表达数量关系; 学生2:选择累计回报量,直接用函数图像表达数量关系; 学生3:选择每天回报量,先写出函数解析式再用列表的方式表达.(2)教师针对学生的回答,点评指出:选择投资方案的依据是累计回报量,但为了看累计回报量,可以先看每天回报量;另外,用解析式、表格及图像三种方式表达数量关系均可,但表达的同时有所区别:解析式较抽象,图表较直观.(3)教师引导,学生参与并利用计算器得出:1.函数解析式;2.每天回报表;3.结论

表1 [问题3] 每天回报表(表1)中“„”部分仍是方案三最大吗?

设计意图:开始切入主题,通过引导使学生体会到表格中每一列数据增长的速度是不同的,从而使学生关注增加量,列出增加量,引出表2,同时也为累计回报量与每天回报量之间的关系埋下伏笔,进而培养学生分析解决数学问题的能力.师生活动:

3(1)学生思考并回答:我发现到第9天的时候,方案三最多,那么只要方案三数据的增长最快或者说增加量最多,即可解决这一问题.(2)教师适时给出表2,师生共同补充完整表格,让学生初步体会各种函数增长的差异.表2

[问题4] 你能根据表2中增加量的数据,概括出这几种常见函数的增长特点吗? 设计意图:进一步引导学生关注增加量,感受增长差异,尤其是对“指数爆炸”含义的理解;在与学生交流和解决问题的过程中,使学生体会函数列表法的优点.师生活动:学生回答,教师加以完善.几种常见函数的增长特点:常数函数没有增长,一次函数匀速增长,指数函数爆炸增长.[问题5] 通过表格比较了每天回报量的大小,得出相应结论,但这一案例解决完整了吗? 设计意图:虽然本节课的主题是研究“增长”,但必须要回归问题本身,选择一个最佳的投资方案.师生活动:教师利用幻灯片快 速给出累计回报表(表3),学生根据表3得出相应结论.表3

[问题6] 通过列表法己经得出案例的结论及对常见函数增长特点的初步体会,能否通过图像法来进一步认识?请大家画出这三个函数的图像?并根据图像说明结论与增长特点?

设计意图:本节课的主要教学任务就是要体会几类不同函数的增长差异.让学生自己去概括总结出从图像上直观体会到的增长特点是本节课的一个重要环节,也作为一种完整的小结.与此同时,培养 4 学生良好的画图习惯,遵循列表、描点、连线画图三步骤,以及对函数定义域的关注,从中还能体会到数形结合思想是数学解题的一个重要的思想方法.师生活动:(1)学生画图,教师纠错得出(图1): 1.函数图像为什么是孤立点?(定义域为N)

2.为什么用光滑的虚线连接?(方便看增长趋势)(2)教师用多媒体动画演示连接孤立的点.学生1通过图像得出案例结论: 学生2通过图像用不同的语言概括增长特点: 常数函数保持不变,一次函数直线上升,指数函数指数爆炸.过渡语:现在你已经建好了公司,公司寻求回报,你的员工也要寻求回报.为了激励员工,你需要对他们实行奖励,你制定了这样一个公司奖励模型.公司奖励模型问题: 图1 你的公司为了实现1000万元利润的目标,准备制定一个激励销售部门的奖励方案:在销售利润达到10万元时,按销售利润进行奖励,且奖金y(单位:万元)随销售利润x(单位:万元)的增加而增加,但奖金不超过5万元,同时奖金不超过利润的25%.现有三个奖励模型:y0.25x

*ylog7x1 y1.002x.其中哪个模型能符合公司的要求?

