第一篇:磁珠分离技术
磁珠分离技术
摘要:磁珠分离技术是一种分子生物学分离技术, 它利用其表面修饰的磁性颗粒对生物分子或细胞的亲和结合而进行分离, 能对待分离或待检测的靶标进行高 效富集, 是一种方便、快速、回收率高、选择性强的方法。磁珠分离技术在生物学方面的应用始于20世纪70年代后期, 目前已经在分子生物学、细胞学、免疫学、微生物学、生物化学等领域取得一些令人瞩目的研究成果。
基本概念
磁珠
磁珠是一种通过一定方法将磁性无机粒子与有机高分子结合形成的具有一定磁性及特殊结构的体积在几纳米到几十微米之间的载体微球。载体微球的核心为金属小颗粒, 常为铁的氧化物或铁的硫化物, 核心外包裹一层高分子材料, 最外层是功能基团, 载体微球表面可根据需要赋予不同的功能基团(如-OH、-COOH、-CHO、-NH2,—SH、—CONO2、—CONH2、—SO3H、—SiH3、—环氧基、—CHCl等),使其表现具有疏水-亲水、非极性-极性、带正电荷-带负电荷等不同物理性质。同时具有磁响应性,在外磁场作用下具有磁导向性。由于载体微球表现的物理性质不同, 可结合不同的免疫配基, 如抗体、抗原、DNA、RNA 等。
应用于磁分离技术的磁性载体微球应具备以下特点: 粒径比较小, 比表面积较大, 具有较大的吸附容量;物理和化学性能稳定, 具有较高的机械强度, 使用寿命长;具有可活化的反应基团, 以用于亲和配基的固定化;粒径均一, 能形成单分散体系;悬浮性好, 便于反应的有效进行。载体微球有纳米级、微粒级的, 纳米级的载体微球与微粒级的载体微球相比具有以下优点: 尺寸小, 扩散速度快, 悬浮稳定性好;比表面积大, 偶联容量大;超顺磁性, 能快速实现磁性粒子的分散与回收。
磁珠的制备方法:共沉淀法、悬浮聚合法、乳液聚合法、分散聚合法、包埋法及原子转移自由基聚合法等。免疫磁珠 免疫磁珠(Immunomagnetic bead, IMB)简称磁珠,免疫磁珠由载体微球和免疫配基结合而成。免疫磁珠的大小和形状的均一性, 可使靶细胞迅速和有效地结合到磁珠上;它的球形结构可消除与不规则形状粒子有关的非特异性结合;超顺磁性可使磁珠置于磁场时, 显示其磁性, 从磁场移出时, 磁性消除, 磁珠分散;保护性壳可防止金属颗粒漏出。
将磁珠按磁珠功能基结合的蛋白质不同分为: 包被一抗的磁珠、包被二抗的磁珠、未包被的磁珠和包被抗生物素的磁珠。并针对不同抗原制出包被相应抗体的试剂盒,方便了使用。
免疫磁珠的主要特点有: 分离速度快、效率高、可重复性好;操作简单、不需要昂贵的仪器设备;不影响被分离细胞或其它生物材料的生物学性状和功能 免疫磁珠标记方法 1 直接磁珠和直接标记法:通过物理吸附和共价键结合直接将特意性抗体与磁珠耦合,然后再与相应细胞结合,形成细胞-抗原-抗体-磁珠复合物,在外磁场下直接分离目的细胞。快速、简单、特异性和细胞得率高,灵敏度低,需制备相应的偶联抗体磁珠。2 间接磁珠和间接标记法:使用anti-lg等与磁珠偶联,通过Anti-lg再使磁珠与二抗体偶联,分离细胞时,先使细胞与一抗特异性结合,然后在与一抗标记磁珠结合,形成细胞-1抗-2抗-anti-lg-磁珠复合体,在外磁场下分离目的细胞的方法。该法增加了细胞的洗涤步骤,特异性也会降低。该法一般用于①没有直标磁珠抗体②需用几种抗体去除多种细胞③目的细胞上特异性抗原分子表达水平低。
免疫磁珠分选方法 阳性分选:运用特异性抗体偶联磁珠直接从细胞混合物中分离目的细胞的分选方法称为positive selection.阳性分选中磁珠标记的细胞即为目的细胞。该法简单、快速、细胞得率和纯度较高。如采用anti-CD14磁珠分选CD14+巨噬细胞。阴性分选:用抗体偶联磁珠去除无关细胞,使目的细胞得以纯化和分离的分选方法称为negative selection.阴性分选中磁珠标记的细胞为非目的细胞。如分离CD4+T细胞时,由于没有专用的CD4+T细胞分选磁珠,可通过anti-CD8、anti-B220、anti-CD49b、anti-CD11b、anti-Ter119标记磁珠去除CD8+T细胞、B细胞、NK细胞、DC细胞、巨噬细胞、粒细胞等,最终而获得较纯的CD4+T细胞。因此阴性分选法适用于:①从细胞混合物中去除某种类型细胞。如肿瘤细胞。②缺乏针对目的细胞筛选的特异性抗体磁珠时。③抗体和目的细胞结合可能诱导细胞活化,影响后续细胞功能分析时。复合分选:将阴性分选和阳性分选相结合的分选方法。当目的细胞含量特别低,无法直接进行阳性分选时,可采用阴性分选发先出去其他杂细胞,当目的细胞富集到一定程度时在采用阳性分选发筛选目的细胞。
基本原理
特异性及非特异性的磁珠分离技术
特异性磁珠分离技术 免疫磁珠分离技术是一种特异性磁分离技术。免疫磁珠既可结合活性蛋白质(抗体), 又可被磁铁所吸引, 经过一定处理后, 可将抗体结合在磁珠上, 使之成为抗体的载体, 磁珠上抗体与特异性抗原物质结合后, 则形成抗原一抗体一磁珠免疫复合物, 这种复合物在磁力作用下, 发生力学移动, 使复合物与其它物质分离,而达到分离特异性抗原的目的。免疫磁珠作用方式有直接法和间接法。直接法是先用抗体包被磁珠, 使抗体与磁珠结合(物理吸附或化学结合), 再加人抗原物质, 二者结合形成复合物,在磁力的作用下, 与其它物质分离。间接法是先用羊抗鼠IgG(第二抗体)包被磁珠, 使磁珠作为第二抗体的载体, 当抗原与第一抗体结合后, 加入带有第二抗体的磁珠, 磁珠上第二抗体便与第一抗体结合, 形成磁珠一第二抗体~ 第一抗体一抗原复合物, 在磁力的作用下, 与其它物质分离。
这里值得提及的是免疫磁珠的功能基团主要与蛋白结合, 但是借助亲和素一生物素系统,还能使免疫磁珠与非蛋白质结合, 如各种DNA、RNA 分子等, 从而使免疫磁珠发挥更大作用。非特异性磁珠分离技术
裸磁珠分离技术: 裸磁珠是指尚未包被抗体的磁性载体微球。有研究表明具有超顺磁性的裸磁珠能非特异性的吸附细菌 , 把裸磁珠加入到待检样品中, 裸磁珠可以和样品中的细菌发生非特异性的吸附, 裸磁珠细菌结合物在外加磁场的作用下向磁极方向聚集后, 弃去检样混合液, 反复洗涤,可使致病菌与样品得到分离, 目标菌得到浓缩。当食源性疾病发生时, 往往很难确定食源性致病菌的种类, 用某几种免疫磁珠吸附分离可能会导致漏检, 裸磁珠的非特异性吸附可克服此不足。有关专家对裸磁珠用于样品中多种食源性致病菌的吸附分离和浓缩进行了一定研究。
磁泳分离技术: 刘新星等根据某些细菌具有一定趋磁性的特点提出了一种新的微生物分离方法-磁泳。该方法采用电泳槽、毛细管、永磁体组成磁泳槽, 在远磁槽中加入菌液, 在近磁槽中加入培养基, 体内含有磁性颗粒的细菌在细长的毛细管中借助连续的磁场梯度提供的磁力进行泳动, 而体内没有磁性颗粒的细菌则留在了远磁槽中, 这样具有不同趋磁特性的细菌得到分离。在液体磁泳的基础上进行改进,提出了固体平板磁泳分离细菌的新方法, 通过磁泳分离, 在固体平板上可以得到待分离细菌的单一菌落, 磁泳技术的进一步完善和改进为传统的菌种分离提供了新的途径。
应用范围
特异性的免疫磁珠分离技术目前比较成熟, 在诸多领域得到了广泛应用;非特异性的分离技术研究有待深入, 没有特异性的免疫磁珠分离技术应用广泛。免疫磁珠分离技术的应用范围
它是近年来国内外研究比较热门的一种新的免疫学技术, 它以免疫学为基础, 渗透到病理、生理、药理、微生物、生化及分子遗传学等各个领域, 其应用日趋广泛, 尤其在免疫学检测、细胞分离及蛋白质纯化等方面取得巨大的进展。1.免疫检测
