聚合物(polymer)的基础知识(5篇)

时间:2019-05-12 16:40:31下载本文作者:会员上传
简介:写写帮文库小编为你整理了多篇相关的《聚合物(polymer)的基础知识》,但愿对你工作学习有帮助,当然你在写写帮文库还可以找到更多《聚合物(polymer)的基础知识》。

第一篇:聚合物(polymer)的基础知识

聚合物(polymer)的基础知识

聚合物(polymer),又可称为高分子或巨分子(macromolecules),也是一般所俗称的[塑料](plastics)或树脂(resin)。

聚合物是由许多较小而结构简单的小分子(monomer),藉共价键来组合而成的。聚合物的种类繁多,一般若是以对热之变化来分类,它可以分为两大类︰

一、热固性塑料(Thermoset plastics)︰指的是加热后,会使分子构造结合成网状型态,一但结合成网状聚合体,即使再加热也不会软化,显示出所谓的[非可逆变化],是分子构造发生变化(化学变化)所致。

二、热塑性塑料(Thermo plastics)︰指加热后会熔化,可流动至模具冷却后成型,再加热后又会熔化的塑料,即可运用加热及冷却,使其产生[可逆变化](液态←→固态),是所谓的物理变化。

热塑性塑料又可再区分为泛用塑料、泛用工程塑料、高性能工程塑料等三类。

PE属于结晶性的聚合体,结晶对塑料的影响:1.主要是尺寸不能固定,用射出成型的较少,很难做精密零件。PP有二次结晶的问题

食用塑料必须加入抗氧化剂,因氧气透过材质影响产品品质,所以用防腐剂抗氧化。高压阀压出来的是低密度乙烯,低压阀压出来的是高密度乙烯。MPS+PC+PBT做汽车保险杠

聚乙烯(PE)结构式:-[-CH2-CH2-]-n 英文名称:Polyethylene 比重:0.94-0.96克/立方厘米

成型收缩率:1.5-3.6%

成型温度:140-220℃

聚乙烯是最结构简单的高分子。它是由重复的–CH2–单元连接而成的。聚乙烯是通过乙烯(CH2=CH2)的加成聚合而成的。聚乙烯在薄膜状态下可以被认为是透明的,但是在块状存在的时候由于其内部存在大量的晶体,会发生强烈的光散射而不透明。

鉴别:用牙咬,无异味,软;用火烧,味同蜡烛。PE特性

聚乙烯无臭,无毒,手感似蜡,绝缘性好,密封性较好,透明,软,不耐高温。具有优良的耐低温性能(最低使用温度可达-70~-100℃),化学稳定性好,盛装物不变色,化学药剂很难清洗。能耐大多数酸碱的侵蚀(不耐具有氧化性质的酸),常温下不溶于一般溶剂,吸水性小,电绝缘性能优良;但聚乙烯对于环境应力(化学与机械作用)是很敏感的,耐热老化性差。缺点:不耐高温(熔点140℃),易崩解,不宜二次加工,易变型,有渗透性,很难印刷。成型性能

1.结晶料,吸湿小,不须充分干燥,流动性极好流动性对压力敏感,成型时宜用高压注射,料温均匀,填充速度快,保压充分.不宜用直接浇口,以防收缩不均,内应力增大.注意选择浇口位置,防止产生缩孔和变形

2.收缩范围和收缩值大,方向性明显,易变形翘曲.冷却速度宜慢,模具设冷料穴,并有冷却系统.3.加热时间不宜过长,否则会发生分解,灼伤.4.软质塑件有较浅的侧凹槽时,可强行脱模.5.可能发生融体破裂,不宜与有机溶剂接触,以防开裂.PE种类

(1)LDPE:低密度聚乙烯、高压聚乙烯(2)LLDPE:线形低密度聚乙烯

(3)MDPE:中密度聚乙烯、双峰树脂(4)HDPE:高密度聚乙烯、低压聚乙烯(5)UHMWPE:超高分子量聚乙烯(6)改性聚乙烯:CPE、交联聚乙烯(PEX)(7)乙烯共聚物:乙烯-丙烯共聚物(塑料)、EVA、乙烯-丁烯共聚物、乙烯-其它烯烃(如辛烯POE、环烯烃)的共聚物、乙烯-不饱和酯共聚物(EAA、EMAA、EEA、EMA、EMMA、EMAH)

分子量达到3,000,000-6,000,000的线性聚乙烯称为超高分子量聚乙烯(UHMWPE)。超高分子量聚乙烯的强度非常高,可以用来做防弹衣。

应用

LDPE的主要消费领域是薄膜(包括农膜),其它应用于注塑及电线电缆等领域。

HDPE的主要应用领域是中空吹塑、薄膜制品和注塑。HDPE适用于生产各类中空容器,如牛奶瓶、果汁瓶、化装品瓶、药瓶、洗涤剂及食品容器、工业瓶等。

化妆品主要用作软管,一般软管选择多层PE,通常第1层PE,中间EVOH(有极性,封尾性能较好。),第3层PE.利用在化妆品里大多是不透明的,因化妆品大多原料是畏光的。

聚丙烯(PP)结构式:CH3-[CH2-CH]-n

英文名称为Polypropylene,简称PP

PP是由丙烯聚合而制得的一种热塑性树脂。聚丙烯按其结晶度可以分为等规聚丙烯和无规聚丙烯,等规聚丙烯为高度结晶的热塑性树脂,结晶度高达95%以上,分子量在8~15万之间,无规聚丙烯在室温下是非结晶的,应用较少。以下介绍的聚丙烯主要为等规聚丙烯。

一、聚丙烯的特性

(1)物理性能:聚丙烯为无毒、无臭、无味的乳白色高结晶的聚合物,密度只有0.90~.0.91g/cm3,是目前所有塑料中最轻的品种之一。对水特别稳定,在水中24h的吸水率仅为0.01%,分子量约8~15万之间。成型性好,但因收缩率大,厚壁制品易凹陷。制品表面光泽好,易于着色。

(2)力学性能:聚丙烯的结晶度高,结构规整,因而具有优良的力学性能,其强度和硬度、弹性都比HDPE高,但在室温和低温下,由于本身的分子结构规整度高,所以冲击强度较差。PP最突出的性能就是抗弯曲疲劳性。缺点:受热易黄化,裂解,碳化,易出现二次结晶(收缩),夏天包材易变型,遇热膨胀,不能烫金。

(3)热性能:PP具有良好的耐热性,熔点在164~170℃,制品能在100℃以上温度进行消毒灭菌,在不受外力的,150℃也不变形。脆化温度为-35℃。耐寒性不如聚乙烯。