[问题7] 大家认真审题,能否用数学符号语言将公司的要求(或条件)描述出来? 设计意图:解决实际问题的第一步就是审题,并将之数学化.在此更进一步培养学生解决实际问题的能力.师生活动:个别学生回答,教师在黑板上列出:条件1:x[10,1000];条件2:y5;条件3:y0.25;条件4:增函数.x[问题8] 我们可以如何验证y5? 设计意图:引导学生如何利用题目条件,从数和形两方面解决数学问题,既巩固应用前面学到的数学方法,又为下面问题的解决提供方向.师生活动:学生思考并个别回答:

学生1:根据条件4:增函数,只需验证当x1000时, y5即可,通过计算发现:y0.25x、y1.002x都不符, ylog7x1符合.学生2:通过图像直观观察得出.[问题9] 如何验证log7x10.25x? 设计意图:在log7x10.25x的验证过程中,始终不脱离本课主题,回归到函数的“增长特征”上去,并充分体现数形结合、构造函数的思想方法.5 师生活动: 学生思考并个别回答,教师适时提问:

(1)学生1:将图像放大后观察函数ylog7x1与y0.25x的图像,发现在x[10,1000]都满足.(2)在教师的引导下,学生2加以补充.

学生2:只需将x10代入计算,是符合条件的;再结合图像发现直线的增长比对数函数快,对数函数增长较为平缓.所以x[10,1000]都满足.(3)教师根据以上学生回答板书方法一:数形结合法

令y10.25x,y2log7x1

当x10时y10.25102.5,y2log71010, y1y21.5log710log7343log71000

y1y2给合图(2)得log7x10.25x对x[10,1000]恒成立

图2 并通过几何画板动画演示BC=y1y2的变化情况, 引导学生构造函数.(4)学生三回答,教师继续板书方法二:构造函数法 令F(x)0.25xlog7x1,x[10,1000]

由图(3)得F(x)0.25xlog7x1在x[10,1000]上单调递增.所以F(x)F(10,)即log7x10.25x对x[10,1000]恒成立

图3

3.总结反思 归纳提升

[问题10] 通过本节课的学习,你有哪些收获?请你对本节课作一总结.设计意图:归纳总结本节内容.师生活动:学生思考交流,教师帮助总结以下内容:

(1)知识:对函数的性质有了解:我们体会到同是增长型函数,但其增长差异却很大::常数函数没有增长,一次函数直线上升,指数函数爆炸增长,对数函数平缓增长.(2)方法:建模的思想,数形结合思想,构造函数思想等等.六、目标检测设计

1.教科书P98,练习1、2.6 设计意图:让学生巩固函数增长特征这一知识点.的增长差异进行比较.设计意图::引出下一课时内容,为下面研究一般指数、对数、幂函数的增长差异奠定了探究的方向.七、教学体会与反思

(1)数学问题解决教学应该从创设问题情景开始,本设计的情境创设比较成功.“日常生活中,增长的话题比比皆是,而我们学过的函数中有没有呈增长态势发展的呢?如果都是增长型函数,那么它们增长的态势是否都一样呢?”短短几句话,不但交代了本课的研究主题,而且比较自然地引导学生引出一次函数、指数函数、对数函数、幂函数,开门见山,直击“增长”.实际教学中大多以真实的或虚拟的“生活化”材料为载体创设教学情境,如用教材章头图中的兔子问题或其它情景作为素材,以迎合“能让学生体会到数学源于生活,增长学生的应用意识”,注重“数学教育应该与现实生活密切联系”这一现代教学理念.本课的教学内容是通过两个实际问题解决,让学生体会几类不同类型的函数增长的差异,执教教师就地取材,将书本中的例1为素材得到了一个虚拟的“生活化”材料,教学过程中不但自然地出示了例1,而且激发学生的学习和解决问题的兴趣,为学生的观察、归纳、猜想和证明提供了基础.(2)问题的解决围绕着“弄清问题—拟定计划—实现计划—回顾”进行教学,教学中充分发挥了学生的主体作用.在例题教学中既有动手操作的实践活动,又有动脑思考和数学思维活动.例1的教学过程中,抓隹关键词“回报”,从不同的角度看待回报,让学生辨别“每天回报量”、“累计回报量”;从函数表达的三种不同形式入手,建立函数模型,让学生经历从解析式到表格、图象的全过程.在这个过程中,让学生感受到图表的直观,解析式的抽象.在求累计回报量时,由于学生不会求等比数列的和,选取对函数模型列表计算作出判断和选择,处理有详有略,让学生体会到了常数函数、一次函数与指数型函数的增长差异.例2中在判断是否满足“约束条件2.探究题:请利用计算器或计算机从图、表两方面对函数y2x,yx2,ylog2x