在免疫检测中, 免疫磁珠作为抗体的固相载体, 磁珠上的抗体与特异性抗原结合, 形成抗原抗体复合物, 在磁力作用下, 使特异性抗原与其它物质分离, 克服了放免和普通酶联免疫测定方法的缺点, 无放射性损害。这种磁性分离具有灵敏度高, 检测速度快(l , 一2 小时),特异性高, 重复性好等优点。文献报道利用免疫磁珠可检测出诱导活性T 细胞产生极性现象的膜表面分子, 这种极性现象可通过观察到一个磁珠结合处, 许多T 细胞形成网状微管状结构来判定。其方法是将7 X 10 咯个细胞吸人特殊处理的有机玻璃制成的直径x6 n m, 深4m m的孔内, 培养30 分钟, 待细胞附壁后, 加人包被抗体的磁珠, 磁珠与细胞比例红1 , 混匀, 培养45分钟后置于磁场中,弃去上清, 荧光染色,在荧光显微镜下观察吸附在孔壁底部T 细胞变化, 结果发现人T 细胞系H P B一A L L 中C D 3类T 细胞具有这种极性现象, 而C D Z、C D 6、仁公旦类T 细胞则无极性出现, 由此可检测细胞攀表面的特异分子结构。实验结果显示, 包被抗极性诱导分子C D 3 膜表面分子抗体的磁珠产生的极性现象, 是包被抗其他分子抗体磁珠随机产生极性现象的3。倍, 其结果具有统计学意义。这种技术, 不但可通过产生极性现象来检测表面分子, 亦可通过磁珠包被任何确定的表面分子或结合分子来检测是否可产生极性现象, 从而来判断细胞类型。总之, 用免疫磁珠可检测出各种激素、神经递质、细胞因子、肿瘤相关抗原等。2.细胞分离
细胞分离是免疫磁珠目前应用最主要的一个方面。传统细胞分离技术有密度离心、羊红细胞重新形成、流式细胞等, 这些方法或者比较费时, 或者十分昂贵, 而用免疫磁珠进行细胞分离只需要抗体和一个磁铁, 具有简单、便捷和可靠等优点。分离细胞有两种方式: 直接从细胞混合液中分离出靶细胞的方法, 称为阳性分离(P o s it iv e I s o lo t;o n)。用免疫磁珠去除无关细胞, 使靶细胞得以纯化的方法, 称为阴性分离(N e g a t iv e Is o la t io n)。阳性分离涉及到磁珠与细胞的解离问题, 一种解离方法, 是简单的在摄氏3 7 毛过夜使之分离;此外, D y al l 公司D E T A cH a B E A D 分离系统, 直接解离抗原一抗体, 因此所得到的细胞无抗体残留, 而且没有改变细胞抗原的表达, 细胞的活性或功能也不受影响。已有许多文献报道: 免疫磁珠技术可用来分离人类各种细胞, 如T 淋巴细胞、B 淋巴细胞、内皮细胞.造血祖细胞、单核/ 吞噬细胞及胰岛细胞及多种肿瘤细胞。近来,S h Pa i c)r等利用免疫磁珠技术, 从19 例W 期乳腺癌患者外周血中分离到C :)[ 科+ 的单核细胞P(BM C),离体做C D 34 十细胞增殖实验, 最后将增殖的细抱重新输人病人的体内, 以克服多次大剂量化疗所带来的副作用。具体方法是, 首先给未接受化疗的晚期乳腺癌病人注射环磷酸胺和粒细胞集落刺激因子, 取外周血, 用白细胞提取法收集单核细胞, 将收集到的细胞与包被C D 34 十抗体的磁珠混合, 磁珠与细胞比例为16 : 1,4 C 下培养拍分钟, 磁珠吸引, 弃上清后重新悬浮于溶液中, 在5 纬C O : 培养箱内37.0 ℃ 过夜。第二天移去分离的磁珠, 得到C D 34一卜细胞。此方法获得的C l)3 4十细胞纯度在56 % ~ 92 %。这样获得的C D 34 十细胞再培养结果, 第7 天,细胞增殖15 倍, 第14 天增殖40 倍, 第21 天增殖4 6 倍, 第28 天增殖21 倍。很多研究表明,细胞分离不仅有利于肿瘤细胞的净化, 而且为临床肿瘤治疗提供了新的途径, 使免疫磁珠技术广泛应用于: ① 检测出体液中少量肿瘤细胞,提高肿瘤早期的诊断率, ② 快速、高效分离T、B 细胞, 用于器官移植中的H L A 组织分型, ③骨髓移植物的预处理, 提高移植成功率(自体移植时清除骨髓移植物中残留的肿瘤细胞, 异体移植时清除骨髓移植物中的细胞毒性T 细胞), ④ 为各种医疗与科研目的分离或清除特定的细胞成分。3.生物大分子纯化
免疫磁珠可以看作是亲合层析技术中的微型配基载体, 在基质上固相化抗体或抗原后, 造成特异性吸附, 再进行磁性亲合抽提, 不需离心和过滤, 用于分离和纯化相应的生物大分子,这为受体分子提纯和其它难以提纯的蛋白质纯化提供了希望。此外, 以免疫磁珠作为固相载体, 还可分离纯化D N A 和R N A , D N A 结合蛋白及m R N A 等。用D y n a b e a d s M~ 4 5 0 C D 1 4 和D y n a b e a d s 砚19 0(d T):。可从单核细胞中提取m R N A。具体方法是, 用D y n a b e a d s M一4 5。C D 14从外周血中分离纯的单核细胞, 得到纯的单核细胞, 再将D y n a b e a d s 0 119 0(d T)2 5加到细胞液中杂交, 可分离到纯的m R N A, 实验可在60 分钟内完成。4.分子生物学的应用
由于免疫磁珠借助亲和素一生物素系统可与非蛋白质结合(如各种D N A、R N A 大分子)所以近年来免疫磁珠在分子生物学应用越来越广泛。随着P C R、R T 一P C R 等分子生物学技术突飞猛进, 通过对P C R 产物进行测序分析, 虽可了解基因组的结构特点、D N A 突变和基因多态性等, 但方法比较复杂。文献报道, 用磁珠固相分离单链法, 测定了低密度脂蛋白(L D L)受体基因外显子H 和内含子n 的部分序列, 可直接快速对P C R 双链产物进行分离或对其单链进行测序。方法是将P C R 双链产物与生物素化磁珠混合, 悬浮30 分钟后, 置于磁场中沉淀,去上清, 洗涤后进行碱性变性, 再次磁场沉淀,此时沉淀的磁珠结合了含有生物素的P C R 单核D N A, 而不含生物素的P C R 另一单链DN A则存在于上清中。5.在核酸与基因工程上的应用
免疫磁球可以看作是亲合层析技术中的微型配基裁体,借助亲合素-生物素(Biotin-Avidin)系统免疫磁球可与非蛋白质结合,生物素和亲合素间有着高度的亲和力,两者的结合迅速、专
一、稳定,在分子生物学、医学、免疫组织化学等领域中的应用也越来越广泛,与生物磁珠技术结合后,更是产生了诱人的发展前景,并广泛地应用于分离纯化RNA、mRNA、核酸片段等及相关研究。河南惠尔纳米科技有限公司很早就在从事该方面的研究,并且已经研发出多款磁珠法核酸提取试剂盒,性能相当稳定。
6.用于分型
免疫磁珠法可被应用于临床器官移植供受者的快速选配。在高梯度磁场下,用免疫磁珠法分离静脉或腹腔血中T、B淋巴细胞,并利用分离的淋巴细胞进行HLA-ⅠⅡ类抗原分型。如采用磁珠技术和单抗试剂建立起可在1.5h完成HLA-ⅠⅡ类抗原一类分型的新方法,还可应用免疫磁珠分离技术进行肾移植供受体的HLA分型、探讨血液病患者反复血小板输注的治疗效果与HLA之间的相关性。7.用作靶向释药系统的载体
免疫磁性微球作为靶向释药系统的载体可使免疫磁性微球上的抗癌药物更易与癌细胞接触,服用这种制剂后,在体外适当部位用一适宜强度的磁铁,将磁性微球引导到体内特定靶区,提高了杀伤癌细胞的效果。很多研究者使用不同的方法制成了针对不同癌细胞的免疫磁性微球,作为靶向释药系统的载体并在实验中证实这种释药载体具有良好的功效。免疫磁珠分离技术的应用实例
免疫磁珠分离技术在食品安全检测中的应用
免疫磁珠对病毒具有特异选择性,因此能用于食品有害微生物的检测。免疫磁珠技术与常规检验方法相比具有检测迅速、有选择性分离目的微生物,有效减少背景干扰,提高了精准性。同时还能捕获受损伤靶细菌。目前,免疫磁珠技术已广泛用于食品样品中致病微生物的检测。大肠杆菌O157的检测
传统分离E.coli O157∶H7所采用的直接分离法存在着鉴别力差、抑制杂菌能力弱、耗时长、工作量大等缺点。
采用免疫磁珠技术,能够快速地从各种食品样品中分离富集E.coli O157∶H7,满足流行病学的研究要求和提高控制力度。
现在这种免疫磁珠的方法已经被英国公共健康服务实验室认定为标准的分离方法,我国也已将免疫磁珠法对大肠杆菌O157的检测纳入国家标准(GB/T 4789.36-2008)和出入境检验检疫行业标准(SN/T 1059.5-2006)。已有市售的专用免疫磁珠销售。
具体操作 1增菌
2免疫磁珠捕获与分离
1.将Eppendorff管按样品和质控菌株进行编号,每个样品使用1支Eppendorff管,然后插人到磁板架上。在漩涡混合器上轻轻振荡E.coli O157免疫磁珠溶液后,用开盖器打开每支Eppendo-rff管的盖子,每管加人20 μL E.coli 0157免疫磁珠悬液。
2.取mEC+n肉汤增菌培养物1 mL,加人到Eppendorff管中,盖上盖子,然后轻微振荡10 s。每个样品更换1支加样吸头,质控菌株必须与样品分开进行,避免交叉污染。