(4)化学稳定性:聚丙烯的化学稳定性很好,除能被浓硫酸、浓硝酸侵蚀外,对其它各种化学试剂都比较稳定,适合制作各种化工管道和配件,防腐蚀效果良好。但低分子量的脂肪烃(ting)、芳香烃和氯化烃等能使PP软化和溶胀,(5)电性能:聚丙烯的高频绝缘性能优良,可以用来制作受热的电气绝缘制品。它的击穿电压也很高,适合用作电气配件等。抗电压、耐电弧性好,但静电度高,与铜接触易老化。

(6)耐候性:聚丙烯对紫外线很敏感,加入氧化锌、碳黑等填料可以改善其耐老化性能。

二、聚丙烯的成型加工

聚丙烯的成型加工性好,成型的方法很多,如注塑、吹塑、真空热成型、涂覆、旋转成型、熔接、机加工、电镀和发泡等,并可在金属表面喷涂。其中注塑成型的比例大,注塑温度在180~200之间,注塑压力在68.6~137.2MPa,模具温度为40~60℃。预干燥温度在80℃左右。应避免PP长时间与金属壁接触。聚丙烯的二次加工性很好,其印刷性比聚乙烯好,照相凸版,胶版、平凹板等印刷方法均可使用,要获得良好的良好的耐热、耐油、耐水等要求的印刷性能,须经电晕放电处理等再行印刷。

三、聚丙烯的用途

(1)薄膜制品:聚丙烯薄膜制品透明而有光泽,它分为吹膜薄膜、流延薄膜(CPP)、双向拉伸薄膜(BOPP)等。

(2)注塑制品:可用于汽车、电气、机械、仪表、无线电、纺织、国防等工程配件,日用品,周转箱,医疗卫生器材,建筑材料。

(3)挤塑制品:可做管材、型材、单丝、渔用绳索。打包带、捆扎绳、编织袋,纤维,复合涂层,片材,板材等。吹塑中空成型制品各种小型容器等。

(4)其它:低发泡、钙塑板,合成木材,层压板,合成纸,高发泡可作结构泡沫体。

聚苯乙烯(PS)结构式:C6H5-[CH=CH2]-n

产品英文名:Styrene;Styrol;Vinylbenzene 聚苯乙烯是由苯乙烯单体(SM)聚合而成的,可由多种合成方法聚合而成,目前工业上主要采用本体聚合法和悬浮聚合法。PS是一种热塑性非结晶性的树脂,主要分为通用级聚苯乙烯(GPPS、俗称透苯)、抗冲击级聚苯乙烯(HIPS、俗称改苯)和发泡级聚苯乙烯(EPS)。性能

PS主链为饱和碳链,侧基为共轭苯环,使分子结构不规整,增大了分子的刚性,使PS成为非结晶性的线型聚合物。由于苯环存在,PS具有较高的Tg(80~82℃),所以在室温下是透明而坚硬的,由于分子链的刚性,易引起应力开裂。

聚苯乙烯无色透明,能自由着色,相对密度也仅次于PP、PE,具有优异的电性能。另外,在光稳定性方面仅次于甲基丙烯酸树脂,但抗放射线能力是所有塑料中最强的。

热性能:最高工作温度为60~80℃。当加热至Tg以上,PS转变为高弹态,且保持这种状态在较宽的范围内,这就使其热成型提供方便。PS的热变形温度为70~80℃,脆化温度为-30℃,PS在高真空和330~380℃下剧烈降解。

机械性能:PS的分子量过高,加工困难,所以通常聚苯乙烯的分子量为5~20万。PS的机械性能,随温度升高,刚性(弹性模量、抗拉强度、冲击强度等下降,而断裂伸长率较大。PS的透明性好,透光率达88~92%,仅次于丙烯酸类聚合物。故可用作光学零件,但它受阳光作用后,易出现发黄和混浊。

PS有主要缺点是性脆和耐热性低。对PS进行改性,如橡胶改性的高抗冲PS(HIPS);MMA-丁二烯-苯乙烯(MBS);A(丙烯腈)B(丁二烯)S,在工业上应用最广泛的是ABS塑料。

成型加工

聚苯乙烯流动性好,加工性能好,易着色,尺寸稳定性好。可用注塑、挤塑、吹塑、发泡、热成型、粘接、涂覆、焊接、机加工、印刷等方法加工成各种制件。特别适用于注塑成型,注塑成型时物料一般可不经过干燥直接使用。但为了提高制品质量,可在55℃~70℃鼓风烘箱内预干燥1~2h。具体加工条件大致为:料筒温度200℃左右,模具温度60~80℃,注塑温度170℃至220℃,注塑压力比为1.6~4.0。成型后的制品应在红外线灯或鼓风烘箱内,于70℃恒温处理2~4h。

用途

通用级聚苯乙烯,可用于日用品、电气、仪表外壳、玩具、灯具、家用电器、文具、化妆品容器、室内外装饰品、果盘、光学零件(如三棱镜、透镜)透镜窗镜和模塑、车灯、电讯配件,电频电容器薄膜,高频绝缘材料、电视机等集装箱、波导管,化工容器等。悬浮聚合树脂可制成不同密度的泡沫塑料,用作绝热、隔音、防震、漂浮、包装材料,软木代用品,预发泡体可作水过滤介质及制备轻质混凝土,低发泡塑料可制成合成木材做家具等。

高抗冲击级聚苯乙烯(HIPS)可注塑或挤塑成各种制品,适合家电产品外壳,电器用品、仪器仪表配件、冰箱内衬、板材、电视机、收录机、电话机壳体、文教用品、玩具、包装容器、日用品、家具、餐具、托盘、餐具、结构泡沫制品等。

聚对苯二甲酸乙二酯(PET)结构式:

聚对苯二甲酸乙二醇酯,又称聚酯,英文名 polyethylene terephthalate(简称PET)聚对苯二甲酸乙二醇酯是由对苯二甲酸二甲酯与乙二醇酯交换或以对苯二甲酸与乙二醇酯化先合成对苯二甲酸双羟乙酯,然后再进行缩聚反应制得。

性能

分子结构的高度对称性和对亚苯基链的刚性,使此聚合物具有高结晶度、高熔融温度和不溶于一般有机溶剂的特点,熔融温度为257~265℃;

PET 是乳白色或浅黄色、高度结晶的聚合物,表面平滑有光泽。在较宽的温度范围内具有优良的物理机械性能,长期使用温度可达120℃,电绝缘性优良,抗蠕变性,耐疲劳性,耐摩擦性、尺寸稳定性都很好。PET 有酯键,在强酸、强碱和水蒸汽作用下会发生分解,耐有机溶剂、耐候性好,具有很好的光学性能。