log7x10.25x”时,考虑到教课书上介绍的构造函数法学生理解比较困难,教师先用利用数形结合,学生能很直观地感受y0.25x在图像ylog7x1的上方,有此基础后,再讲解方法二,即“构造函数法”,通过板书详细分析求解过程,帮助学生对“构造函数法”的理解,给学生留下一个深刻的印象.整个例2教学让学生经历了观察、归纳、猜想、证明的完整过程,使学生的学习过程成为在教师引导下的“再创造”过程.商讨之处:

(1)教学内容不能只局限于课本中两个例题,要适当进行拓展延伸,不仅巩固新知,而且让学生感觉数学是有用的,数学就在我们身边.如果对例2进行拓展延伸,效果更佳.如:为了实现1000万元利润的目标,在销售利润达到10万元时,按销售利润进行奖励,且奖金y(单位:万元)随着销售利润x(单位:万元)的增加而增加,要求如下:

10万~50万,奖金不超过2万;50万~ 200万,奖金不超过4万;200万~ 1000万, 奖金不超过20万.请选择适当的函数模型,用图象表达你的设计方案.(四人团队合作完成)

(2)更加重视与学生合作交流,让学生自己动手操作.例如,原设计中[案例]的列表画图过程,教师可事前设计好两张表格(日回报表和累计回报表)及坐标系,在课堂上由学生两人小组合作完成,再 7 让学生分析表格和图像有哪些区别,既培养学生分析问题、解决问题的能力,又提高了整个课堂的教学效率.(3)更加重视信息技术对课堂教学的作用.例如,原设计中[案例]的图像分析过程,可利用几何画板动点演示三条曲线的增长快慢和y的变化情况,使教学过程更加生动,从而调动学生的学习积极性,更直观地体会到三个函数模型的增长差异.

第四篇:3.2.1几类不同增长的函数模型教案(人教A版必修1)[模版]

金太阳新课标资源网

wx.jtyjy.com

3.2.1几类不同增长的函数模型教案

【教学目标】

1.结合实例体会直线上升、指数爆炸、对数增长等不同增长的函数模型意义,理解它们的增长差异;

2.借助信息技术,利用函数图象及数据表格,比较指数函数、对数函数以及幂函数的增长差异;

3.恰当运用函数的三种表示法(解析式、图象、表格)并借助信息技术解决一些实际问题.【教学重难点】

教学重点:将实际问题转化为数学问题,结合实例体会直线上升、指数爆炸、对数增长等不同函数类型增长的含义。

教学难点:如何选择和利用不同函数模型增长差异性分析解决实际问题。

【教学过程】

(一)预习检查、总结疑惑

检查落实了学生的预习情况并了解了学生的疑惑,使教学具有了针对性。

(二)情景导入、展示目标。材料:澳大利亚兔子数“爆炸”

1859年,有人从欧洲带进澳洲几只兔子,由于澳洲有茂盛的牧草,而且没有兔子的天敌,兔子数量不断增加,不到100年,兔子们占领了整个澳大利亚,数量达到75亿只.可爱的兔子变得可恶起来,75亿只兔子吃掉了相当于75亿只羊所吃的牧草,草原的载畜率大大降低,而牛羊是澳大利亚的主要牲口.这使澳大利亚头痛不已,他们采用各种方法消灭这些兔子,直至二十世纪五十年代,科学家采用载液瘤病毒杀死了百分之九十的野兔,澳大利亚人才算松了一口气.