3.结合: 在18℃~30℃环境中,将上述Eppendorff管连同磁板架放在Dynal MXl样品混合器上转动或用手轻微转10 min,使E.coli O157与免疫磁珠充分接触。4.捕获:将磁板插人到磁板架中浓缩磁珠。在3 min内不断地倾斜磁板架,确保悬液中与盖子上的免疫磁珠全部被收集起来,此时,在Eppendorff管壁中间明显可见圆形或椭圆形棕色聚集物。
5.吸取上清液:取1支无菌加长吸管,从免疫磁珠聚集物对侧深人液面,轻轻吸走上清液。当吸到液面通过免疫磁珠聚集物时,应放慢速度,以确保免疫磁珠不被吸走。如吸取的上清液内含有磁珠,则应将其放回到Eppendorff管中,并重复4步骤。每个样品换用1支无菌加长吸管。
6.洗涤:洗涤免疫磁珠混合物,重复上述步骤 4~ 6 和4 ~ 5。
7.免疫磁珠悬浮:将免疫磁珠重新悬浮在100 μL
PBS-Tween 20洗液中。8.涂布平板:用漩涡混合器将免疫磁珠混匀,用加样器各取50 μL免疫磁珠悬液分别转移至CT-SMAC平板和改良CHROMagar O157弧菌显色琼脂平板一侧,再用无菌涂布棒将免疫磁珠涂布平板的一半,用接种环划线接种平板的另一半。待琼脂表面水分完全吸收后,翻转平板,于36℃士1 0℃培养18---24 h。菌落识别
在CT-SMAC平板上,典型菌落为不发酵山梨醇的圆形、光滑、较小的无色菌落,中心呈现较暗的灰褐色;发酵山梨醇的菌落为红色;在改CHROMagar O157弧菌显色琼脂平板上为圆形、较小的菌落,中心呈淡紫色一紫红色,边缘无色或浅灰色。初步生化试验: 在CT-SMAC和改良CHROMagar O157弧菌显色琼脂平板上挑取5个~10个典型或可疑菌落,分别接种TSI琼脂,同时接种MUG-LST肉汤,于36℃士1℃培养18 h~24 h。必要时进行氧化酶试验和革兰氏染色。在TSI琼脂中,典型菌株为斜面与底层均呈阳性反应呈黄色,产气或不产气,不产生硫化氢(H2S)。置MUG-LST肉汤管于长波紫外灯下观察,无荧光产生者为阳性结果,有荧光产生者为阴性结果;对分解乳糖且无荧光的菌株,在营养琼脂平板上分纯,于36℃士1℃培养18 h~24 h,并进行鉴定。
Fratamico等将兔抗E.coli O157∶H7多克隆抗体连接到羊抗兔IgG包被的磁珠上,从食物增菌培养液中分离O157∶H7菌株,再将带菌的磁珠接种到培养基上,加入荧光素标记的O157∶H7抗血清,在荧光显微镜下观察,此法敏感性为10cfu/mL增菌培养液。
Decory等建立了免疫磁珠-免疫脂质体(IMB/IL)荧光试验方法,可在8h内快速检测出多种液态样品(水样、苹果汁、苹果酒)中低至1cfu/mL的E.coli O157∶H7,而传统微生物学方法不能从阴性样本中区分出E.coli O157∶H7感染样本。
结论
免疫磁珠分离技术的优点是:分离速度快、效率高、可重复性好、操作简单,不需昂贵仪器设备,不影响被分离细胞或其它生物材料的生物学性状和功能等,从而在微生物检测方面具有很大的优势。缺点:免疫磁珠敏感性不高,易于其他杂菌交叉反应,价格昂贵,应用受到一定限制。
免疫磁珠分离技术的发展方向:高敏感性磁珠的制造技术,降低磁珠生产成本,免疫磁珠与其它检测手段联用技术,免疫磁珠技术应用技术,总的来说,免疫磁珠分离技术未来将在生物医学、食品、农业科研、新药开发等领域具有更加广泛的发展前景。
参考文献 1.免疫磁珠技术一一种新的免疫学技术(北京医科大学人民医院妇科仲痴中心范蓉编译钱和年审阅)2.段旭昌--免疫磁珠分离技术(IMB)及在食品生产中的应用 3.磁分离技术及其在食源性致病菌监测中的应用-熊国权1, 周红雨2 4.在环境病原微生物检测中的应用-杨万,何苗
第二篇:磁制冷技术
磁制冷技术的发展专题学习报告
传统压缩制冷技术广泛应用于各行各业,形成了庞大的产业,但它存在两个明显的缺陷:制冷效率低且氟利昂工质的泄漏会破坏大气臭氧层。根据蒙特利尔协议到2000年将全面禁止氟利昂的生产和使用,使制冷行业面临一场变革。现在大力研究开发的无氟替代制冷剂,基本上可以克服破坏大气臭氧层的缺陷,但仍保留了制冷效率低、能耗大的缺陷,而且有的还会产生温室效应等,不是根本解决办法。
磁制冷作为一项高新绿色制冷技术,与传统压缩制冷相比具有如下竞争优势:无环境污染:由于工质本身为固体材料以及可用水来作为传热介质,消除了因使用氟利昂、氨及碳氢化合物等制冷剂所带来的破坏臭氧层、有毒、易泄漏、易燃、易爆等损害环境的缺陷;高效节能:磁制冷的效率可达到卡诺循环的30%~60%,而气体压缩制冷一般仅为5%~10%,节能优势显著;易于小型化:由于磁工质是固体,其熵密度远远大于气体的熵密度,因而易于做到小型化;稳定可靠:由于无需压缩机,运动部件少且转速缓慢,可大幅降低振动与噪声,可靠性高,寿命长,便于维修。
磁制冷技术因具有上述优势以及其在液化氢、以及室温磁制冷方面具有巨大的市场前景而受到全球广泛的关注,美、日、法等发达国家投入了大量人力、物力进行研究开发。[1] 1.磁制冷技术国外研究进展
磁致冷材料的研究可追溯到十九世纪末,1881年WarburgI首先观察到金属铁在外加磁场中的热效应。20世纪初,Langevin第一次展示通过改变顺磁材料的磁化强度导致可逆温度变化。1918年Weiss和Piccardfo从实验中发现Ni的磁热效应。1926年Debye和1927年Giauque两位科学家分别从理论上推导出可以利用绝热去磁制冷的结论后.极大地促进了磁制冷的发展。此后磁致冷材料及应用的研究在极低温(趋于绝对0K)及低温((15K)、中温温区(15K一77K)取得较大进展。但在室温区域进行磁制冷研究会遇到以下两个问题:1)磁自旋的热激发能量kBT较大,为得到所必须的熵的变化,需要非常强的外加磁化场2)磁工质的晶格系统的热容量显著增大,成为自旋系统很大的热负荷。要克服第一个障碍.需利用铁磁物质的磁熵变在居里点附近显著增大这一事实,选用具有较强磁热效应的铁磁工质即可在相对较小的磁场变化下获得较高的磁熵变;要克服第二个障碍,则磁制冷过程中需取出晶格熵。这就要求磁制冷系统有蓄冷器,卡诺循环已不适宜室温。
1997年,美国科学家Gschneidner、Percharsky等在室温磁致冷材料钓研究中取得突破性进展,发现了具有巨磁热效应。在近室温附近,GdsSiNe2的磁熵变为典型的磁致冷材料Gd的磁熵变的2倍。该系合金居里点可在30K~280K之间通过Si:Ge比来调整。另外,通过添加微量的Ga可将居里点提高到286K而巨磁热效应仍基本保持不变。
2001年底,日本的H.WBda等人发现了具有巨磁热效应的Mn系合金MnAsxSb。当x=0时,MnAs合金表现出巨磁热效应,并且,在不同的场强下,磁熵变的大小基本一致,只是磁熵变馥线的峰宽度发生变化。该合金原料易得,但其中As是毒性很大的元素。
到了2002年初,荷兰的Tegus等人发现了具有巨磁热效应的材料。该合金在∞磁场下的最太磁熵变为Gd的两倍多而与Gd的最大磁熵变相当。该合金的居里点高,磁熵变的峰顶宽度较大。同样由于合金含有毒性元素As,使其应用受到了一些限制。[2] 2磁制冷技术国内的研究进展
同年,我国南京大学在钙钛矿型化合物的研究中取得较大进展。该系化合物的最大优点在于与Gd及6dSiGe系合金相比其成本大大降低,该系化合物如能较好解决将居里点调高到室温时磁熵变大幅下降的问题,即如能使之在室湿附近保持大的磁熵变。有很好的应用前景。
2000年,中科院物理所的沈保根、胡凤霞等人发现了LaFeCoAl和LaFeCoSi系列金属间化合物。该系列磁致冷材料的磁熵变比Gd大,且居里点可调节。由于原材料便宜。因此有希望成为新型室温磁致冷材料。
纳米材料:用纳米化合物作为磁制冷工质比其它常用的颗粒状、层状或混和不同材料形成的 制冷工质有更多的优点,采用各种方法制备纳米磁工质并研究其磁制冷特性,正成为磁制冷领域的一个研究热点,而且我国科学家在相关领域已取得很多成果。1996年,中山大学邵元智、熊正烨 等采用急冷快淬、高能球磨及粉末包套轧制 的方法制备出带状的纳米固体复合磁制冷材料Gd0. 85Y0.Gdo. 75Zno、Gao. 85Tb0.
