简述硅太阳能电池组件的分类

时间:2019-05-12 01:15:01下载本文作者:会员上传
简介:写写帮文库小编为你整理了多篇相关的《简述硅太阳能电池组件的分类》,但愿对你工作学习有帮助,当然你在写写帮文库还可以找到更多《简述硅太阳能电池组件的分类》。

第一篇:简述硅太阳能电池组件的分类

简述硅太阳能电池组件的分类

太阳能电池组件即多个单体太阳能电池互联封装成为组件。它是具有外部封装及内部连接、能单独提供直流电输出的最小不可分割的太阳能电池组合装置。单个太阳能电池往往因为输出电压太低,输出电流不合适,晶体硅电池本身又比较脆,难以独立抵御外界恶劣条件。因而在实际使用中需要把单体太阳能电池进行串、并联。并加以封装,接触外连电线,成为可以独立作为光伏电源使用的太阳能电池组件。也称光伏组件。

硅太阳能电池可分为:单晶硅太阳能电池、多晶硅薄膜太阳能电池、非晶硅薄膜太阳能电池。这三大类。下面且看江苏启澜激光科技有限公司为你意义分解硅太阳能电池组件的区别和作用。

单晶硅太阳能电池,是以高纯的单晶硅棒为原料的太阳能电池,其转换效率最高,技术也最为成熟。高性能单晶硅电池是建立在高质量单晶硅材料和相关的热加工处理工艺基础上。

非晶硅薄膜太阳能电池所采用的硅为a-Si。其基本结构不是pn结而是pin结。掺硼形成p区,掺磷形成n区,i为非杂质或轻掺杂的本征层。

突出特点:材料和制造工艺成本低;制作工艺为低温工艺(100-300℃),耗能较低;易于形成大规模生产能力,生产可全流程自动化;品种多,用途广。

存在问题:光学带隙为1.7eV→对长波区域不敏感→转换效率低;光致衰退效应:光电效率随着光照时间的延续而衰减;解决途径:制备叠层太阳能电池,即在制备的p-i-n单结太阳能电池上再沉一个或多个p-i-n子电池制得;生产方法:反应溅射法、PECVD法、LPCVD法;反应气体: H2稀释的SiH4;衬底材料:玻璃、不锈钢等。

多晶硅薄膜太阳电池是将多晶硅薄膜生长在低成本的衬底材料上,用相对薄的晶体硅层作为太阳电池的激活层,不仅保持了晶体硅太阳电池的高性能和稳定性,而且材料的用量大幅度下降,明显地降低了电池成本。多晶硅薄膜太阳电池的工作原理与其它太阳电池一样,是基于太阳光与半导体材料的作用而形成光伏效应。

常用制备方法:低压化学气相沉积法(LPCVD);等离子增强化学气相沉积(PECV)液相外延法(LPPE);溅射沉积法;反应气体SiH2Cl2、SiHCl3、SiCl4或SiH4;↓(一定保护气氛下)

多晶硅薄膜电池由于所使用的硅较单晶硅少,又无效率衰退问题,并且有可能在廉价衬底材料上制备,其成本远低于单晶硅电池,而效率高于非晶硅薄膜电池,因此,多晶硅薄膜电池不久将会在太阳能电地市场上占据主导地位。

第二篇:晶硅太阳能电池组件—背板材料 产品技术 原材料 测试方法及质量问题

Chemical treatment of crystalline silicon solar cells as a method of recovering pure silicon from photovoltaic modules Renewable Energy

Photovoltaic technology is used worldwide to provide reliable and cost-effective electricity for industrial, commercial, residential and community applications.The average lifetime of PV modules can be expected to be more than 25 years.The disposal of PV systems will become a problem in view of the continually increasing production of PV modules.These can be recycled for about the same cost as their disposal.Photovoltaic modules in crystalline silicon solar cells are made from the following elements, in order of mass: glass, aluminium frame, EVA copolymer transparent hermetising layer, photovoltaic cells, installation box, Tedlar protective foil and assembly bolts.From an economic point of view, taking into account the price and supply level, pure silicon, which can be recycled from PV cells, is the most valuable construction material used.®Recovering pure silicon from damaged or end-of-life PV modules can lead to economic and environmental benefits.Because of the high quality requirement for the recovered silicon, chemical processing is the most important stage of the recycling process.The chemical treatment conditions need to be precisely adjusted in order to achieve the required purity level of the recovered silicon.For PV systems based on crystalline silicon, a series of etching processes was carried out as follows: etching of electric connectors, anti-reflective coating and n-p junction.The chemistry of etching solutions was individually adjusted for the different silicon cell types.Efforts were made to formulate a universal composition for the etching solution.The principal task at this point was to optimise the etching temperature, time and alkali concentration in such a way that only as much silicon was removed as necessary.Engineering, institutions, and the public interest: Evaluating product quality in the Kenyan solar photovoltaics industry Energy Policy