一般而言,在理想条件(食物或养料充足,空间条件充裕,气候适宜,没有敌害等)下,种群在一定时期内的增长大致符合“J”型曲线;在有限环境(空间有限,食物有限,有捕食者存在等)中,种群增长到一定程度后不增长,曲线呈“S”型.可用指数函数描述一个种群的前期增长,用对数函数描述后期增长的,感知指数函数变化剧烈。

(三)典型例题

例1假设你有一笔资金用于投资,现有三种投资方案供你选择,这三种方案的回报如下:

方案一:每天回报40元;

方案二:

金太阳新课标资源网

wx.jtyjy.com

金太阳新课标资源网

wx.jtyjy.com

例2 变式2 【作业布置】课本98页1,2

金太阳新课标资源网wx.jtyjy.com

第五篇:第五届全国高中数学青年教师观摩与评比活动:《几类不同增长函数模型》教案与说课稿

3.2.1几类不同增长的函数模型(第一课时)

浙江省杭州第二中学 詹爽姿

一.内容和内容解析

本节是高中数学必修1(人教A版)第三章《函数的应用》的起始课.该课将经历运用和选择函数模型解决实际问题的过程,从而认识在同为增函数的函数模型中,各种函数存在增长的差异;理解直线上升、指数爆炸、对数增长的含义;认识研究函数增长(衰减)差异的方法;感受数学建模的思想.

对不同函数模型在增长差异上的研究,教材围绕函数模型的应用这一核心,结合具体实例展开讨论,让学生在应用函数模型的过程中,体验到指数函数、对数函数、幂函数等函数模型在描述客观世界变化规律时各自的特点.

教材运用自选投资方案和制定奖励方案这两个问题,引出函数模型增长情况比较的问题,接着运用信息技术从数值和图象两个角度比较了指数函数、对数函数、幂函数的增长情况的差异,说明不同函数类型增长的含义.

在必修1前两章,教材安排了函数的性质以及基本初等函数.本节内容是几类不同增长的函数模型,在此之后是研究函数模型的应用,因此,从内容上看,本节课是对前面所学习的几种基本初等函数以及函数的性质的综合应用,从思想方法上讲,是对研究函数的方法的进一步巩固和深化,同时,也在为后面继续学习各种不同的函数模型的应用举例奠定基础,.因此本节内容,既是第二章基本初等函数知识的延续,又是函数模型应用学习的基础,起着承前启后的作用.本节内容所涉及的数学思想方法主要包括:由实际问题抽象为函数模型这一过程中蕴涵的符号化、模型化的思想;在解决问题过程中函数与方程的思想.

二.目标和目标解析 本节课的教学任务为:

(1)创设一个投资方案的问题情境,让学生通过函数建模、列数据表、研究函数图象和性质,体会直线上升和指数爆炸;

(2)创设一个选择奖励模型的问题情境,让学生在观察和探究的过程中,体会对数增长模型的特点;

(3)通过建立和运用函数基本模型,让学生初步体验数学建模的基本思想,发展学生的创新意识和数学应用意识.根据内容解析和教学任务,本节课的教学目标确定为:

(1)通过实例的解决,运用函数表格、图象,比较一次函数、指数型函数以及对数函数模型等的增长,认识它们的增长差异,体会直线上升、指数爆炸、对数增长等不同增长的函数模型的意义;

(2)通过恰当地运用函数的三种表示方法(解析法、列表法、图象法),表达实际问题中的函数关系的操作,认识函数问题的研究方法:观察—归纳—猜想—证明;

(3)经历建立和运用函数基本模型的过程,初步体验数学建模的基本思想,体会数学的作用与价值,培养分析问题、解决问题的能力.这部分内容教科书在处理上,以函数模型的应用这一内容为主线,以几个重要的函数

模型为对象,将前面已经学习过的内容以及处理问题的思想方法紧密结合起来,使之成为一个整体.因此教学中应当注意贯彻教材的设计意图,让学生经历函数模型应用的全过程,能在这一过程中认识不同增长的差异,认识知晓函数增长差异的作用,认识研究差异的思想方法.

结合以上分析本节课的教学重点为:将实际问题转化为数学模型,在比较常数函数、一次函数、指数函数、对数函数模型增长差异的过程中,体会直线上升、指数爆炸、对数增长等不同类型函数增长的含义.