2004南京大学的陈伟、钟伟 等采用溶胶一凝胶法通过柠檬酸的络合,制备了钙钛型多晶纳米材料。在室温附近、低磁场下,这些多晶纳米颗粒具有较大的磁热效应,电阻率高、性能稳定,是较为理想的室温磁制冷工质。由于纳米微粒的小尺寸效应使得磁制冷材料呈现出常规材料不具备的优良特性,在充分研究产生磁热效应尤其是巨磁热效应机理的基础上,一定会研制出适用于低磁场的、性能更好的纳米磁性材料。[3] 磁制冷技术的研究热点 3,1磁制冷原理
磁制冷就是利用磁热效应,又称磁卡效应(Magneto—Caloric Efect,MCE)的制冷。磁热效应是指磁制冷工质在等温磁化时向外界放出热 量,而绝热去磁时温度降低,从外界吸收热量的现 象,这和气体的压缩一膨胀过程中所引起的放热一吸热的现象相似。
3.2 2.2磁制冷的实现过程
了解了磁制冷基本原理,最终是要实现磁制冷,关于磁制冷实现的过程可通过图2进行简单的描述:(1)外磁化场作用在磁工质上,工质的磁 熵减小,温度上升。(2)通过热交换介质把磁工质的热量带走。(3)移出外磁化场,磁工质内自 旋系统又变得无序,在退磁过程中消耗内能,使磁 工质温度下降。(4)通过热交换介质磁工质从低 温热源吸热,从而实现制冷的目的。[4]
除了高性能的磁工质以外,磁制冷还有以下几大关键技术:
磁场分析、磁体结构设计:以永磁体磁化场为例,须采用有限元方法对永磁体磁场分布 进行分析;根据场型分析指导磁体结构设计;研究发现磁体极内表面的平整程序对磁场分布影响很大,因此磁体的加工制造也非常重要。[5] 磁制冷循环的选择:在15k 以下温区,考虑用卡诺循环;对15k 以上温区,卡诺循环已不适宜了,必须配合磁工质的特性(如温熵图等)、温度跨度及磁场控制手段等来对 循环、循环、循环进行分析选择。
蓄冷技术:在低温温区可以不考虑蓄冷的问题。但在中温温区及高温温区,磁制冷的晶格熵的取出须依靠蓄冷器,蓄冷材料的低温特性(比热、导热等)及蓄冷器设计将直接影响磁制冷机的功率和效率。因此必须对蓄冷材料的热力学性能进行深入研究,并选择较好的蓄冷材料设计出合理的蓄冷器。
换热技术:换热性能的好坏直接影响室温磁制冷样机的制冷效率。在低温温区一般采用各种形式的热开关进行换热,而对于中温以上,一般多采用流体—固体换热,极少采用热开关形式进行换热。因此应针对相应的温区选择换热介质并设计好热开关或换热回路。
总而言之,对于中温、高温温区磁制冷样机的改进与优化,主要包括磁制冷循环、蓄冷 器、传热介质、磁化场磁体、总体结构等优化设计与选择。特别强调的是要重视蓄冷器的研究与改进,以较好地排出磁工质的晶格熵的负荷,减少磁化场的强度和增大系统的温[6]。
4,我校对磁制冷技术的贡献
我校的龙毅教授自回国后在磁制冷方向做出了杰出的贡献。完成省部级技术鉴定的科研成果2项。其中新型磁性蓄冷材料通过冶金部鉴定,项目研究的磁性蓄冷材料填补了国内在这个领域的空白,达到世界先进水平。参考文献
[1]陈远富,滕保华,陈云贵,等.磁制冷发展现状及趋势:II磁致冷技术[J].低温工程,2001,(2):57—63.
[2]寿卫东,韩鸿兴.绝热去磁制冷技术应用研究[J].低温工程,1991,(2):7.
[3]金培育,刘金荣,等.磁致冷材料及技术[J].包头钢铁学院学报,2000,19(3):267-270.
[4]胡凤霞,沈保根,等.LaFe :Coo. Si 合金在室温区的巨大磁熵变[J].物理,2002,31(3):139-140.
[5]邵元智,等.纳米磁性体系的增强磁热熵效应[J]. 中山大学学报,2000,39(4):39-42.
[6]鲍雨梅,张康达.磁制冷技术和纳米磁制冷工质的研究进展[J].杭州师范学院学报,2003,2(1):56-59.
第三篇:磁珠的原理及应用
http://www.xiexiebang.com 电子发烧友 http://bbs.elecfans.com 电子技术论坛 引言
由于电磁兼容的迫切要求,电磁干扰(EMI)抑制元件获得了广泛的应用。然而实际应用中的电磁兼容问题十分复杂,单单依靠理论知识是完全不够的,它更依赖于广大电子工程师的实际经验。为了更好地解决电子产品的电磁兼容性这一问题,还要考虑接地、电路与PCB板设计、电缆设计、屏蔽设计等问题[1][2]。本文通过介绍磁珠的基本原理和特性来说明它在开关电源电磁兼容设计中的重要性与应用,以期为设计者在设计新产品时提供必要的参考。
磁珠及其工作原理
磁珠的主要原料为铁氧体,铁氧体是一种立方晶格结构的亚铁磁性材料,铁氧体材料为铁镁合金或铁镍合金,它的制造工艺和机械性能与陶瓷相似,颜色为灰黑色。电磁干扰滤波器中经常使用的一类磁芯就是铁氧体材料,许多厂商都提供专门用于电磁干扰抑制的铁氧体材料。这种材料的特点是高频损耗非常大,具有很高的导磁率,它可以使电感的线圈绕组之间在高频高阻的情况下产生的电容最小。铁氧体材料通常应用于高频情况,因为在低频时它们主要呈现电感特性,使得损耗很小。在高频情况下,它们主要呈现电抗特性并且随频率改变。实际应用中,铁氧体材料是作为射频电路的高 频衰减器使用的。实际上,铁氧体可以较好的等效于电阻以及电感的并联,低频下电阻被电感短路,高频下电感阻抗变得相当高,以至于电流全部通过电阻。铁氧体是一个消耗装置,高频能量在上面转化为热能,这是由它的电阻特性决定的。
对于抑制电磁干扰用的铁氧体,最重要的性能参数为磁导率和饱和磁通密度。磁导率可以表示为复数,实数部分构成电感,虚数部分代表损耗,随着频率的增加而增加。因此它的等效电路为由电感L和电阻R组成的串联电路,如图1所示,电感L和电阻R都是频率的函数。当导线穿过这种铁氧体磁芯时,所构成的电感阻抗在形式上是随着频率的升高而增加,但是在不同频率时其机理是完全不同的。
(a)安装图
(b)高频等效电路 http://www.xiexiebang.com 电子发烧友 http://bbs.elecfans.com 电子技术论坛
(c)电路符号 图1 铁氧体磁珠
在高频段,阻抗主要由电阻成分构成,随着频率的升高,磁芯的磁导率降低,导致电感的电感量减小,感抗成分减小,但是,这时磁芯的损耗增加,电阻成分增加,导致总的阻抗增加,当高频信号通过铁氧体时,电磁干扰被吸收并转换成热能的形式消耗掉。在低频段,阻抗主要由电感的感抗构成,低频时R很小,磁芯的磁导率较高,因此电感量较大,电感L起主要作用,电磁干扰被反射而受到抑制,并且这时磁芯的损耗较小,整个器件是一个低损耗、高品质因素Q特性的电感,这种电感容易造成谐振,因此在低频段时可能会出现使用铁氧体磁珠后干扰增强的现象[3]。
磁珠种类很多,制造商会提供技术指标说明,特别是磁珠的阻抗与频率关系的曲线。有的磁珠上有多个孔洞,用导线穿过可增加元件阻抗(穿过磁珠次数的平方),不过在高频时所增加的抑制噪声能力可能不如预期的多,可以采用多串联几个磁珠的办法。
值得注意的是,高频噪声的能量是通过铁氧体磁矩与晶格的耦合而转变为热能散发出去的,并非将噪声导入地或者阻挡回去,如旁路电容那样。因而,在电路中安装铁氧体磁珠时,不需要为它设置接地点。这是铁氧体磁珠的突出优点[4]。
磁珠和电感
3.1磁珠和电感的区别
磁珠由氧磁体组成,电感由磁芯和线圈组成,磁珠把交流信号转化为热能,电感把交流存储起来,缓慢的释放出去,因此说电感是储能元件,而磁珠是能量转换(消耗)器件。电感多用于电源滤波回路,磁珠多用于信号回路,磁珠主要用于抑制电磁辐射干扰,而电感用于这方面则侧重于抑制传导性干扰。两者都可用于处理EMC、EMI问题。磁珠是用来吸收超高频信号,例如一些RF电路、PLL、振荡电路、含超高频存储器电路(DDR SDRAM,RAMBUS等)都需要在电源输入部分加磁珠,而电感是一种蓄能元件,用在LC振荡电路、中低频的滤波电路等,其应用频率范围很少超过50MHZ。地的连接一般用电感,电源的连接也用电感,而对信号线则常采用磁珠。