Solar sales in Kenya are among the highest per capita among developing countries.While this commercial success makes the Kenya market a global leader, product quality problems have been a persistent concern.In this paper, we report performance test results from 2004 to 2005 for five brands of amorphous silicon(a-Si)photovoltaic(PV)modules sold in the Kenya market.Three of the five brands performed well, but two performed well below their advertised levels.These results support previous work indicating that high-quality a-Si PV modules are a good economic value.The presence of the low performing brands, however, confirms a need for market institutions that ensure the quality of all products sold in the market.Prior work from 1999 indicated a similar quality pattern among brands.This confirms the persistent nature of the problem, and the need for vigilant, long-term approaches to quality assurance for solar markets in Kenya and elsewhere.Following the release of our 2004/2005 test results in Kenya, the Kenya Bureau of Standards moved to implement and enforce performance standards for both amorphous and crystalline silicon PV modules.This appears to represent a positive step towards the institutionalization of quality assurance for products in the Kenya solar market.Electrical performance results from physical stress testing of commercial PV modules to the IEC 61215 test sequence Solar Energy Materials and Solar Cells

This paper presents statistical analysis of the behaviour of the electrical performance of commercial crystalline silicon photovoltaic(PV)modules tested in the Solar Test Installation of the European Commission's Joint Research Centre from 1990 up to 2006 to the IEC Standard 61215 and its direct predecessor CEC Specification 503.A strong correlation between different test results was not observed, indicating that the standard is a set of different, generally independent stress factors.The results confirm the appropriateness of the testing scheme to reveal different module design problems related rather to the production quality control than material weakness in commercial PV modules.Efficiency model for photovoltaic modules and demonstration of its application to energy yield estimation

A new method has been proposed [W.Durisch, K.H.Lam, J.Close, Behaviour of a copper indium gallium diselenide module under real operating conditions, in: Proceedings of the World Renewable Energy Congress VII, Pergamon Press, Oxford, Elsevier, Amsterdam, 2002, ISBN 0-08-044079-7] for the calculation of the annual yield of photovoltaic(PV)modules at selected sites, using site-specific meteorological data.These yields are indispensable for calculating the expected cost of electricity generation for different modules, thus allowing the type of module to be selected with the highest yield-to-cost ratio for a specific installation site.The efficiency model developed and used for calculating the yields takes three independent variables into account: cell temperature, solar irradiance and relative air mass.Open parameters of the model for a selected module are obtained from current/voltage(I/V)characteristics, measured outdoors at Paul Scherrer Institute's test facility under real operating conditions.From the model, cell and module efficiencies can be calculated under all relevant operating conditions.Yield calculations were performed for five commercial modules(BP Solar BP 585 F, Kyocera LA361K54S, Uni-Solar UPM-US-30, Siemens CIS ST40 and Wuerth WS11003)for a sunny site in Jordan(Al Qawairah)for which reliable measured meteorological data are available.These represent mono-crystalline, poly-crystalline and amorphous silicon as well as with copper–indium-diselenide, CuInSe2 PV modules.The annual yield for these modules will be presented and discussed.Experimental validation of crystalline silicon solar cells recycling by thermal and chemical methods

In recent years, photovoltaic power generation systems have been gaining unprecedented attention as an environmentally beneficial method for solving the energy problem.From the economic point of view pure silicon, which can be recovered from spent cells, is the most important material owing to its cost and limited supply.The article presents a chemical method for recycling spent or damaged modules and cells, and the results of its experimental validation.The recycling of PV cells consists of two main steps: the separation of cells and their refinement.Cells are first separated thermally or chemically;the separated cells are then refined.During this process the antireflection, metal coating and p–n junction layers are removed in order to recover the silicon base, ready for its next use.This refinement step was performed using an optimised chemical method.Silicon wafers were examined with an environmental scanning electron microscope(ESEM)coupled to an EDX spectrometer.The silicon wafers were used for producing new silicon solar cells, which were then examined and characterized with internal spectral response and current–voltage characteristics.The new cells, despite the fact that they have no SiNx antireflective coating, have a very good efficiency of 13–15%.The impact of silicon feedstock on the PV module cost