三.教学问题诊断

学生在前面已学过函数概念、指数函数、对数函数、幂函数,但由于指数函数、对数函数和幂函数的增长变化复杂,这就使得学生在研究过程中可能遇到困难.因此本节课教学难点确定为:如何结合实际问题让学生体会不同函数模型的增长差异,以及如何利用这种增长差异来解决一些实际问题.

为了解决这一难点,教科书分三个步骤,创设问题情境,并通过恰点恰时而又层层递进的问题串,让学生在不断的观察、思考和探究的过程中,弄清几个函数间的增长差异,并培养分析问题解决问题的能力.第一步,教科书先创设了一个选择投资方案的问题情境,在解决问题的过程中给出了解析式、数表和图象三种表示,然后提出了三个思考问题,让学生一方面从中体会直线上升和指数爆炸,另一方面也学会如何选择恰当的表示形式对问题进行分析.第二步,教科书又创设了一个选择公司奖励模型的问题情境,让学生在观察和探究的过程中,体会到对数增长模型的特点.第三步,教科书提出了三种函数存在怎样的增长差异的问题.先让学生从不同角度观察指数函数和幂函数的增长图象,从中体会二者的差异;再通过两个探究问题,让学生对幂函数和对数函数的增长差异,以及三种函数的衰减情况进行自主探究.这样的安排内容上层次分明,可以引导学生从不同的方面积极地开展观察、思考和探究活动,对典型的问题,多视点宽角度地进行了研究.对学生分析问题、解决问题能力的培养将有积极的推动.由于本节内容比较丰富,而且研究问题的方法和途径也比较多,所以本节课我们只能重点解决其中的前两个问题.

四.教学支持条件分析

要让学生较为全面地体会函数模型的思想,特别是本节例题中用函数模型研究实际问题有许多数据、图象等方面处理上的困难,而利用信息技术工具,就可以在不同的范围观察到指数函数、对数函数和幂函数的增长差异.这样,就使学生有机会接触到一些过去难以接触到的数学知识和思想方法.因此在本节内容教学的处理上,通过学生收集数据并建立函数模型,利用计算器和计算机,比较指数函数、对数函数以及幂函数间的增长差异;结合实例体会直线上升、指数爆炸、对数增长等不同函数类型增长的含义.

五.教学过程设计

一、创设情境,引入课题 1.介绍第三章章头图,提出问题.

问题1:澳大利亚的兔子为什么能在短短的几十年中由5只发展到5亿只? 澳大利亚兔子的急剧增长反映了自然界中一种增长现象:指数增长.问题2:在生活中,你还能举出其它增长的例子吗?

2.在学生回答问题的基础上引出各种不同类型的函数增长模型. 3.揭示课题:几类不同增长的函数模型.

【设计意图】运用章头图,形成问题情境,产生应用函数的需要,激发学生的学习愿望.

二、分析问题,建立模型

(一)提出问题

例1.假如你有一笔资金用于投资,现有三种投资方案供你选择,这三种方案的 回报如下:

方案一:每天回报40元;

方案二:第一天回报10元,以后每天比前一天多回报10元; 方案三:第一天回报0.4元,以后每天的回报比前一天翻一番. 请问:你会选择哪种投资方式?

(二)分析问题

1.引导审题,抓住关键词“回报”

问题3:你选择的是什么样的回报?怎样比较回报资金的大小?

从解决问题的角度看:

(1)比较三种方案的每日回报;

(2)比较三种方案在若干天内的累计回报.2.引导分析数量关系,建立函数模型

仅从日回报的角度引导学生根据数量关系,归纳概括出相应的函数模型,写出每个方案的函数解析式.【设计意图】引发学生思考,经历建立函数基本模型的过程.