3.2片式磁珠与片式电感
3.2.1片式电感
在电子设备的PCB板电路中会大量使用感性元件和EMI滤波器元件,这些元件包括片式电感和片式磁珠。在需要使用片式电感的场合,要求电感实现以下两个基本功能:电路谐振和扼流电抗。谐振电路http://www.xiexiebang.com 电子发烧友 http://bbs.elecfans.com 电子技术论坛
包括谐振发生电路、振荡电路、时钟电路、脉冲电路、波形发生电路等。谐振电路还包括高Q带通滤波器电路。要使电路产生谐振,必须有电容和电感同时存在于电路中。在电感的两端存在寄生电容,这是由于器件两个电极之间的铁氧体本体相当于电容介质而产生的。在谐振电路中,电感必须具有高品质因素Q,窄的电感偏差,稳定的温度系数,才能达到谐振电路窄带,低的频率温度漂移的要求。高Q电路具有尖锐的谐振峰值。窄的电感偏置保证谐振频率偏差尽量小。稳定的温度系数保证谐振频率具有稳定的温度变化特性。标准的径向引出电感和轴向引出电感以及片式电感的差异仅仅在于封装不一样。电感结构包括介质材料(通常为氧化铝陶瓷材料)上绕制线圈,或者空心线圈以及铁磁性材料上绕制线圈。在功率应用场合,作为扼流圈使用时,电感的主要参数是直流电阻(DCR,定义为元件在没有交流信号下的直流电阻)、额定电流和低Q值。当作为滤波器使用时,希望宽的带宽特性,因此并不需要电感的高Q特性,低的直流电阻(DCR)可以保证最小的电压降。
3.2.2 片式磁珠
片式磁珠是目前应用、发展很快的一种抗干扰元件,廉价、易用,滤除高频噪声效果显著。片式磁珠由软磁铁氧体材料组成,片式铁氧体磁珠的结构和等效电路如图2所示,实质上它就是1个叠层型片式电感器,是由铁氧体磁性材料与导体线圈组成的叠层型独石结构。由于在高温下烧结而成,因而具有致密性好、可靠性高等优点。两端的电极由银/镍/焊锡3层构成,可满足再流焊和波峰焊的要求。在图2所示的等效电路中,R代表由于铁氧体材料的损耗(主要是磁损耗)以及导体线圈的欧盟损耗而引起的等效电阻,C是导体线圈的寄生电容。
(a)片式铁氧体磁珠外形
(b)片式铁氧体磁珠的结构 http://www.xiexiebang.com 电子发烧友 http://bbs.elecfans.com 电子技术论坛
(c)等效电路
图2 片式铁氧体磁珠的结构与等效电路
片式磁珠的功能主要是消除存在于传输线结构(PCB电路)中的RF噪声,RF能量是叠加在直流传输电平上的交流正弦波成分,直流成分是需要的有用信号,而射频RF能量却是无用的电磁干扰沿着线路传输和辐射(EMI)。要消除这些不需要的信号能量,使用片式磁珠扮演高频电阻的角色(衰减器),该器件允许直流信号通过,而滤除交流信号。通常高频信号为30MHz以上,但是低频信号也会受到片式磁珠的影响。
片式磁珠不仅具有小型化和轻量化的优点,而且在射频噪声频率范围内具有高阻抗特性,可以消除传输线中的电磁干扰。片式磁珠能够降低直流电阻,以免对有用信号产生过大的衰减。片式磁珠还具有显著的高频特性和阻抗特性,能更好的消除RF能量。在高频放大电路中还能消除寄生振荡。有效的工作在几个MHz到几百MHz的频率范围内[5] [6]。
片式磁珠在过大的直流电压下,阻抗特性会受到影响,另外,如果工作温升过高,或者外部磁场过大,磁珠的阻抗都会受到不利的影响。
3.2.3 片式电感与片式磁珠的使用
是使用片式磁珠还是片式电感主要还在于应用。在谐振电路中需要使用片式电感,而在需要消除不需要的EMI噪声时,则使用片式磁珠是最佳的选择。片式电感的应用场合主要有: 射频(RF)和无线通讯,信息技术设备,雷达检波器,汽车电子,蜂窝电话,寻呼机,音频设备,PDAs(个人数字助理),无线遥控系统以及低压供电模块等。片式磁珠的应用场合主要有: 时钟发生电路,模拟电路和数字电路之间的滤波,I/O输入/输出内部连接器(比如串口、并口、键盘、鼠标、长途电信、本地局域网等),射频(RF)电路和易受干扰的逻辑设备之间,供电电路中滤除高频传导干扰,计算机,打印机,录像机,电视系统和手提电话中的EMI噪声抑止。
4磁珠的选用与应用
由于铁氧体磁珠在电路中使用能够增加高频损耗而又不引入直流损耗,而且体积小、便于安装在区间的引线或者导线上,对于1MHz以上的噪声信号抑制效果十分明显,因此可用作高频电路的去耦、滤波以及寄生振荡的抑制等。特别对消除电路内部由开关器件引起的电流突变和滤波电源线或其它导线引入电路的高频噪声干扰效果明显。低阻抗的供电回路、谐振电路、丙类功率放大器以及可控硅开关电路等,使用铁氧体磁珠进行滤波都是十分有效的。铁氧体磁珠一般可以分为电阻性和电感性两类,使用时http://www.xiexiebang.com 电子发烧友 http://bbs.elecfans.com 电子技术论坛
可以根据需要选取。单个磁珠的阻抗一般为十至几百欧姆,应用时如果一个衰减量不够时可以用多个磁珠串联使用,但是通常三个以上时效果就不会再明显增加了[7]。如图3示出了利用两只电感性铁氧体磁珠构成的高频LC滤波器电路,该电路可有效的吸收由高频振荡器产生的振荡信号而不致窜入负载,并且不降低负载上的直流电压。
图3 利用电感性铁氧体磁珠构成的LC高频滤波器电路
由于任何传输线都不可避免的存在着引线电阻、引线电感和杂散电容,因此,一个标准的脉冲信号在经过较长传输线后,极易产生上冲及振铃现象。大量的实验证明,引线电阻可使脉冲的平均振幅减小,而引线电感和杂散电容的存在,则是产生上冲和振铃的根本原因。在脉冲前沿上升时间相同的条件下,引线电感越大,上冲及振铃现象就越严重,杂散电容越大,则使波形的上升时间越长,而引线电阻的增加,将使脉冲的振幅减小。在实际电路中,可以利用串联电阻的方法来减小和抑制上冲及振铃。图4给出了利用一个电阻性铁氧体磁珠来消除两只快速逻辑门之间由于长线传输而引起的振铃现象。
(a)电路图
(b)波形图
图4 利 用电阻性铁氧体磁珠消除振铃现象 http://www.xiexiebang.com 电子发烧友 http://bbs.elecfans.com 电子技术论坛
铁氧体抑制元件还广泛应用于印制电路板、电源线和数据线上。如在印制板的电源线入口端加上铁氧体磁珠,就可以滤除高频干扰。铁氧体磁环或磁珠专用于抑制信号线、电源线上的高频干扰和尖峰干扰,它也具有吸收静电放电脉冲干扰的能力。两个元件的数值大小与磁珠的长度成正比,而且磁珠的长度对抑制效果有明显影响,磁珠长度越长抑制效果越好。
普通滤波器是由无损耗的电抗元件构成的,它在线路中的作用是将阻带频率反射回信号源,所以这类滤波器又叫反射滤波器。当反射滤波器与信号源阻抗不匹配时,就会有一部分能量被反射回信号源,造成干扰电平的增强。为解决这一弊病,可在滤波器的进线上使用铁氧体磁环或磁珠套,利用磁环或磁珠对高频信号的涡流损耗,把高频成分转化为热损耗。因此磁环和磁珠实际上对高频成分起吸收作用,所以有时也称之为吸收滤波器。
不同的铁氧体抑制元件,有不同的最佳抑制频率范围。通常磁导率越高,抑制的频率就越低。此外,铁氧体的体积越大,抑制效果越好。在体积一定时,长而细的形状比短而粗的抑制效果好,内径越小抑制效果也越好。但在有直流或交流偏流的情况下,还存在铁氧体饱和的问题,抑制元件横截面越大,越不易饱和,可承受的偏流越大。
EMI吸收磁环/磁珠抑制差模干扰时,通过它的电流值正比于其体积,两者失调造成饱和,降低了元件性能;抑制共模干扰时,将电源的两根线(正负)同时穿过一个磁环,有效信号为差模信号,EMI吸收磁环/磁珠对其没有任何影响,而对于共模信号则会表现出较大的电感量。磁环的使用中还有一个较好的方法是让穿过的磁环的导线反复绕几下,以增加电感量。可以根据它对电磁干扰的抑制原理,合理使用它的抑制作用。