The impact of the use of new(solar grade)silicon feedstock materials on the manufacturing cost of wafer-based crystalline silicon photovoltaic modules is analyzed considering effects of material cost, efficiency of utilisation, and quality.Calculations based on data provided by European industry partners are presented for a baseline manufacturing technology and for four advanced wafer silicon technologies which may be ready for industrial implementation in the near future.Iso-cost curves show the technology parameter combinations that yield a constant total module cost for varying feedstock cost, silicon utilisation, and cell efficiency.A large variation of feedstock cost for different production processes, from near semiconductor grade Si(30 €/kg)to upgraded metallurgical grade Si(10 €/kg), changes the cost of crystalline silicon modules by 11% for present module technologies or by 7% for advanced technologies, if the cell efficiency can be maintained.However, this cost advantage is completely lost if cell efficiency is reduced, due to quality degradation, by an absolute 1.7% for present module technology or by an absolute 1.3% for advanced technologies.Thin-film monocrystalline-silicon solar cells made by a seed layer approach on glass-ceramic substrates

Solar modules made from thin-film crystalline-silicon layers of high quality on glass substrates could lower the price of photovoltaic electricity substantially.One way to create crystalline-silicon thin films on non-silicon substrates is to use the so-called “seed layer approach”, in which a thin crystalline-silicon seed layer is first created, followed by epitaxial thickening of this seed layer.In this paper, we present the first solar cell results obtained on 10-μm-thick monocrystalline-silicon(mono-Si)layers obtained by a seed layer approach on transparent glass-ceramic substrates.The seed layers were made using implant-induced separation and anodic bonding.These layers were then epitaxially thickened by thermal CVD.Simple solar cell structures without integrated light trapping features showed efficiencies of up to 7.5%.Compared to polycrystalline-silicon layers made by aluminum-induced crystallization of amorphous silicon and thermal CVD, the mono-Si layers have a much higher bulk diffusion lifetime.Waved glass: Towards optimal light distribution on solar cell surfaces for high efficient modules

A method to improve the module efficiency of solar cells by modifying the surface of the glass cover of the solar cells module is proposed.A model is built to show that a better efficiency can be achieved by optimizing the light distribution on the cell, which reduces the shadow losses and thereby allows the finger spacing to be decreased, which in turn decreases the(resistive)ohmic losses.This method is illustrated by considering industrial crystalline silicon solar cells as an example, however, it applies to all solar cells that are characterized by a metallization pattern on the surface of the solar cell.It is estimated that this method can improve the relative module efficiency by about 5% and halve the front side losses.Analysis of series resistance of crystalline silicon solar cell with two-layer front metallization based on light-induced plating

Improving the front metallization quality of silicon solar cells should be a key to enhance cell performance.In this work, we investigated a two-layer metallization scheme involving light-induced plating(LIP)and tried to quantify its impact on the series resistance of the front grid metals and FFs on finished cells.To estimate the effect of LIP processing on a printed and fired seed layer, individual components of series resistance were measured before and after LIP processing.Among them, grid resistance and contact resistance were closely observed because of their large contribution to series resistance.To optimize the plating on the seed metal grid, the grid resistance of the two-layer metal grid structure was calculated as a function of cross section area of the plated layer.Contact resistivity of the grid before and after LIP processing was analyzed to understand the contact resistance reduction, as well.As a result, the efficiency of solar cells with 80 μm seed metal grid width increased by 0.3% absolute compared with conventional solar cells of 120 μm metal grid width.The total area of electrodes in conventional cells was 1800 mm and electrodes area of LIP processed solar cells was 1400 mm.The efficiency gain was due to reduction of shadowing loss from 7.7% to 6.0% without the increase of resistance due to two-layer front metallization.22Simulation of hetero-junction silicon solar cells with AMPS-1D

Mono-and poly-crystalline silicon solar cell modules currently represent between 80% and 90% of the PV world market.The reasons are the stability, robustness and reliability of this kind of solar cells as compared to those of emerging technologies.Then, in the mid-term, silicon solar cells will continue playing an important role for their massive terrestrial application.One important approach is the development of silicon solar cells processed at low temperatures(less than 300 °C)by depositing amorphous silicon layers with the purpose of passivating the silicon surface, and avoiding the degradation suffered by silicon when processed at temperatures above 800 °C.This kind of solar cells is known as HIT cells(hetero-junction with an intrinsic thin amorphous layer)and are already produced commercially(Sanyo Ltd.), reaching efficiencies above 20%.In this work, HIT solar cells are simulated by means of AMPS-1D, which is a program developed at Pennsylvania State University.We shall discuss the modifications required by AMPS-1D for simulating this kind of structures since this program explicitly does not take into account interfaces with high interfacial density of states as occurs at amorphous-crystalline silicon hetero-junctions.太阳能硅电池的软件仿真设计与制造