成型性能

1.由于PET大分子中含有脂基,具有一定的亲水性,粒料在高温下对水比较敏感,当水份含量超过极限时,在加工中PET分子量下降,制品带色、变脆。困此,在加工前必须对物料进行干燥。

2.PET成型温度高,且料温调节范围窄(260-300℃),但熔化后,流动性好,故工艺性差,且往往在射咀中要加防延流装置。机械强度及性能注射后不高,必须通过拉伸工序和改性才能改善性能。模具温度准确控制,是防止翘曲。变形的重要因素,因此建议采用热流道模具。模具温度高,否则会引起表面光泽差和脱模困难。PET 经过拉伸吹塑成型工艺生产的高强度、高透明的塑料瓶,常用的容量范围可以从几十mL 到几L瓶;透明度和光泽度好、有很好的可塑性、耐冲击性和及尺寸稳定性、化学性能好、阻气性好;触感柔软等优点。主要用途

薄膜片材方面:各类食品、药品的包装材料;纺织品、精密仪器的高档包装材料;录音带、电影胶片及感光胶片等的基材;电气绝缘材料、柔性印刷电路板等电子领域和机械领域。包装瓶的应用:由最初的碳酸气饮料发展到现在的啤酒瓶、调味品瓶、药品瓶、化妆品瓶等。电子电器:制造连接器、线圈绕线器、集成电路外壳、变压器外壳、电视机配件、调协器、开关、计时器外壳、自动熔断器、和继电器等。

汽车配件:如配电盘罩、发火线圈、各种阀门、排气零件、分电器盖,计量仪器罩壳。也可利用PET优良的装性、表面光泽及刚性,制造汽车的外装零件。

机械设备:制造齿轮、凸轮、泵壳体、电动机框架和钟表零件,也可用作微波烘箱烤盘、各种项棚,户外广告牌和模型等

聚甲基丙烯酸甲酯(PMMA)(有机玻璃)结构式:

英文名称:Polymethyl Methacrylate

比重:1.18克/立方厘米 成型收缩率:0.5-0.7% 成型温度:160-230℃

由甲基丙烯酸甲酯(MMA)聚合而制得的热塑性树脂,多为无定形聚合物,分子量常高达 100万。

性能

透明性极好,强度较高,有一定的耐热耐寒性,耐腐蚀,绝缘性良好,综合性能超过聚苯乙烯,但质脆,易熔于有机溶剂,如作透光材料,其表面硬度稍低,容易擦花.适于制作透明绝缘零件和强度一般的零件.成型性能

1.无定形料,吸湿大,需干燥,不易分解,流动性中等,易发生填充不良,粘模,收缩,熔接痕等.2.宜高压注射,在不出现缺陷的条件下取高料温,高模温,以增加流动性,降低内应力,改善透明性及强度。其中注射温度的影响大于注射压力,但注射压力提高,有利于改善产品的收缩 率。注射温度范围较宽,熔融温度为 160℃,而分解温度达270℃,因此料温调节范围宽,工艺性较好。故改善流动性,可从注射温度着手。冲击性差,耐磨性不好,易划花,易脆裂,故应提高模温,改善冷凝过程,去克服这些缺陷。模具浇注系统表面应光洁,脱模斜度大,顶出均匀.同时设排气口,以防出现起泡。

用途

PMMA作为性能优异的透明材料广泛应用于各种灯具、照明器材、光学玻璃、各种仪器仪表表盘、罩壳、刻度盘、光导纤维、商品广告橱窗、广告牌、飞机座舱玻璃、飞机和汽车的防弹玻璃、各种医用、军用、建筑用玻璃等领域。近年来,随着PMMA改性与复合材料技术进展,PMMA的应用领域不断扩展。

丙烯腈-苯乙烯树脂(AS)(SAN)结构式:

英文名:Acrylonitrile-styrene resin

丙烯腈-苯乙烯共聚物又称AS或SAN树脂,它是以丙烯腈和苯乙烯为原料用悬浮法聚合,是用热引发或引发剂引发均可,也可采用乳液聚合法制得。

性能

AS树脂为无色或微黄色透明的珠粒或颗粒料,比聚苯乙烯有较高的冲击强度,并改善了耐热性、耐油性、耐化学腐蚀和抗应力开裂性能,比ABS有较好的耐气候性,最高的使用温度为75~90℃,与GPPS(通用级聚苯乙烯)相比,机械强度好,透明度相当,不溶于酮类和某些芳烃。

树脂本身无毒。但含有丙烯腈单体,而丙烯腈毒性较大。可造成肾脏损伤以及血液生化改变。慢性动物实验证实对肾、脑、统和肾脏损伤作用,甚至引起肿瘤。而且,树脂中的丙烯腈会向食品迁移、迁移量与残留量呈显著的线性相关。因此,食品容器、包装材料用丙烯腈-苯乙烯成型品卫生标准规定,丙烯腈溶出量在50mg/kg以下。

成型加工

AS树脂的成型加工方法与聚苯乙烯相同,以注塑、挤塑、发泡成型等方法加工成制品。AS粒料在加工前还须在70~85℃下预干燥,注塑温度为160~200℃,压力为90~104℃。AS树脂的成型加工性好,对增强的AS可注塑、挤塑、模压、层压、可真空成型、机加工、粘接、电镀。

AS树脂的用途

可共生产耐油性机械零件、油箱、车灯、仪表板、仪表透镜、各种开关按钮等,也用于盘子、杯子、餐具、化妆品和家用电器配件,如电风扇叶片、电磨器、磁带盒等,汽车工业配件,如蓄电池用的瓶壳等。增强的AS树脂用于汽车仪表盘、把手等,电子电器部件与外壳,计算机、电动工具、文教用品等配件,机械零件如滑轮风扇、叶轮、照相机部件等。

丙烯腈-丁二烯-苯乙烯(ABS)结构式:

英文名称:Acrylonitrile Butadiene Styrene

比重:1.05克/立方厘米 成型收缩率:0.4-0.7% 成型温度:200-240℃

ABS塑料的主体是丙烯腈、丁二烯和苯乙烯的共混物或三元共聚物,是一种坚韧而有刚性的热塑性塑料。

物化性能

为浅黄色粒状或珠状不透明树脂,无毒、无味,吸水率低。具有优良的物理机械性能,极好的低温抗冲击性能,优良的电性能、耐磨性、尺寸稳定性、耐化学性、染色性(很容易着色)。易于加工成型。ABS耐水、无机盐、碱和酸类,不溶于大部分醇类和烃类溶剂,易溶于醛、酮、酯及某些氯化烃中。ABS的缺点是可燃,热变形温度较低,耐侯性较差。燃烧特点:易燃;离火继续燃烧;火焰黄色,浓黑烟;软化,起泡;丙烯腈味。溶解性能:可溶溶剂:二氯甲烷;不溶溶剂:醇类、脂肪烃、水.成型性能