铁氧体抑制元件应当安装在靠近干扰源的地方。对于输入/输出电路,应尽量靠近屏蔽壳的进、出口处。对铁氧体磁环和磁珠构成的吸收滤波器,除了应选用高磁导率的有耗材料外,还要注意它的应用场合。它们在线路中对高频成分所呈现的电阻大约是十至几百欧姆,因此它在高阻抗电路中的作用并不明显,相反,在低阻抗电路(如功率分配、电源或射频电路)中使用将非常有效[3]。
结论
近年来,由于电磁兼容的迫切要求,铁氧体磁珠得到了广泛的应用,尤其是片式铁氧体磁珠。在各种现代电子产品中,为了达到电磁兼容的要求,几乎都采用了这类元件。但值得注意的是,这类元件品种繁多,性能各异,不像阻容元件那样的系列化、标准化,所以,必须全面了解各种铁氧体磁珠的特性,并根据实际情况,恰当的选择与使用这些元件才能收到满意的效果。贴片磁珠参数: 以常用于电源滤波的HH-1H3216-500为例,其型号各字段含义依次为: HH 是其一个系列,主要用于电源滤波,用于信号线是HB系列; 1 表示一个组件封装了一个磁珠,若为4则是并排封装四个的; H 表示组成物质,H、C、M为中频应用(50-200MHz),T低频应用(50MHz),S高频应用(200MHz);
3216 封装尺寸,长3.2mm,宽1.6mm,即1206封装; 500 阻抗(一般为100MHz时),50(50X 10
0)ohm。http://www.xiexiebang.com 电子发烧友 http://bbs.elecfans.com 电子技术论坛
其产品参数主要有三项:
阻抗[Z]@100MHz(ohm欧姆): Typical(典型值)50, Minimum(最小值)37;直流电阻DC Resistance(直流阻抗)(m ohm): Maximum(最大值)20;额定电流Rated Current(mA): 2500.
第四篇:食品分离技术
食品分离技术的现状及研究进展 分离操作在食品工业中的作用
随着食品工业的发展,化工单元操作不断向食品工业渗透并在食品加工领域内实践和提高,形成了适应食品加工特殊要求的新的单元操作。由于食品加工所用的动植物性原料几乎都为固态和液态,为了使固体和液体原料成为多种美味可口、营养丰富的食品,首先必须提取其精华,扬弃其糟粕,分离出不同成分并组合成不同种类的制品。同时为了做到有益无毒,风味别致,又必须反复提纯和精制。因此分离操作已在食品工业中占有相当重要的地位,研究分离技术在食品加工中的应用,对食品加工的科学化具有重要意义[1]。
食品分离技术在食品工业中具有相当重要的地位。其重要性表为以下几个方面:(1)食品分离技术是食品工业的基础[2]。绝大多数食品工业都分离不开食品分离技术,其中不少行业都是以分离工程为主要生产工序的。例如植物油的提取,淀粉的分离,糖制品的分离以及精练提纯等等。(2)食品分离技术能提高食品原料的综合利用程度。在食品加工工程中运用分离技术可以有效的利用食品原料中的各种成分,提高原料的综合利用程度,就提高了食品原料的利用价值。例如采用有效的分离方法可以从茶叶下脚料中分离出茶多酚、茶碱等,从柑橙中分离甘橙油、果胶等,使原料利用率大为增值。制糖行业中色谱分离技术的应用使得产糖率大大提高。(3)食品分离技术能保持和改进食品的营养和风味。采用现代分离技术可以将一些需在高温下完成的工艺改为在常温下进行,这样就可以大大地改善食品的色、香、味及营养。如用膜分离技术代替常规的蒸发浓缩和真空浓缩咖啡、果汁、茶汁等[3-4]。
(4)食品分离技术使产品符合食品卫生要求。食品分离技术包括提取原料中的有益组分和去除其中的有害成分。如花生、玉米等油制品易受黄曲霉污染而产生黄曲霉素,所以在加工过程中必须用适当的方法将其去除。(5)现代食品分离技术能改变食品行业的生产面貌。现代分离技术在食品工业中的应用,往往可以使行业的生产面貌大为改观。例如过去利用太阳能将海水浓缩后结晶制食盐,如今利用食品分离技术制食盐,使得整个行业生产面貌大大改观。2 食品工业中的分离操作方法
分离技术在工农业生产中具有重要作用,并且与我们的日常生活息息相关,同时分离机技术也在不断促进其它学科的发展[5]。由于采用了有效的分离技术,能够分离和提纯较纯的物质,大大的推进了化学学科的发展。又由于各种层析技术、超离心技术和电泳技术的发展和应用,使生物化学等生命科学得到了迅猛的发展。
分离操作包括机械分离和传质分离两大类,机械分离是指被分离的混合物由多于一相的物料所组成,分离设备只是简单地将混合物进行相分离,它属于非均相物系的分离,如沉降,过滤等。另一种分离操作是指依靠组分的扩散和传质来完成的分离过程,故又称扩散分离或传质分离[6]。如蒸馏,吸收,萃取或膜分离等,适用于多组分均相混合物的分离以及非均相混合物的分离[7]。3 传统的机械分离技术
在食品工业中,经常会遇到需要将悬浮液或乳浊液中的两相加以分离。即全部或部分地将这种非均相系的分散介质和分散质相分开。如奶油的制取,葡萄糖品体食品的获得,以及澄清果蔬汁的制取都是两相分离结果。3.1过滤
过滤过程是指分散介质相对于分散质的迁移过程。过滤操作的基本原理是利用一种能将悬浮固体微粒截留而使液体自由通过的多孔介质,达到悬浮液中固体与液体分离的目的。此多孔介质称为过滤介质。因此过滤只适用于悬浮液。
过滤设备在食品工业上的应用非常广泛:(1)作为一般固一液系的分离手段:如蔗掂榨汁中会有许多固形杂质,除用澄清法外还须过滤精制。在食用油的浸取与精炼上,用板框压滤机,箱式压滤机和加压叶滤机等设备可除去种子碎片和组织细胞,还可用于油类脱色后滤去漂白土等[8];(2)作为澄清设备:如对啤酒,葡萄酒,果汁,搪浆等用陶质管滤机进行过滤澄清。如制品含有极细固体微粒或呈胶泥状,则过滤时一般以预授形式应用助滤剂或将助滤剂加人浆液中混合后再送人过滤机进行过滤;(3)用过滤法除去微生物:管滤机常用于葡萄酒、啤酒和果汁的过滤以降低微生物的数目。3.2沉降
沉降过程是分散质相对于分散介质的相对迁移过程。在重力场中:使混合物中密度不同的两相获得分离的操作,称重力沉降。根据分散质集态的不同,可分为悬浮液沉降和乳浊液沉降。
实现重力沉降分离的设备称为沉降器,按操作方式可分为间歇式,半连续式和连续式,无论是何种方式的沉降器,其生产能力Q都取决于沉降面积和沉降速度的乘积,而与沉降器的高度无关。故现代化的沉降器的结构特点都是截面大,高度低[9]。
沉降在食品工业中的应用主要有三个方面:(1)以澄清为目的。如果汁、酒类等制品的澄清处理以除去悬浮液中的混浊杂质。(2)以增稠为目的。如淀粉制造,首先利用沉降达到悬浮液的沉淀增浓。(3)以分级或分离为目的利用同一物质的粒径或不同物质粒子的密度不同而使它们得到分离故沉降也是食品加工的常见手段。4 新型的分离技术
科学技术的不断发展导致了对分离技术的要求越来越高,分离的难度也越来越大[10]。特别是随着各种天然资源的不断开采使用,含有用物质的资源逐步减少,迫使人们从含量较少的资源中去分离、提取有用物质。所有这些,促进了分离技术的不断发展,旧的分离方法不断改进完善,新的分离方法不断发现,如近几十年来发展起来的一些新型传质分离技术,如膜分离技术,超临界萃取技术及泡沫吸附分离技术等已引起了食品工业界的重视并已崭露头角[11]。4.1 膜分离技术
反渗透、超滤、微滤、电渗析这四大过程在技术上已经相当成熟,已有大规模的工业应用,形成了相当规模的产业,有许多商品化的产品可供不同用途使用[12]。(1)反渗透是利用反渗透膜(一般为均质膜或表面致密的复合膜)选择地透过溶剂的性质,对溶液施加压力,克服溶剂的渗透压,使溶剂通过膜而从溶质中分离出来的过程,这种技术可用于海水淡化、果蔬汁的浓缩、茶叶抽提液的浓缩等[13]。
(2)超滤应用孔径为10一ZOOA的超滤膜来过滤含有大分子或微细粒子的溶液,使之从溶液中分离的过程。与反渗透不同的是小分子溶质与溶剂一起通过超滤膜[14]。这种分离过程可用于果蔬汁的浓缩和澄清、天然色素和食品添加剂的分离和浓缩、奶的分离和浓缩、酒和醋的澄清与提纯等。