Mapping the performance of PV modules, effects of module type and data averaging 统计实验与数据收集处理:太阳能发电电池背板组件模块的效用与背板材料开发方向选取

Solar Energy A method is presented for estimating the energy yield of photovoltaic(PV)modules at arbitrary locations in a large geographical area.The method applies a mathematical model for the energy performance of PV modules as a function of in-plane irradiance and module temperature and combines this with solar irradiation estimates from satellite data and ambient temperature values from ground station measurements.The method is applied to three different PV technologies: crystalline silicon, CuInSe2 and CdTe based thin-film technology in order to map their performance in fixed installations across most of Europe and to identify and quantify regional performance factors.It is found that there is a clear technology dependence of the geographical variation in PV performance.It is also shown that using long-term average values of irradiance and temperature leads to a systematic positive bias in the results of up to 3%.It is suggested to use joint probability density functions of temperature and irradiance to overcome this bias.Outdoor performance evaluation of photovoltaic modules using contour plots 户外太阳能电池背板发电效果/转化率评估评价 Current Applied Physics

The impact of environmental parameters on different types of Si-based photovoltaic(PV)modules(single crystalline Si(sc-Si), amorphous Si(a-Si)and a-Si/ microcrystalline Si(μc-Si))which have different spectral responses were characterized using contour plots.The contour plots of PV performance as a function of module temperature and spectral irradiance distribution were created to separate the impact of the two environmental parameters.The performance of the sc-Si PV module was dominated by the module temperature while those of a-Si and a-Si/μc-Si ones were mainly influenced by the spectral irradiance distribution.Furthermore, the frequency of outdoor conditions and the reliability of the contour plots of the PV performance were discussed for the evaluation of PV modules by means of energy production.最新应用物理学学报

Solar photovoltaic charging of lithium-ion batteries 太阳能——锂电池充电器

Power Sources Solar photovoltaic(PV)charging of batteries was tested by using high efficiency crystalline and amorphous silicon PV modules to recharge lithium-ion battery modules.This testing was performed as a proof of concept for solar PV charging of batteries for electrically powered vehicles.The iron phosphate type lithium-ion batteries were safely charged to their maximum capacity and the thermal hazards associated with overcharging were avoided by the self-regulating design of the solar charging system.The solar energy to battery charge conversion efficiency reached 14.5%, including a PV system efficiency of nearly 15%, and a battery charging efficiency of approximately 100%.This high system efficiency was achieved by directly charging the battery from the PV system with no intervening electronics, and matching the PV maximum power point voltage to the battery charging voltage at the desired maximum state of charge for the battery.It is envisioned that individual homeowners could charge electric and extended-range electric vehicles from residential, roof-mounted solar arrays, and thus power their daily commuting with clean, renewable solar energy.Selective ablation with UV lasers of a-Si:H thin film solar cells in direct scribing configuration

材料配比方案与实验选择配置方法

Applied Surface Science 应用表面材料科学学报

Monolithical series connection of silicon thin-film solar cells modules performed by laser scribing plays a very important role in the entire production of these devices.In the current laser process interconnection the two last steps are developed for a configuration of modules where the glass is essential as transparent substrate.In addition, the change of wavelength in the employed laser sources is sometimes enforced due to the nature of the different materials of the multilayer structure which make up the device.The aim of this work is to characterize the laser patterning involved in the monolithic interconnection process in a different configuration of processing than the usually performed with visible laser sources.To carry out this study, we use nanosecond and picosecond laser sources working at 355 nm of wavelength in order to achieve the selective ablation of the material from the film side.To assess this selective removal of material has been used EDX(Energy Dispersive Using X-Ray)analysis, electrical measurements and confocal profiles.In order to evaluate the damage in the silicon layer, Raman spectroscopy has been used for the last laser process step.Raman spectra gives information about the heat affected zone in the amorphous silicon structure through the crystalline fraction calculation.The use of ultrafast sources, such as picoseconds lasers, coupled with UV wavelength gives the possibility to consider materials and substrates different than currently used, making the process more efficient and easy to implement in production lines.This approach with UV laser sources working from the film side offers no restriction in the choice of materials which make up the devices and the possibility to opt for opaque substrates.Keywords: laser scribing;selective ablation;a-Si:H.Use of digital image correlation technique to determine thermomechanical deformations in photovoltaic laminates: Measurements and accuracy 数字化图像匹配技术在太阳能材料评估实验中的应用:决策准确性的提高