1.无定形料,流动性中等,吸湿大,必须充分干燥,表面要求光泽的塑件须长时间预热干燥80-90度,3小时.(甲烷+氧聚合)

2.宜取高料温,高模温,但料温过高易分解(分解温度为>270度).对精度较高的塑件,模温宜取50-60度,对高光泽.耐热塑件,模温宜取60-80度.3、如需解决夹水纹,需提高材料的流动性,采取高料温、高模温,或者改变入水位等方法。

4、如成形耐热级或阻燃级材料,生产3-7天后模具表面会残存塑料分解物,导致模具表面发亮,需对模具及时进行清理,同时模具表面需增加排气位置。

级别与用途

ABS按用途不同可分为通用级(包括各种抗冲级)、阻燃级、耐热级、电镀级、透明级、结构发泡级和改性ABS等。通用级用于制造齿轮、轴承、把手、机器外壳和部件、各种仪表、计算机、收录机、电视机、电话等外壳和玩具等;阻燃级用于制造电子部件,如计算机终端、机器外壳和各种家用电器产品;结构发泡级用于制造电子装置的罩壳等;耐热级用于制造动力装置中自动化仪表和电动机外壳等;电镀级用于制造汽车部件、各种旋钮、铭牌、装饰品和日用品;透明级用于制造度盘、冰箱内食品盘等。

化妆品用做口红中束心,拉链,齿轮。结晶后的光滑性,摩擦系数较强。

第二篇:聚合物集体论文

不饱和聚酯的改性研究进展

***(复合材料与工程专业,山西 太原 030051)

摘要:本文介绍了不饱和聚酯的一些改性方法,说明了一些改性方法的机理以及以及其改性研究的一些研究成果,从不饱和树脂的改性研究可以看出改性后的不饱和树脂较为改性前性能有了很大的提高,使其应用范围变得更加宽广。关键字:不饱和聚酯;改性;增韧增强;阻燃;应用。1 前言

不饱和聚酯也称UP,是复合材料中使用最大的一种树脂品种之一,是工业中一种重要的热固性树脂。与其他热固性树脂相比,UP有着价格低廉、粘度适中、加工方便、具有较好的工艺性和力学性能,常在较低的压力和温度下成型。目前,UP已经广泛的应用在电工电子领域、建筑领域作为结构材料、防腐材料、绝缘材料等,但是UP也存在着较大的缺点,因为UP一般在硬化后会变得硬而脆、冲击性能差、耐热性、耐老化性等性能还不能满足日常生活及工业化的需要,所以,提高UP的各项性能就显得尤为重要。近些年来,人们从各种方面通过各种方法来试验是的UP的各种性能有了很大的提高,使改性UP的应用范围变得更加的广泛。本文将从改性不饱和聚酯的不同改性方法,以及各种改性方法的改性机理来阐述不饱和聚改性的研究进展,通过各种改性不饱和聚酯在不同领域的应用来说明其优越性与应用广泛性。2 增韧改性

不饱和聚酯树脂在固化后的脆性变大、冲击性能减小,使其实际应用范围受到了限制,为了克服这些缺点,提高聚酯制品的抗冲击性能,扩大其应用范围,则必须对不饱和聚酯树脂(UPR)进行韧性改性。通常对不饱和聚酯树脂的增韧1无机纳米粒子增韧,○2弹性体增韧,○3引入柔性大分子改性有以下几种方法:○

4聚酰胺互穿网络(IPN)增韧,○5纤维增韧增链,增加交联网链的活动能力,○6聚合物微凝胶增韧增强UPR。强UPR,○2.1 无机纳米粒子增韧

采用聚合物改性UP,一般会在提高改性UP的韧性的同时会降低材料的强度、模量等机械性能。正是因为如此人们又进行了不断的实验探索研究,研究发现可以将纳米粒子分散到UP树脂基体中,由于纳米粒子具有很大的比表面积,所以在与基体进行结合时会产生很强的界面结合力,从而增强了UP的韧性,XU Y【1】等人在制备纳米TiO2时使其表面水解形成羟基,羟基与UP中的羧基进行反应,从而纳米TiO2粒子在连在长链的树脂上产生了增强增韧作用,使得改性后的UP材料的弯曲强度以及冲击强度有了很大的提高,比没有改性的UP的增强与增韧增加了55%和46%,当TiO2得含量从1wt%增加到10wt%时,纳米TiO2/不饱和聚酯由脆性转变到韧性,TiO2粒子,含量为6wt%时转变较为明显.。kornmann【2】等将纳化处理的蒙脱土用于改性UP,通过X—射线和透射电镜分析、当蒙脱土的含量为1.5wt%时纳米复合材料的断裂能从纯脂的70J/m2。Incenoglu A.Baran【3】等将蒙脱土经有机改性后加入到UP中,用X射线分析时发现粘土的层间距从1.25nm增大到45nm。的加入仅3wt%的有机改性粘土,UP的弯曲模量提高到了35%。

2.2 提高分子主链的对称性增韧

提高分子主链的对称性增韧也可以提高UPR的柔性,唐四丁【4】等人采用间苯二甲酸与不饱和二甲酸制备高分子质量的间苯型UPR发现其冲击强度优于邻苯型UPR,因为间苯型UPR比邻苯型UPR对称性好。2.3 引入大分子柔性链

将脂肪族长链二元醇或者二元酸加入到UPR是一种使UPR增韧的方法,引入脂肪族长链二元醇或者二元酸后可以提高高分子链柔性,使的UPR的抗冲击性能提高,但是过多地加入脂肪族长链二元醇或脂肪族长链二元酸会使树脂的强度降低,因为过多地加入带脂肪链的酸是的UPR部分发生结晶,使得分子链中不饱和链双链间距拉开,导致其所能承受的拉伸强度下降【5】。然而长链脂肪醇使得树脂的强度下降的更多,而且价格又比长链脂肪酸贵,所以柔性链树脂多采用长链脂肪酸。在合成UPR时也可以用接枝反应引入一些带有反应活性端基的柔性大分子链段,如二元醇,活性聚酯、聚醚使得UPR树脂韧性提高。2.4 弹性体增韧

添加弹性体组分是增韧UP常用的方法之一,在过去实验多以固态相较增韧UP,但是固态橡胶增韧有着很大的缺点,它与UP的相容性较差,而且加工困难;而液体橡胶在UP中容易分散均匀并可通过端基与UP形成化学链来加强两相间的界面结合力。弹性体虽然能提高UP冲击强度却使得其刚度、强度减小,通过对弹性增韧机理的深入实验研究,探索更加有效的增韧方法,寻找更加有效的增韧剂以使得UP综合性能不断地提高一直是一个研究热点。2.4.1 非橡胶类弹性体增韧