(3)微滤以孔径小于10四的多孔膜过滤含有微粒的溶液将微粒从溶液中除去。可用于食糖的精制、澄清、过滤及啤酒的冷过滤除菌等。
(4)实质上,电渗析可以说是一种除盐技术,因为各种不同的水(包括天然水、自来水、工业废水)中都有一定量的盐分,而组成这些盐的阴、阳离子在直流电场的作用下会分别向相反方向的电极移动[15]。如果在一个电渗析器中插入阴、阳离子交换膜各一个,由于离子交换膜具有选择透过性,即阳离子交换膜只允许阳离子自由通过,阴离子交换膜只允许阴离子以通过,这样在两个膜的中间隔室中,盐的浓度就会因为离子的定向迁移而降低,而靠近电极的两个隔室则分别为阴、阳离子的浓缩室,最后在中间的淡化室内达到脱盐的目的。
膜分离共同的优点是:①节约能源;②在常温下进行,特别适用于热敏性物质的处理,能够防止食品品质的恶化和营养成分及香味物质的损失;③ 食品的色泽变化小,能保持食品的自然状态;④设备体积小且构造简单,费用较低,效率较高;⑤适用范围广,有机物和无机物都可浓缩,可用于分离、浓缩、纯化、澄清等工艺。
膜分离的缺点是:①产品被浓缩的程度有限;②有时其适用范围受到限制,因加工温度、食品成分、pH、膜的耐药性、膜的耐溶剂性等的不同,有时不能使用分离膜;③ 规模经济的优势较低,一般需与其他工艺相结合[16]。
由于膜分离过程不需要加热,可防止热敏物质失活、杂茵污染,无相变,集分离、浓缩、提纯、杀菌为一体,分离效果高,操作简单、费用低,特别适合食品工业的应用[17]。4.2 超临界萃取技术
超临界萃取是利用超临界流体这种在临界点附近具有特殊性能的物质作为溶剂进行萃取的一种分离方法。超临界流体是指超过临界温度与临界压力的气体[18]。如果某种气体处于临界温度以上,无论压力多高,也不能液化,仍然是气体,这时称此气体是超临界流体。超临界流体具有这样的物理性质:其密度与液体较接近,粘度和自扩散能力却接近于气体。因此超临界流体对液体、固体物质的溶解度与液体溶剂相接近,且在临界点附近,压力和温度的微小变化会引起其溶解能力的极大变化[19]。利用超临界流体的这些特性,通过改变温度或压力可在近临界点附近实现萃取剂与待分离物质的分离。
(1)由于在临界点附近,流体温度或压力的微小变化会引起溶解能力的极大变化,这种极强的选择性对分离溶解度相接近的两种成分非常有利,且萃取后溶剂与溶质的分离很容易。
(2)由于超临界流体具有与液体相接近的溶解能力,同时它又保持了气体所具有的传递性,这种具有液体与气体双重性能的流体能使传质很快地达到平衡,有利于高效分离的实现。
(3)超临界流体如CO2(Tc=31.1℃,Pc=7.38Mp)适合于食品工业中一些热敏性物质的萃取。
当然,超临界萃取的缺点是设备和操作都要求在高压下进行,设备投资费用高。在食品工业方面,利用超临界萃取技术可从咖啡豆和茶叶中脱除咖啡因,还可用于提取啤酒花中的有用成分及从烟草中脱除尼古丁等。超临界流体萃取技术作为一种新的分离技术,正越来越受到人们的重视,将在各个领域中得到广泛的应用[20]。4.3 泡沫吸附分离技术
泡沫分离是根据表面吸附的原理,借助鼓泡使溶液中的表面活性物质聚集在气-液界面,随气泡上浮至溶液主体上方,形成泡沫层,将泡沫和液相主体分开,从而达到浓缩表面活性物质(在泡沫层),净化液相主体的目的。从液相主体中浓缩分离的既可以是表面活性物质,也可以是能与表面活性物质相互亲和的任何溶质,比如金属阳离子、蛋白质、酶、染料等等。另外,一些固体粒子(沉淀微粒或矿石小颗粒),也可以被表面活性物质吸附,从溶液中分离出来。
泡沫吸附分离技术是近几十年发展比较快的的新兴分离技术,通常把凡是利用气体在溶液中鼓泡,以达到分离或浓缩的这类方法,总称为泡沫分离技术[21]。泡沫分离必须具备两个基本条件,首先,所需分离的溶质应该是表面活性物质,或者是可以和某些活性物质相络合的物质,它们都可以吸附在气-液界面上;其次,富集质在分离过程中借助气泡与液相主体分离,并在塔顶富集。因此,它的传质过程在鼓泡区中是在液相主体和气泡表面之间进行,在泡沫区中是在气泡表面和间隙液之间进行。所以,表面化学和泡沫本身的结构和特征是泡沫分离的基础[22]。
随着人们对环境污染的日益重视,要求治理污染的呼声越来越高,政府对企业污染的控制也越来越严格,泡沫分离技术作为一种新兴的分离技术,越来越受到人们广泛的关注,它的优点就在于适合低浓度的分离回收,能在很低浓度下十分有效地除去表面活性物质;设备简单,投资少、能耗小,并且操作方便。5 分离技术的展望
目前,各种新型分离技术比传统分离法已有了突破性进展,这对于进一步提纯功能性食品成分,开发功能性产品,更大限度地发挥银杏资源优势具有推动作用。随着高精度、高灵敏度分析技术的应用,天然产物活性成分的提取纯化和结构鉴定尤其是在产品的应用领域显示了更为广阔的前景,同时这也促进了植物有效物质的结构、药理、药效等方面的深入研究。银杏叶加工集成优化工艺的探究,微量天然产物成分的高效快速高纯分离和鉴定的集成系统技术的建立,都将提高银杏叶及其特色药用资源的利用率,有利于实现资源优势向技术优势的转化,从而产生更大的经济效益、社会效益和环境效益[23]。分离操作在食品加工中占有非常重要的地位。分离技术的发展方兴未艾,研究掌握各种分离技术的原理和技术,尤其是一些新叮的传质分离技术可以提高现有的分离技术冰平,是一项非常重要的工作,对食品加工的科学化具有重要的意义。
参考文献
[1] 高等教育学.教育部高等教育司.高等教育出版社
[2] 吴格明.创新能力培养.中国教育学刊, 2002.6
[3] 远辉.影响课程教学效果的几种心里因素.云南教育,2002: 增刊
[4] 温恒福.论教学方式的改变.中国教育学刊, 2002.6 [5] 徐世明, 张志鹏, 王继峰, 等.银杏叶活性成分的提取制备及质量标准、测定方法的研究进展[J ].药品分析与鉴定, 2001, 3(6): 33-36.[6] 敏涛.水果蔬菜的保健价值与食用禁忌[M].南昌:江西科学技术出版社, 1992.[7] 孙伟,丁宝莲.半加工切割蔬菜的生理和品质保持研究[ J ](Ⅰ, Ⅱ).上海农业学报, 1999, 32(3): 72-77.[8] 张维一,毕阳.果蔬采后病害与控制[ M].北京:中国农业出版社, 1996.[9] 毕阳.果蔬贮运学[ M].兰州:甘肃农业大学出版社,1992.[10] 薛卫东.果蔬贮藏与保鲜[ M].成都:电子科技出版社, 1995.[11] 陆耀军 ,王军 ,张庆珍.重力式油水分离设备入口构件的模拟实验选优[J ].石油学报 ,1995 ,19(3): 1112.115.[12] 郑远扬.一种高效的油水分离器[J ].油气田环境保护 ,2000 ,10
(1):29230.[13] 杨芳圃.XSL —Ⅰ 型三相分离器[J ].油气田地面工程 ,1997 ,16
(1):52253.[14] 《化学工程手册》编辑委员会液固分离北京化学工业出版社1989 [15] 吴俊生等分离工程上海华东化工学院出版社1992 [16] 无锡轻院等食品工程原理北京中国轻工出版社1993 [17] 王平褚等膜技术在食品工业中的新进展食品与机械1993·5 [18] 蒋维均新型传质分离技术北京化学工业出版社1992 [19] 高以恒等膜分离技术基础北京科学出版社1989 Wakeman,Progress in Filtration and Saperation 1986 [20] 陈树章非均相物系分离北京化学工业出版社1993 [21] 常志东,刘会洲,陈家镛.泡沫分离法的应用与发展[J].化工进展,1999,5:18 [22] 邓修,吴俊生.化工分离进展[M].北京:科学出版社
[23 ] 孙莉英.含油废水处理技术进展[J ].华中科技大学报 ,2002 ,19(2):87290.