【备注】累计回报的本质是数列求和问题,由于学生目前的知识储备还不够,现在仅限于通过对函数模型通过列表计算、图象观察来作出判断和选择.三、组织探究,感性体验 1.教师提出问题

问题4:你会选择哪种投资方案?请用数学语言呈现你的理由. 2.学生分组操作,比较不同增长 从解决问题的方式上:(1)用列表方法来比较;(2)画出函数图象来分析.【设计意图】保成学生合作探究、动手实践,能借助计算器,利用数据表格、函数图象对三种模型进行比较、分析,初步感受直线上升和指数爆炸的意义,初步体验研究函数增长差异的方法.

四、成果交流,阶段小结

(一)学生交流

让学生交流小组探究的成果(表格、图象、结论)

(二)师生互动

1.阅读教材上例题解答中的数据表格与图象(突出散点图),引导学生关注增长量,感受增长差异. 2.通过教师多媒体动态演示,让学生进一步体会增长差异.

在不同的函数模型下,虽然都有增长,但增长态势各具特点.他们的增长不在同一个“档次”上,当自变量变得很大时,指数型函数比一次函数增长的速度要快得多.

(三)归纳小结

1.通过教师的小结,增强学生对增长差异的认识.

常数函数(没有增长),直线上升(匀速增长),指数爆炸(急剧增长).

2.上述问题的解决,是通过考虑其中的数量关系,把它抽象概括成一个函数问题,用解析式、数据表格、图象这三种函数的表达形式来研究的.

【设计意图】分享学生成果,达到生生互动、师生互动;借助多媒体展示,帮助学生理解不同增长的函数模型的增长差异,并且初步体验数学建模的基本思想,认识函数问题的研究方法.

五、深入探究,理性分析

(一)提出问题

例2.某公司为了实现1000万元利润的目标,准备制定一个激励销售人员的奖励方案:在销售利润达到10万元时,按销售利润进行奖励,且奖金y(单位:万元)随销售利润x(单位:万元)的增加而增加,但奖金总数不超过5万元,同时奖金不超过利润的25%.现有三个奖励模型:y0.25x ylog7x1

y1.002x.其中哪个模型能符合公司的要求?

(二)引导分析

问题5:你能立刻做出选择吗?选择的依据是什么?

问题6:公司的要求到底意味着怎样的数学关系? 问题7:我们提供的三个增长型函数哪一个符合限制条件?

(三)解决问题

1.通过多媒体演示,发现增长差异; 2.结合限制条件,初步作出选择;

3.通过计算,进一步确认,验证所得结论;

4.体会对数增长模型的增长特征:当自变量变得很大时平缓增长; 5.揭示函数问题的研究方法(观察—归纳—猜想—证明).

【设计意图】让学生在观察和探究的过程中,学会理性分析,体会对数增长模型的特点.

【备注】对判断模型二ylog7x1是否满足限制条件“log7x10.25x”,考虑到学生现在知识储备和接受水平,只能采用了直观教学,通过构造新函数,观察新函数的图象来解决(因为该函数单调性的判定,必须运用高二数学中的导数知识与方法才能解决).

六、拓展延伸,创新设计

这个奖励方案实施以后,立刻调动了员工的积极性,企业发展蒸蒸日上,但随着时间的推移,又出现了新的问题,员工缺乏创造高销售额的积极性.问题8:我们的奖励方案有什么弊端? 问题9:你能否设计出更合理的奖励模型?

【创新设计】为了实现1000万元利润的目标,在销售利润达到10万元时,按销售利润进行奖励,且奖金y(单位:万元)随着销售利润x(单位:万元)的增加而增加,要求如下:

10万~ 50万,奖金不超过2万;50万~ 200万,奖金不超过4万;200万~ 1000万,奖金不超过20万.请选择适当的函数模型,用图象表达你的设计方案.(四人一组,合作完成)

【设计意图】设计开放性问题对例2拓展延伸,既检测了学生对几类不同模型增长差异的掌握情况,又鼓励学生学以致用,用以致优,使学生的学习过程成为在教师引导下的“再创造”过程.

七、归纳总结,提炼升华

问题10:通过本节课的学习,你有哪些收获?请你从知识、方法、思想方面作一个小结.