现今有些学者运用一些热塑性弹性体来增韧不饱和聚酯,这方面的例子有SBS、SIS,这种增韧树脂的特点为用量少、而且可以使得在树脂固化后保持其弹性模量跟拉伸强度等一些力学性能不发生明显的降低【6】,环氧弹性体也可以用来增韧不饱和热聚酯,Z.G.SHAKER【7】等用胺固化的双酚A型环氧树脂弹性体来改性UP(环氧树脂与UP质量比为15:85),研究发现用胺(7--509)固化的环氧树脂改性UP后体系的韧性最高。2.4.2 液体橡胶增韧

液体橡胶的增韧机理如下:与固体橡胶相比液体橡胶可以在UP中均匀的分散,具有活性端基的橡胶能够与UP端基发生化学反应而接枝到UP的主链上,从而使得增韧后的UP两相之间的结合力有了很大的提高,使得两相结合更加紧密,这样就提高了液体橡胶与UP的相容性,体系呈现均相结构或者是亚微观相分离结构,这种方法改性后的UP的韧性有了很大的提高,葛曷【8】——研究了活性端基聚氨酯橡胶增韧UP,固化前橡胶与UP相容性很好,而固化后的这些橡胶中的不饱和双键参与反应,与树脂发生了相分离,当添加橡胶用量为15%时冲击强度可以提高60%以上,且拉伸、弯曲强度以及马丁耐热温度保持率也在60%以上。

一般来说当韧性不好的弹性体受到较大的力冲击时或发生银纹化,当UP中的弹性体含量增加时可以使得银纹化的发生以及终止变得迅速,使得其冲击强度可以大幅度的提高,subramaniam【9】将UP苯乙烯、环氧及相应的固化剂混合,加入反应性液体橡胶ATBN,制得了半透明的交联聚合物,此次实验研究发现次网络结构性能随着ATBN含量的不同改性的UP性能会发生整体性的改变。体系的临界能释放速率从59N%m增加到618N%m,断裂延伸率从1.6%增加到11.2%。2.5 聚氨酯互穿网络(IPN)改性

Kim【7】等人制备了两种结构的聚氨酯(PU),一种是羟端基的PU(HTPU),一种是异氰酸酯封端的PU(ITPU),并将它们分别参入到UP中进行交联固化,以此来增强UP的韧性,研究发现低分子量的PU溶解于UP基体中,分子量较高的PU则部分溶解于UP中,随着PU 分子量的减小,PU在UP中分散的粒子直径逐渐减小,然而虽然小粒子的增韧添加物对UP的增韧效果更好,但是小分子量PU部分溶于UP基体中,较少了分散相的体积分数,因此,UP的增韧效果与PU分子量的大小没有太大的关系。

用互穿网络法来增韧UP的优越性有很多,可以通过限制相分离达到提高聚合物组分的混合程度,聚合物网络的互穿和缠结有利于提高相的稳定性和最终产物的力学性能,也易于在IPN自己偶那个形成过程中通过改变反应参数,如温度、压力、催化剂交联来控制制品的形态结构,tang【8】采用丙烯酸酯改性的PU和UP形成可室温固化的IPNs和梯度IPNs结构,用TMA、TEM研究IPN结构发现Tg同大量互穿结构以及互相缠结密切相关。UP中两相的尺寸意义达到纳米级别,并且尺寸随着两相组分而发生变化,力学测试表明IPN结构力学行为从橡胶态到塑料态,IPN内部改性基团和接枝结构强化了体系相容性,进一步提高了力学性能,尤其是梯度结构的韧性。2.6 纤维增韧增强UPR

如今用纤维来增强不饱和聚酯的韧性已经发展为一种趋势,比如现在主要的纤维增韧增强方法有玻璃纤维增韧、碳纤维增韧、芳纶纤维增韧,杉树都是较为普遍的增韧增强方法,由于过去对这些材料的研究不太完全,没有长远的目光,由于这些材料的难以降解的原因造成了大量的环境污染,现在人们正在积极努力研制可以降解的曾强增韧材料,比如现在使用的一些天然纤维增韧增强材料以及可以生物降解的合成增韧增强材料。运用天然纤维增韧增强材料有者其他材料无可比拟的优点,因为天然纤维质量轻、廉价、易于获得和可以自然状况下分解而不产生污染。

2.7 聚合物微凝胶增韧增强UPR

聚合物微凝胶也常被称为--凝胶,其分子结构介于大分子和宏观网络聚合物之间,一个微凝胶颗粒即为一个大分子,这个大分子被限定在一定区域内进行分子内交联而形成网络结构,若在聚合物微凝胶颗粒的表面形或内部带有可以进一步反应的基团,即为反应性聚合物凝胶,制备反应性聚合物凝胶的聚合方法主要有乳胶聚合和分散聚合,反应性聚合物微凝胶对UPR具有明显的增韧作用【】。袁才登【9】以羧基封端的低分子质量UPR和苯乙烯为单体,采用无皂乳液共聚合的方法制得了聚合物微凝胶乳液,并用其改性UPR。由于该聚合物微凝胶表面带有羧基能与UPR分子链上的羟基反应,起到交联或者扩链作用。因而,能大幅度提高抗冲击强度,如当UPR/st(1/0.6质量比)用量为UPR质量的3%时,冲击强度可以从17.9Kpa提高到41.4Kpa。3 阻燃性改性

对阻燃性的改性同时也是最UP的耐热性的改性,随着科学技术的发展,人们日常生活的需要以及各个领域的需要,UPR经常在高温条件下使用,对于UPR的阻燃性能的要求也越来越高,但是UPR的大缺点就是高温易分解,从而就会影响到其原有的韧性、强度等机械性能,所以对于UP的阻燃性改性就显得尤为重要。然而运用单一阻燃剂对基体树脂进行阻燃改性已近淡出人们的研究范围,而利用两了前所未有的高阻燃性能,例如在UP中加入绿茵酸酐、四溴酞酸酐和二溴新戊二醇等可以使UP具有良好的阻燃性能,但是这种再聊会在燃烧时产生大量黑烟同时释放有毒气体,如:HCL、HBr等,且含有卤原子的UP着火难以扑灭,所以有必要在阻燃性UPR中添加发烟抑制剂。

张建华【10】用有机硅改性的UPR,将配方量的原料投入到四口燃烧瓶中在给定的工艺条件下进行缩合反应,支撑了有机硅改性UPR,研究表明该熟知的耐热性能好,分解温度高达320℃,同时无论高低温其其他性能保持良好。