Solar Energy Materials and Solar Cells 太阳能材料与电磁学报

An experimental technique to measure the deformation of solar cells in transparent PV modules is presented.This method uses the digital image correlation technique with a stereo camera system.Deformations resulting from thermal loading, where rather small deformations occur compared to tensile or bending experiments, are measured by viewing through the window of a climate chamber.We apply this method to measure the thermomechanical deformation of the gap between two crystalline silicon solar cells by viewing through the transparent back sheet of the laminate.Two PV laminates are prepared, each with three crystalline silicon solar cells that are embedded in transparent polymer sheets on a glass substrate.The first laminate(A)contains non-interconnected cells while the second laminate consists of a standard-interconnected cell string(B).We find the gap between two solar cells to deform 66.3±2 μm between 79.6 and −17.3 °C(laminate A)and 66.4±2 μm(laminate B)between 84.4 and −39.1 °C.We determine an accuracy of 1 μm in displacement for the gap experiment by measuring free expansion of a copper strip and averaging displacement values over regions with homogeneous deformation.Furthermore, the relative error contribution in strain due to the optical influence of the layers on top of the object surface is less than 1×10 for one camera.This is proven by a geometrical consideration.−6Nanostructure, electrical and optical properties of p-type hydrogenated nanocrystalline silicon films

太阳能发电产氢系统应用中,硅薄膜/贴膜的特性、形态及其性能优化

Vacuum In this paper, p-type hydrogenated nanocrystalline(nc-Si:H)films were prepared on corning 7059 glass by plasma-enhanced chemical vapor deposition(PECVD)system.The films were deposited with radio frequency(RF)(13.56 MHz)power and direct current(DC)biases stimulation conditions.Borane(B2H6)was a doping agent, and the flow ratio η of B2H6 component to silane(SiH4)was varied in the experimental.Films’ surface morphology was investigated with atomic force microscopy(AFM);Raman spectroscopy, X-ray diffraction(XRD)was performed to study the crystalline volume fraction Xc and crystalline size d in films.The electrical and optical properties were gained by Keithly 617 programmable electrometer and ultraviolet-visible(UV-VIS)transmission spectra, respectively.It was found that: there are on the film surface many faulty grains, which formed spike-like clusters;increasing the flow ratio η, crystalline volume fraction Xc decreased from 40.4 % to 32.0 % and crystalline size d decreased from 4.7 to 2.7nm;the optical band gap Eg increased from 2.16 to 2.4eV.The electrical properties of p-type nc-Si:H films are affected by annealing treatment and the reaction pressure.opt

第三篇:太阳能电池组件生产流程之组件装框

太阳能电池组件生产流程之组件装框

准备工作

1.工作时必穿工作衣、鞋,戴工作帽。

2.做好工艺卫生,清洁整理台面,创造清洁有序的装框环境。

所需材料、工具和设备

1、层压好的电池组件

2、铝边框

3、硅胶

4、酒精

6、擦胶纸

7、接线盒

8、气动胶枪

9、橡胶锤

10、装框机

11、剪刀

12、镊子

13、抹布

14、小一字起

15、卷尺

16、角尺

17、工具台

18、预装台

操作程序

1.按照图纸选择相对应的材料,铝型材,并对其检验,筛选出不符合要求的铝型材,将其摆放到指定位置;

2.对层压完毕的电池组件进行表面清洗,同时对上道工序进行检查,不合格的返回上道工序返工; 3.用螺丝钉(素材将长型材和短型材作直角连接,拼缝小于0.5mm)将边型材和E型材作直角连结,并保证接缝处平整;

4.在铝合金外框的凹槽中均匀地注入适量的硅胶; 5.将组件嵌入已注入硅胶的铝边框内,并压实;

6.将组件移至装框机上(紧靠一边,关闭气动阀,将其固定);

7.用螺钉(素材)将铝边框其余两角固定,并调整玻璃与边框之间的距离以及边框对角线长度;

8.用补胶枪对正面缝隙处均匀地补胶; 9.除去组件表面溢出的硅胶,并进行清洗; 10.打开气动阀,翻转组件,然后将组件固定;

11.用适当的力按压TPT四角,使玻璃面紧贴铝合金边框内壁,按压过程中注意TPT表面

12.用补胶枪对组件背面缝隙处进行补胶(四周全补);