1.知识:对函数的性质有了进一步的了解,我们体会到同是增长型函数,但其增长差异却很大:常数函数(没有增长);一次函数(直线上升);指数函数(爆炸增长);对数函数(平缓增长).

2.方法:函数有三种表示方法(解析法、列表法、图象法);函数问题的一般研究方法(观察—归纳—猜想—证明)

3.思想:两个例题都体现了数学建模的思想,即把实际问题数学化:面对实际问题,我们要读懂问题,运用所学知识,将其转化成数学模型,最终得到实际问题的解.【设计意图】理解几类不同增长的函数模型的增长差异,提炼数学思想方法,认识数学的应用价值.

八、布置作业,巩固提高

1.课本98页课后练习1,2;课本107页习题3.2(A组)第1题;

2.收集一些社会生活中递增的一次函数、指数函数、对数函数的实例,对它们的增长速度进行比较,了解函数模型的广泛应用.

【设计意图】进一步体验函数是描述客观世界变化规律的基本数学模型,不同的变化规律需要用不同的函数模型来描述;培养学生对数学学科的深刻认识,体会数学的应用价值.

下载3.2.1 几类不同增长的函数模型(第二课时)教学反思word格式文档
下载3.2.1 几类不同增长的函数模型(第二课时)教学反思.doc
将本文档下载到自己电脑,方便修改和收藏,请勿使用迅雷等下载。
点此处下载文档

文档为doc格式


声明:本文内容由互联网用户自发贡献自行上传,本网站不拥有所有权,未作人工编辑处理,也不承担相关法律责任。如果您发现有涉嫌版权的内容,欢迎发送邮件至:645879355@qq.com 进行举报,并提供相关证据,工作人员会在5个工作日内联系你,一经查实,本站将立刻删除涉嫌侵权内容。

相关范文推荐

    反比例函数第一课时教学反思

    一、本节课的整体设计第一步:预习,学生通过自学课本、独立完成导学案,完成自己会的,找出并标记出不会的,完成预习。第二步:组内合学,通过组内对学、群学,展示学会的,学会不会的。教师......

    2.1第二课时 坚持走共同富裕道路教学设计

    九年级思想品德 第二单元2.1第二课时 坚持走共同富裕道路 一、教学目标: 1、 知识目标 识记:共同富裕的内涵;共同富裕是一个渐进的过程;如何理解共同富裕;我国怎样实现共同富裕。......

    离子反应第二课时教学反思

    离子反应第二课时教学反思 离子反应第二课时教学反思通过上一课时的学习,学生有了一定基础,在新课内容的教学开始先把电解质的电离方程式进行复习,既能对学生的掌握情况有所了......

    《麻雀》第二课时教学反思

    《麻雀》第二课时教学反思 《麻雀》第二课时教学反思1 新学期的第一课是一篇童话―《小麻雀》,讲这种体裁是我最拿手的。精心备课后,我满怀信心地走上讲台,充满激情地导入新课......

    《长城》第二课时教学反思

    《长城》第二课时教学反思 《长城》第二课时>教学反思文/袁永华学校教学比武活动中,我讲授了《长城》第二课时,现总结如下:一、教学设计设计理念:第二课时重点带领学生学习2、3......

    《猫》第二课时教学反思

    《猫》第二课时教学反思 《猫》第二课时教学反思1 《猫》第二课时教学反思《猫》是老舍先生笔下的一篇描写动物的抒情散文。文章结构严谨,条理清晰。以风趣亲切,平实无雕琢的......

    《猫》第二课时教学反思

    《猫》第二课时教学反思 《猫》第二课时教学反思1 《猫》是老舍先生笔下的一篇描写动物的抒情散文。文章结构严谨,条理清晰。以风趣亲切,平实无雕琢的语言,表现出猫性格的古怪,......

    普罗米修斯第二课时教学反思

    《普罗米修斯》第二课时教学反思鄂尔多斯市达拉特旗第四小学:乔慧 《普罗米修斯》一文颂扬了普罗米修斯不畏强暴、不惜牺牲一切为民造福的伟大精神。故事情节曲折、生动感人,......