第五篇:生化分离技术
简答题
1、凝胶色谱原理:
小分子物质除了可在凝胶颗粒间隙中扩散外,还可以进入凝胶颗粒的微孔中,即进入凝胶相内,在向下移动的过程中,从一个凝胶内扩散到颗粒间隙后再进入另一凝胶颗粒,如此不断地进入和扩散,小分子物质的下移速度落后于大分子物质,从而使样品中分子大的先流出色谱柱,中等分子的后流出,分子最小的最后流出,这种现象叫分子筛效应。
2、在离子交换操作色谱中,怎样选择离子交换树脂?
对阴阳离子交换树脂的选择:正电荷选择阳离子交换树脂,负电荷选择阴离子交换树脂;离子交换树脂强弱的选择:较强的酸性或碱性,选用弱酸性或弱碱性树脂;对离子交换树脂离子型的选择:根据分离的目的,弱酸或弱碱性树脂不使用H+或OH-型。色谱操作中为何要进行平衡?
3流速平衡:流速是柱层析法操作中的主要因素,流速的快慢直接影响分离效果,流速过快,混合物得不到完全分离,流速过慢,整体分离时间要延长,所以在分离时要保证稳定的液体环境,为保证分离物质运动的均一性以及好的吸附分离效果,要进行液体环境平衡。
4、生化分离技术的基本涵义及内容:
于由自然界天然生成的或由人工经微生物菌体发酵、动植物细胞培养及酶反应等各种生物工业生产过程获得的生物原料,经分离、纯化并精制其中目的成分,并最终使其成为产品的技术,也称为生物下游技术
5.生化分离的基本原理: 主要是依据离心力、分子大学(筛分)、浓度差、压力差、电荷效应、吸附作用、静电作用、亲和作用、疏水作用、溶解度、平衡分离等原理对物料或产物进行分离、纯化。不同的分离对象需要采用不同的分离方法才能有效地分离。
6.何为等电点沉析法:
蛋白质在等电点的溶解度最低,根据这一性质在溶剂中加入一定比例的有机溶剂,破坏液面的水化层和双电层,降低分子间斥力,加强了蛋白质分子间的疏水作用,使得蛋白质沉淀下来。
7.过饱和溶液形成的方法:
(1)热饱和溶液冷却,适用于溶解度随温度升高而增加的溶解系,化不大的体系,或随问题升高溶解度降低的体系同时,溶解度随温度的变化幅度要适中。(2)部分溶剂蒸发发,适用于溶解度随温度降低变(3)真空蒸发冷却法,使溶剂在真空下迅速蒸发,并结合绝热冷却,是结合冷却和部分溶剂蒸发的一种方法(4)化学反应结晶,加入反应物产生新物质,当该新物质的溶解度超过饱和溶解度时,即有晶体析出。
8.盐析的原理以及影响因素:
原理:
1、亲水性大于蛋白质破坏水化层
2、带电离子中和蛋白质表面电荷 影响因素:
1、盐离子浓度
2、生物分子种类
3、pH值
4、温度 9.有机溶剂沉析的原理:降低了溶质介电常数,使溶质之间的静电吸引力增加,从而出现聚集现象导致沉析;由于有机溶剂的水合作用,降低了自由水的浓度,降低了亲水溶质表面水化层的厚度,导致退税凝聚。10.影响电泳分离的主要因素:
a、大分子的性质
b、电场强度
c、溶液的pH d、溶液的离子强度
e、电渗
f、温度
G支持物的影响
名词解释:
絮凝:指在某些高分子絮凝剂存在的条件下,在悬浮粒子间发生桥架作用而使胶粒形成粗大的絮凝团的过程。
凝聚:在电解质的作用下,破坏细胞菌体和蛋白质分子等胶体粒子的分散状态,从而使胶体粒子凝聚的过程。
反相色谱:固定相的极性低于流动相的极性,在这种层析过程中极性大分子比极性小的分子速度快而先从柱中流出
萃取:利用两个互不相溶的液相中各组分溶解度的不同从而达到分离目的。
膜的浓差极化:是指当溶剂透过膜。而溶质留在膜上,从而使膜面浓度增大,并高于主体中浓度,这种盐浓度在膜面增加的现象叫做浓差极化。膜分离:利用莫得选择性(孔径大小),以莫得两侧存在能量差作为推动力,由于溶液中各组分的迁移率不同而实现的一种分离技术。
离子交换:利用粒子交换树脂作为吸附剂,将溶液中的组分分离,依据电荷差异,依靠库仑力吸附到树脂上,然后用合适的洗脱剂把吸附质从树脂上洗脱下来,达到分离的目的。分配系数:在一定温度压力下,溶质分子分布在互不相容的溶剂;里,达到平衡后,它在两相的浓度为一个常数称为分配系数。
盐析:是利用不同物质在高浓度的盐溶液中溶解度的差异,向溶液中加入一定量的中性盐,使原溶质沉淀析出的分离技术
等电点沉淀:等电聚焦是利用蛋白质和氨基酸等两性电解质具有等电点,在等电点的pH值下蛋白质呈电中性,不发生泳动的特点进行电泳分离的方法。
化学渗透破壁法:有些有机溶剂(如苯、甲苯)、抗生素、表面活性剂、金属螯合剂、变性剂等化学药品都可以改变细胞壁或膜的通透性从而使内合物有选择地渗透出来。其作用机理;化学渗透取决于化学试剂的类型以及细胞壁和膜的结构与组成。
填空题:
1、发酵液常用固液分离的方法有(离心)和(过滤)
2、常用的蛋白质沉析的方法有(等电点沉淀)(盐析)(有机溶剂沉淀)
3、阳离子交换树脂按照活性基团分类可以分为(强酸型)(弱酸型)(中等强度),阴离子交换树脂按照活性基团分类可以分为(强碱型)(弱碱型)(中等强度)
4、常用的化学细胞破碎方法有(渗透冲击)(酶消化法)(增溶法)(脂溶法)(碱处理法)
5、在结晶操作中工业常用的起晶方法(自然起晶法)(刺激起晶法)(品种起晶法)
6、超临界流体的特点是与气体有相似的(扩散系数),与液体有相似的(密度)
7、电聚焦电泳法分离不同蛋白质的原理是依据其(等电点)的不同
8、晶体质量主要是指(晶体大小)(晶体纯度)(晶体形状)
9、根据分离机理的不同,吸附法可分为(吸附色谱)(离子交换色谱)(凝胶色谱)(分配色谱)(亲和色谱)
10、蛋白质等生物大分子在溶液中呈稳定的分散状态,其原因是(分子表面电荷)(水化层)
11、结晶包括三个过程(过饱和溶液的形成)(晶核的形成)(晶体的 生长)
12、物料中所含水分可分为(结合水)(自由水)
13、根据膜结构的不同,常用的膜壳分为(对称性膜)(非对称性膜)(复合膜)
14、萃取从机理上可分为(物理萃取)(化学萃取)
15、过饱和溶液的形成方法有(饱和溶液冷却)(部分溶剂蒸发)(解析)(化学反应结晶)
16、影响结晶的因素(溶质种类)(溶质浓度)(温度)(PH值)
选择题
1、在液膜分离的操作中(表面活性剂)主要起到稳定液膜的作用
2、离子交换法是利离子交换剂作为吸附剂,通过(静电作用)将溶液中带相反电荷的离子吸附在一起
3、用来提取产物的溶剂叫(萃取剂)
4、凝胶色谱分离的依据是(各物质分子大小的不同)
5、洗脱体积是(与该溶质保留时间相对应的流动相体积)
6、吸附色谱分离的依据(固定相对各物质的吸附力不同)
7、依据离子价或水合半径的不同,离子交换树脂对不同离子的亲和力不同,树脂对下列离子的亲和力顺序排列正确的是(Fe3+>Ca2+>Na+)
8、(亲和层析)是根据酶分子专一性结合的纯化方法
9、分子筛层析纯化酶是根据(酶分子大小,形状不同进行纯化)的方法
10、颗粒与流体的密度差越小,颗粒的沉降速度(越小)
11、HPLC是(高效液相色谱)的简称
12、盐析沉淀蛋白质的原理(中和电荷,破坏水层)
13、适合小量细胞破碎的方法是(超声破碎法)
14、蛋白质分子量的测定可采用(凝胶层析法)
15、氨基酸的结晶纯化是根据氨基酸的(溶解度和等电点)性质
16、人血清蛋白的等电点为4.64,在ph为7的溶液当中将血清蛋白溶液通电,血清蛋白分子向(正极移动)
17、蛋白质具有两性性质的原因是(蛋白质分子有多个羧基和氨基)
18、凝胶色谱分离的依据是(各物质分子大小不同)
19、(硫酸基团)是强酸性阳离子交换树脂的活性交换基团
20、结晶过程中,溶质过饱和度的大小(不仅会影响晶核的形成速度,而且会影响晶体的长大速度)