用氢氧化铝(ATH)作为无机阻燃添加剂,ATH既可以抑烟剂,又可以作为填料,使用表面活化和微粒活化处理技术会使ATH在高聚物中分散更加均匀,使得ATH与高聚物更好相容,不仅提高其阻燃性能而且还不至于因为大量加入ATH而使基体本身机械强度下降。4 液晶共混改性

液晶共混改性就是在固化剂液晶与UP不相容,固化后液晶微区的平均尺寸大小、相分离程度降低、均匀性增加。根据最近几年的一些报道发现液晶以分子水平分散在基体中,其实塑性效应使树脂的玻璃化温度随液晶含量的增加而降低,复合体系的热光性能比较突出,具有热引发----光双稳态效应,可在一些温度感应元件、光双稳态元件等方面获得应用。Mormile【11】等对制得的液晶改性不饱和聚酯树脂进行了电学—光学方面的表征,结果表明,这种复合材料体系具有优良的的透光度和反应时间。5 低收缩性改性

没有经过地收缩性改性的树脂在固化后收缩率大概为6%--10%,就是因为这样大的收缩性会使得UP在固化后在其内部产生很大的形变力,会使得固化后的UP表面变得褶皱不平,如果是对于结构复杂、尺寸公差要求严格的制品来说则是一个致命的缺点,增大了成型的难度与成本,无形中会使得UPR的适用范围变窄。所以,制备不饱和聚酯树脂,在固化时就要降低其固化收缩率,其方法是在树脂中加入低收缩剂,(LSA/LPA),这些收缩机的加入会在UPR的两相界面位置形成空隙或者微裂结构,使其固化时体积膨胀恰好能弥补UPR固化时收缩的缺点。这样使得UPR在固化过程中既没有太大的收缩率也保证了其强度、刚度和反应速率不发生太大的变化。

薛忠明【12】等人研究了聚醋酸乙烯(PVAc)型与聚苯乙烯(PS)型的低收缩剂发现收缩量随着收缩剂的含量增加而明显减少,并在固化温度与添加量相同的情况下添加PVAc型低收缩剂的固化制品收缩率低于添加PS型收缩剂的固化收缩率。王侃【13】等人研究不饱和聚酯树脂低温固化形态时发现对于同种低收缩剂来说,添加分子量高的低收缩剂可以使基体的连续相连续分布,分子量低的低收缩剂则需要添加高含量才能形成那个连续向分布。6 UPR腻子气干性改性

在UPR常温固化时若采用过氧化物作为引发剂,有机钴盐作促进剂,由于氧阻作用,常使固化过程中接触空气的部分含有发粘、不干的现象,这就给粉刷与涂料时带来了极大的不便,因此,制备常温固化时气干性好的UPR就显得十分重要,而今加快腻子气干性的方法可以分为化学方法和物理方法两种,物理方法主要就是在原子灰中添加高熔点的石蜡。化学方法就是在线性聚酯的支链上引入一个“气干性”的官能团,如烯丙醚基、烯丁醚基及亚甲苯醚基等,他的吸氧性可以使原子灰在空气存在的条件下聚合固化。如今的研究多趋向于用化学的方法。

将具有气干性的基团引入UPR中,可以有效地改善UPR的气干性能,李仙粉【14】将含有缩醛环结构的甘油环缩甲醛丙烯酸酯引入UPR主链分子中,制成了气干性的UPR,甘油环缩甲醛丙烯酸酯中的两个氧原子间的亚甲基上的氢比较活泼,在钴盐的作用下,遇到氧时就会发生氢原子转移反应,生成过氧化物,从而避免了空气中氧的影响。

李强军【15】采用半酯化法合成的双环戊二烯改性UPR,不仅具有优良的气干性,而且耐化学腐蚀性、耐热性、电气性能也有所提高。7 耐介质性改性

UPR可以使用在各种不同的环境当中,当其使用在具有强的腐蚀或溶剂的环境当中时,此时的UPR的填料会出现渗出货结构变化等现象,从而发生降解,由此就可以知道增强UPR的耐介质性能时多么的重要。

UPR分子链上含有端羧基造成耐碱性较差,如果可以利用某些可与羧基反应的树脂改性消去羧基就可以提高UPR的耐碱性能。周菊兴【16】利用环氧树脂的环氧基与UPR的羧基反应生成了A-B-A型嵌段共聚物,利用其改性的UPR耐碱性能优越于未改性的UPR。

闻荻江【17】以(甲基)丙烯酸二氟丁酯为原料改性UPR,在196UPR中加入一定质量分数的(甲基)丙烯酸二氟丁酯、引发剂、促进剂制样,通过实验测定发现改性后的UPR的耐碱性能得以很大的提高,为UPR的耐介质性改性研究做出了很大的突破。

Ferreira【18】用一种新型的经铝处理的玻璃纤维改性UPR,实验结果发现经过铝处理的玻璃纤维反应得到的UPR的耐热性比非金属改性玻璃纤维所得的聚酯提高了26%,比未经改性的聚酯提高了658%,由于耐热强度明显提高,从而进一步拓宽了UPR在高温领域中的应用。8 不饱和聚酯树脂的性能及其应用

由于不饱和聚酯树脂所具有其他材料无可比拟的优良性能,其大量应用于农业、工业、交通运输等方面。例如增强不饱和聚酯树脂主要应用于游艇、冷却塔、化工防腐设备、运动器材以及车辆零部件等各个方面;非增强制品主要应用于装修行业,比如可以制作人造大理石、人造玛瑙以及一些粘结剂等;低挥发性树脂与胶衣树脂可以运用于开口浇铸、凝胶涂料和电子工业产品中;PET型不饱和聚酯树脂wcup可以用于人造木材、装饰材材料、涤纶制品、多孔材料、建筑材料或者涂料等等;阻燃聚乙烯树脂因其具有较好的阻燃性、耐热性和优良的力学性能可以用于航空航天领域。9 结语

从以上全文可以看出,随着科学技术的发展,对UPR的各项性能的要求也越来越高,也就为UPR今后的改性研究指明了发展的方向,UPR的改性研究必须朝着功能化、精细化、高性能化的方向发展。其中UPR的增韧增强改性、降低其固化收缩率、提高其阻燃性、是重要的研究方向,其次,在UPR的耐介质性能、耐热性以及UPR的腻子气干性等方面的改性上也应不断加大研究力度。但是在对UP的改性研究方面要注意到一点,那就是在最求其一种或多种性能的提高上,还要保证UPR的综合性能不能有大的下降,在所改良的各种性能之间最好能找到一个平衡点,而不能以牺牲其他性能为代价去改性某一项性能,这样才能使得改性的UPR综合性能不断的提高,使改性的UP有更加广泛的应用领域。

参考文献:

1.唐四丁、张金亮、曾念三。用催化剂制备间苯型UPR 纤维复合材料 1997(03)2.王侃、王继辉、薛忠明。低轮廓不饱和聚酯树脂的中低温固化形态 [期刊论文]-材料研究学报2004(03)3.薛忠明、夏雨、王继辉。低轮廓不饱和聚酯树脂一维固化应力的研究 [期刊论文]-武汉理工大学学报2005(11)4.葛曷

一、王继辉。活性端基聚氨酯橡胶改性UP树脂的研究 [期刊论文]-玻璃钢/复合材料2004(01)5.Shaker Z G.、Browne R M、Stretz H.A。Epoxy-Toughened, Unsaturated Polyester Interpenetrating Networks 2002(84)6.Kornmann X、Berglund L A、Sterte J。Nanocomposites Based on Montmorillonite and Unsaturated Polyester 1998(08)

7.闻荻江、杨杰。丙烯酸含氟酯改性不饱和树脂的研究[J]。新型建筑材料。2008,35-36。

8.Subbramaniam R、McGarryFJ。Toughened polyesternetworks[J]。JAdvMater,1996,27(2);26-35。

9.D S Kim、K cho、JHAn、et al。Toughing mechanisms of modified unstaturated polymer with novel liquid polyurethane rubber[J]。mater sci。1993,33(5)8-9。10.Shark.Z G、Bbowne.R M、StretZ H A,et al。Epoxy—toughened,unsaturated polyester interpenetrating networks[J]。Journal of Applied polymer science。2002,84(12);2283—2286。

11.周菊兴、欧阳素英、谢元东。UPR和环氧树脂嵌段共聚物的研究[J]。热固性树脂。1998,(2),5—8。

12.李仙粉、周菊兴。甘油环缩甲醛丙烯酸酯的合成与应用[J]。热固性树脂。2000,15(2),1---3.13.Tang dong-yan、Qiao Ying-jie。Preparation,morphology and mechanical properties of arcylate-modified polyurethane /unsaturated polyester resin graft-IPNs[J]。J,Harbin of technology,2003,10(1);7—10。14.Mormile P、Petti L、Ragosta G、Elector—optical properties of a PDLC Based on unstatured polyester resin[J]。Applied physics.B。2000,70(2);249—252。15.Ferreira J M、Errajhi A Z、Richardson M O W。Themogravimetric analysis of Luminized E-glass fibre reinforced unsaturated polyester composites[J]。Polymer Testing。2006,(25);(1091—1094)。

16.张建华、姜其斌、林金火。有机硅改性不饱和聚酯树脂的研究[J]。热固性树脂,2007,22(3);4—6。

17.李强军、姜其斌、李拉练等。气干性不饱和聚酯树脂的研究[J]。绝缘材料,2008,41(3);8—10。

18.XU Y /Li ML、Lu F J。study of simultaneous strengthening and toughening of unsaturated Polyester resin(TiO2/UPR)by Nanometer TiO2 [J]。Rare metal Materials and engineering。2002,31(5);314—344。

19.孙启华。S—178韧性不饱和聚酯树脂的合成与性能[J]。玻璃钢/复合材料。1994;(8)。

20.袁才登、王艳君、许涌等。UPR/苯乙烯无皂乳胶共聚合与聚合物微凝胶[J]。热固性树脂。2000,(1);16—18。

21.袁才登、王艳君、张彤宣等。反应性聚合物微凝胶的合成及应用。热固性树脂。1999.(3);24—29。

22.周芳英、牛国良、李文泉等。不饱和聚酯树脂增韧研究[J]。化学推进剂与高分子材料。2002,89(5);9—12。

Research advances in modification of unsaturated polyester

****(professional composite,shanxi taiyuan 030051)

第三篇:聚合物材料光稳定剂UV

聚合物材料光稳定剂UV-326的生产和应用苯并三唑类光稳定剂是瑞士Ciba Geigy公司开发的品种,UV-326是此类产品的主要品种,其特点是毒性低,吸收紫外线的能力强,广泛地应用于聚烯烃、聚酯、ABS等聚合物材料。由于该产品工艺路线长,技术含量高,工业化的难度较大,长期以来国内未形成规模生产,国内市场上多为进口产品。我国早在60年代即开始研制该类产品,天津合成材料工业研究所是较早(1964年)从事该领域研制的单位之一。1968年根据我所的研究成果,国家曾投巨资在天津力生化工厂使UV-327投产。

70年代和80年代,天津合材所仍进行该领域的研究,对于该产品的关键工序还原闭环反应进行了比较深入的研究和探索[1~3]。根据市场需要,1983年研制成功UV-326,技术上取得全面突破,于1987年与兰化公司有机厂合作进行了15t/a的中间试验并于1989年通过石化总公司的部级技术鉴定,为该产品的工业化打下了基础。但是要进行更大规模的生产还存在着许多化学和工程上的问题。

近年来,我所与天津市蓟县化工总厂合作进行了工业化的各种试验,取得比较满意的结果,现与该厂组建了定名为“天津市蓟县合材精细化工厂”的分厂,并建成200t/a的工业装置,现已投入生产,终于使这一科研成果转化为生产力。该产品的国产化成功,使产品可供出口和内销,其价格将大幅地降低,对推动我国塑料加工业具有重要意义。合成路线

本产品的合成为二步工艺,即中间体颜料的合成及其还原为产品。

2.1 中间体颜料的合成将4 氯 2 硝基苯胺经重氮化反应后制成重氮盐溶液,然后使之与邻特丁基对甲酚进行偶合反应制成中间体偶氮颜料。

2.2 颜料还原为产品

先用硫化钠将颜料还原为另一中间体“N 氧化物”,然后再用锌粉将它还原为最终产品。其化学反应式如下:

当UV-326分子中5’位上的甲基为特丁基时即为UV-327。UV-326的生产

3.1 中间体颜料的生产

3.1.1 重氮盐溶液制造

将180kg水从高位增加到配酸罐中,开启配酸罐冷却水节门,向夹套内通冷却水。开动配酸罐搅拌,从高位槽慢慢向罐内加入180kg98%的浓硫酸,调整加酸速度,使温度不超过70℃,加完酸后继续搅拌冷到30℃,用真空吸入重氧化釜,向釜夹套内通冷冻盐水,将酸液冷却到-5℃。打开手孔,在0.5h内向釜内加入120kg(纯度99%)(0.688kmol)4 氯 2 硝基苯胺,加完后继续打浆0.5h。