13.按图纸要求将接线盒用硅胶固定在组件背面,并检查二极管是否接反; 14.对装框完毕的组件进行自检(有无漏补、气泡或缝隙);

15.符合要求后在“工艺流程单”上做好纪录,将组件放置在指定区域,流入下道工序。

质量要求

1.铝合金框两条对角线小于1m的误差要求小于2mm,大于等于1m的误差小于3mm; 2.外框安装平整、挺直、无划伤; 3.组件内电池片与边框间距相等; 4.铝边框与硅胶结合出无可视缝隙;

5.接线盒内引线根部必须用硅胶密封、接线盒无破裂、隐裂、配件齐全、线盒底部硅胶厚度1~2毫米,接线盒位置准确,与四边平行; 6.组件铝合金边框背面接缝处高度落差小于0.5mm; 7.组件铝合金边框背面接缝处缝隙小于1mm;

8.铝合金边框四个安装孔孔间距的尺寸允许偏差±0.5mm。

注意事项

1.轻拿轻放抬未装框组件是注意不要碰到组件的四角。2.注意手要保持清洁

3.将已装入铝框内的组件从周转台抬到装框机上时应扶住四角,防止组件从框内滑落。

第四篇:太阳能电池组件焊接工艺书

目的:了解电池片单片和串联的焊接工序操作流程 范围: 本作业指导书适用于电池片单片和串联的焊接工序操作流程、相关操作方法及注意事项。所需设备及辅助工具:

单片:简易工装,恒温电烙铁,焊接台,指套。串联:恒温电烙铁,转接模板,焊接模板,指套。工作焊接台的准备:

1.清洁工作台面,保持环境卫生,防止电池片污染 2.设定电烙铁到相应需要的温度,每次使用和更换电烙铁头前都要测量其温度,然后每隔四小时测量一次,并记录在《烙铁温度记录表》上;设定加热模板或者加热台的温度在50℃~80℃之间;每天正式焊接前应试焊,检查焊接质量,观察烙铁温度及焊接速度是否合适。焊接工作前的分检工序: A.电池片的分检标准: B.电池片焊接前预处理: 1.电池片无碎片,裂纹等缺陷。2.缺角小于1mm2每片不超过2个。3.表面无明显沾污,无银栅线脱落。4.背面无铝珠,若有则应去除。单焊工序流程:

1.取,将互连条与电池片主栅线对奇,轻压互连条和电池片,按调整好的温度和速度平稳焊接,焊接收尾处烙铁轻轻上提,以防收尾处出现小锡渣。

2.先焊66片长互连条的片子,然后按要求焊6片短互连条引出线的片子。串焊工序流程:

1.将电池片放入模板相应位置,对齐主栅线,摆放必须一次到位。

2.先焊接正极引出线,对上正极电池片后用左手手指压住互连条和电池片,避免相对位移,然后按调整好的速度进行焊接。如果正极主栅线到电池片边沿距离小于5㎜则从主栅线起头焊接。

3.按检验1~4进行目测自检,不合格的进行返工,若返工时使用了助焊剂,应即使用酒精清洗。

4.自检合格的,作好流转单记录,用焊接模板放入转接模板

实验标准及验收程序:

1.焊接表面光亮,无脱焊、虚焊和过焊,无锡珠和毛刺,互连条要均匀、平直地焊在背电极内。

2.电池片表面清洁,电池片完整,无碎裂现象。3.对与串焊要求互连条要均匀、平直地焊在主栅线内,焊带与电池片主栅线的位错≤0.5㎜;对与单焊要求每一串

各电池片的底边在同一直线上,位错<0.5㎜。

4.具有一定的机械强度,沿45 o方向轻拉互连条不会脱落。

5.质检部抽检烙铁温度和焊接质量,并记录。各工序工作职责:

1.电池片要轻拿轻放,以免损坏,小心操作避免电池片破损。

2.收尾处保证4~7㎜不焊接。

3.每焊接720片电池片要更换一次简易工装。4.严禁焊接作业人员接触助燃剂。

5.若发现有正极和负极栅线偏移≥0.5㎜的片子,则将该电池片调整为首片。

第五篇:100MW太阳能电池组件生产线技术方案

100MW太阳能电池组件生产线技术方案

100MWP规模生产50多万块200WP左右太阳能电池板,根据启澜激光筹建生产线的经验,制定方案如下:

一、场地要求:10000平米左右

可分为四个单元,这样可根据实际情况,分期上线。每单元分成前道准备(包括焊带裁切、浸泡,EVA/TPT裁切,电池片分选,电池片等)、前道(包括焊接、叠层)和后道(包括层压、装框、清胶、测试以及返修)三部分。车间要求洁净、空调、排烟,配电到位,0.5—1.2Mpa气源。打包和库房可另设。

二、生产设备:

1、启澜激光激光划片机:1台/单元。主要用于单晶硅、多晶硅太阳能电池的划片。

2、电池片分选机:1台/单元。对电池片进行抽检或全检,以及划片后的电池片测试。

3、EVA/TPT裁切机:1台/单元。完成EVA/TPT叠层前的裁剪

4、焊带裁切机:1台/单元。完成焊带的切断。

5、焊带浸泡机:1台。用于裁切好的焊带助焊剂浸泡及吹干。此需独立空间,防爆、防泄漏。

6、电池片周转车:2台/单元。用以分选好的电池片至焊接工序间的运送周转。

7、EVA物料车:2台/单元。用于裁切好的EVA、TPT运送以及剩余的存放。

8、焊接工作台:16台/单元。完成电池片的单焊和串焊。

9、电池串暂置架:2台/单元。用于串焊好的电池串的存放。

10、叠层测试台:8台/单元。串焊好的电池串、EVA、TPT背板进行叠层铺设、检验初测。

11、玻璃车:4台/单元。用于存放叠层所需的玻璃和EVA。

12、镜面观察台:2台。对叠层好的电池组件检查,是否夹带杂物等。

13、待层压周转车:4台/单元。组件层压前的放置和运送。

14、SC-AYZ-3600*2200 第三代全自动智能高效型太阳能电池组件层压机:2台/单元。完成组件层压。

15、修边台:2台/单元。层压后的组件修边。:

16、组件放置车:4台。层压并修好边的组件放置和运送。

17、装框机:1台/单元。完成组件装框。

18、边框打胶机:1台/单元。用于装框前的打胶。或打胶台1台,用气动胶枪打胶。

19、接线盒打胶机:1台/单元。用于接线盒打胶安装。或接线盒安装台1台。配用气动胶枪。

20、清洗台:4台/单元.。用于装框好的组件清胶等。

21、组件测试仪:1台/单元。完成组件测试。

22、单焊加热平台:32套/单元。用于电池片单焊的预热。

23、串焊加热模板:16套/单元。用于电池片串连焊接。

24、电池串周转盒:40个/单元。用于焊好的电池串存放,并便于流转至叠层工序。三、三、资源配备:

1、电力需求:三相四线,设备电力负荷kw,跟据设备布局电源(380或220)到达设 备附近,单独控制。

2、气源:0.5~1.2Mpa洁净干燥气源。

3、生产人员(人左右/单元)

划片:2人,分选:6人,裁剪:4人,焊接:48人,叠层16人,观察2人,层压4人,装框3人,清洗8人,接线盒安装2人,测试3人,辅助6人。库房、打包以及质检人员酌情安排。

四、生产工艺流程:

电池检测----正面焊接----背面焊接----叠层铺设----层压固化----去毛边----边框封装----焊接接线盒----高压测试----组件测试----组件包装。

单片分选:由于电池片制作条件的随机性,生产出来的电池性能不尽相同,所以为了有效的将性能一致或相近的电池组合在一起,所以应根据其性能参数进行分类;电池测试即通过测试电池的输出参数(电流和电压)的大小对其进行分类。以提高电池的利用率,做出质量合格的电池组件。

正面焊接:是将汇流带焊接到电池正面(负极)的主栅线上,汇流带为镀锡的铜带,我们使用的焊接机可以将焊带以多点的形式点焊在主栅线上。焊接用的热源为一个红外灯(利用红外线的热效应)。焊带的长度约为电池边长的2倍。多出的焊带在背面焊接时与后面的电池片的背面电极相连。(我们公司采用的是手工焊接)背面焊接:背面焊接是将 36 片电池串接在一起形成一个组件串,我们目前采用的工艺是手动的,电池的定位主要靠一个膜具板,上面有 36 个放置电池片的凹槽,槽的大小和电池的大小相对应,槽的位置已经设计好,不同规格的组件使用不同的模板,操作者使用电烙铁和焊锡丝将 前面电池 的正面电极(负极)焊接到 后面电池 的背面电极(正极)上,这样依次将 36 片串接在一起并在组件串的正负极焊接出引线。

叠层铺设:背面串接好且经过检验合格后,将组件串、玻璃和切割好的EVA、玻璃纤维、背板按照一定的层次敷设好,准备层压。玻璃事先涂一层试剂(primer)以增加玻璃和 EVA 的粘接强度。敷设时保证电池串与玻璃等材料的相对位置,调整好电池间的距离,为层压打好础。(敷设层次:由下向上:玻璃、EVA、电池、EVA、玻璃纤维、背板)。

层压固化:将敷设好的电池放入层压机内,通过抽真空将组件内的空气抽出,然后加热使 EVA 熔化将电池、玻璃和背板粘接在一起;最后冷却取出组件。层压工艺是组件生产的关键一步,层压温度层压时间根据 EVA 的性质决定。我们使用快速固化 EVA 时,层压循环时间约为25分钟。固化温度为150℃。

去毛边:层压时 EVA 熔化后由于压力而向外延伸固化形成毛边,所以层压完毕应将其切除。边框封装:类似与给玻璃装一个镜框;给玻璃组件装铝框,增加组件的强度,进一步的密封电池组件,延长电池的使用寿命。边框和玻璃组件的缝隙用硅树脂填充。各边框间用角键连接。

焊接接线盒:在组件背面引线处焊接一个盒子,以利于电池与其他设备或电池间的连接。高压测试:高压测试是指在组件边框和电极引线间施加一定的电压,测试组件的耐压性和绝缘强度,以保证组件在恶劣的自然条件(雷击等)下不被损坏。

组件测试包装:测试的目的是对电池的输出功率进行标定,测试其输出特性,确定组件的质量等级。

下载简述硅太阳能电池组件的分类word格式文档
下载简述硅太阳能电池组件的分类.doc
将本文档下载到自己电脑,方便修改和收藏,请勿使用迅雷等下载。
点此处下载文档

文档为doc格式


声明:本文内容由互联网用户自发贡献自行上传,本网站不拥有所有权,未作人工编辑处理,也不承担相关法律责任。如果您发现有涉嫌版权的内容,欢迎发送邮件至:645879355@qq.com 进行举报,并提供相关证据,工作人员会在5个工作日内联系你,一经查实,本站将立刻删除涉嫌侵权内容。

相关范文推荐

    太阳能电池组件生产工艺流程(优秀范文五篇)

    太阳能电池组件生产工艺流程 太阳能电池组件线又叫封装线,封装是太阳能电池生产中的关键步骤,没有良好的封装工艺,多好的电池也生产不出好的组件板。电池的封装不仅可以使电池......

    太阳能电池组件后道工序 培训讲义

    层压 一、准备工作 1. 工作时必须穿工作衣、工作鞋,戴工作帽,佩戴绝热手套; 2. 做好工艺卫生(包括层压机内部和高温布的清洁); 3.确认紧急按扭处于正常状态; 4.检查循环水水位。......

    硅基太阳能电池的发展及应用

    .. 硅基太阳能电池的发展及应用 摘要:太阳能电池是缓解环境危机和能源危机一条新的出路,本文介绍了硅基太阳能电池的原理,综述了硅基太阳电池的优点与不足,以及硅基太阳能电池......

    太阳能电池组件后道工序培训讲义资料

    太阳能电池组件后道工序 培训讲义 太阳能光伏 2008-04-12 16:25:26 阅读732 评论7 字号:大中小 订阅 层压 一、准备工作 1. 工作时必须穿工作衣、工作鞋,戴工作帽,佩戴绝热......

    详解太阳能电池组件中逆变器的工作原理

    太阳库专注为您建光伏电站http://www.xiexiebang.com/ 太阳能电池组件中逆变器的工作原理 逆变器的概念 通常,把将交流电能变换成直流电能的过程称为整流,把完成整流功能的电......

    德科研人员推新方法预测太阳能电池组件寿命

    德科研人员推新方法预测太阳能电池组件寿命  据报导,德国科研人员近日推出一套新方法,可较准确地预测组件使用年限。太阳能电池组件暴露在复杂环境下,时间久了材料就会老化。尽......

    太阳能电池系列之硅片质量引起的组件早期衰减

    摘要:本篇丫丫将探讨硅片质量对太阳能电池性能的影响,主要涉及少子寿命、早期光致衰减、位错对电池性能的影响,以及组件功率下降的原因与解决方式等内容。 一、相关概念 1、......

    常熟阿特斯阳光电力科技有限公司年产太阳能电池、太阳能电池组件

    关于《苏州固锝电子股份有限公司电镀厂搬迁项目)》环境影响评价 二次公示材料 根据《环境影响评价公众参与暂行办法》(环发2006[28]号)的要求,现对本项目进行公众参与进行二次......