将51kg亚硝酸钠(纯度98%,0.724kmol)溶于120kg水中吸入高位槽,从槽中在4h内慢慢加入重氮化釜中,此间控制釜温0~5℃,亚硝酸钠溶液加完后,继续反应1h,用淀粉碘化钾试纸试验,呈负性结果时终止反应,加入少量氨基磺酸溶液消除微量的亚硝酸,过滤除渣得橙黄色透明重氮盐溶液约700l,将此液吸入带有夹套的高位罐中,在夹套内通冷冻盐水使重氮盐液保持0~5℃备用。

3.1.2 中间体颜料的制造(偶合工段)

将120kg水自计量槽中加到偶合釜中,开启真空节门,向釜内吸入132kg(纯度98%,0.788kmol)已熔化好的2 特丁基对甲酚,升温到50~60℃,加入适量的乳化剂,搅拌0.5h,使物料形成均匀的乳化液。将前述备用的重氮盐溶液在4h内加到偶合釜中,加完后继续反应1h,取反应液少许进行印圈反应(使用H酸作为偶合组份),待呈负性结果,确认没有过量的重氮盐存在时,结束反应。然后降温,甩干,水洗至洗涤液呈中性,乙醇洗涤,干燥,得紫色有光泽的晶体,熔点≥173℃,含量≥98%。

3.1.3 中间体N 氧化物的生产

将水120kg,硫化钠120kg(纯度61%,0.938kmol)、前工段制造的全部中间体颜料(湿料)加入第一还原釜中,回流反应2h,直到物料由紫色变为黄色为反应终点,甩干后,将物料返回反应釜,加水,升温到60~70℃,搅拌洗涤,再甩干,如此操作,直到洗涤液中无硫离子为止,将甩干后的湿料备用。

3.1.4 最终产品(UV-326)的生产

在第二还原釜中加入300kg水,及前述全部湿N 氧化物和适量溶剂,将计量的复合碱溶液用真空抽入高位槽中,打开手孔加入计量的锌粉,然后从高位槽逐渐加入复合碱液,此间控制内温75~80℃,直到物料由黄色变为浅黄绿色即为终点。趁热过滤,除去锌渣,用少量溶剂洗涤锌渣上的产品,洗涤液与滤液合并,将滤液中下层水放出;用温水洗至中性,将含有产品的有机层冷却,结晶,甩干;用乙醇洗涤,再甩干,最后干燥,粉碎即得成品。乙醇与溶剂的混合物,进入溶剂回收系统回收使用。

3.2 产品质量指标

外观:淡黄色粉末

熔点:≥138℃

纯度:≥99%

透光率:(460nm)≥93%,(500nm)≥96%

挥发份:≤0.5%应用[4]

随着塑料加工工业的进步,各种添加剂的复配技术越显重要,因为它可以发挥协同效应,提高质量,降低成本。在光稳定化领域中,苯并三唑类光稳定剂和受阻胺(HALS)类并用是常用的配合。

4.1 聚丙烯(PP)

与其他聚烯烃相比,PP对紫外线特别敏感,因此在其每个应用领域都必须考虑进行稳定化处理。大量的试验表明,苯并三唑类光稳定剂和受阻胺(HALS)并用,可以有效地抑制PP的光降解。当制造带色的塑料制品时,某些有机颜料对聚合物的光稳定性有严重的负面影响,通常推荐使用0 1%的UV326(UV-327)或者与HALS并用,这样不仅保护聚合物本身,而且也保护颜料,延缓制品褪色。对于与食品按触的塑料制品,目前只有UV-326获得各国的广泛认可,该添加剂甚至可用于制造儿童塑料玩具。UVMB30中主要含有UV-327,它是聚丙烯的高效防老化母粒。

4.2 聚乙烯(PE)

各种牌号的PE都对紫外线敏感,只是程度上不像PP那样敏感。当用于HDPE时,UV-326与多种牌号的HALS都有明显的协同效应。当不添加稳定剂时,试样(2mm厚)冲击强度降到初始值的50%时,所吸收的能量为165(kJ/cm2),添加0.05%UV-326和0.05%UV-770(HALS的一个牌号)后即能提高到2640(kJ/cm2)。

4.3 聚氯乙烯(PVC)

虽然PVC常用的热稳定剂(钡、镉盐和有机锡等)会使户外使用的PVC具有防光性。但是透明或半透明的PVC需要较高的光稳定性,仅靠热稳定剂是不够的,还必须加入光稳定剂,迄今为止,苯并三唑类是广泛使用的光稳定剂。用于农用大棚的柔性透明PVC薄膜,UV-326(327)显示出优异的稳定性能。不加稳定剂时,200μm的透明增塑PVC薄膜吸收能量为2090kJ/cm2时,膜的拉伸率为0;当加入0.3%的UV-326时,拉伸率仍保持75%;当用0.3%的UV-327时,拉伸率为72%;当0.15%的UV-326和0.15%的UV-770并用时,拉伸率可达90%。

4.4 聚甲醛(POM)

未经处理的POM无法用于户外,经过短期的自然老化,POM表面就出现表面龟裂和明显的粉化现象,加入1%的苯并三唑光稳定剂可使户外使用时间由5个月延

长到18个月。

4.5 聚酰胺

苯并三唑类光稳定剂与酚类抗氧剂并用时可有效地稳定聚酰胺。当添加0 5%的UV-327和0.5%的Irganox1098(酚类抗氧剂)时,在氙灯照射下,试片残留拉伸强度为初始值的70%时所需时间由750h(无添加剂)延长到4850h。

4.6 ABS树脂

ABS是一种用途广泛、性能优良的工程塑料,但由于其分子中丁二烯含有双键,对光氧化甚为敏感,其制品的机械强度下降很快,必须对其稳定化处理。国外早有报道使用苯并三唑和HALS可有效地稳定ABS,且有明显的协同效应。国内浙江大学提出耐热氧老化的配方为[5]:ABS:100、抗氧剂1076:0

5、抗氧剂DSTP:0

3、UV327(326):0 3。此外该类添加剂还可用于聚酯、聚氨酯[6]、聚异丁烯[7]、聚碳酸酯等。

第四篇:聚合物材料SRX考察报告

聚合物材料SRX考察报告

聚合物材料SRX是一种新型高分子树脂聚合物路用稳定剂,现主要用于道路结构层稳定材料,SRX聚合物稳定碎石与半刚性底基层形成复合结构可以优化路面结构,改善道路开裂和车辙等病害。新建投公司和铁南指挥部组成考察组对Romix公司中国办事处代理的聚合物材料SRX产品进行了技术咨询和工程应用实例进行了现场考察,报告如下:

1、现场考察:

2010年应用SRX聚合物稳定碎石完技术成了北京市大兴区开发区的城市道路一条约1公里,道路宽度12米,路面结构层为:5cmac-13c沥青混凝土+15cmSRX稳定碎石+15cm二灰碎石。通过了解该道路使用后的交通量主要为园区内的出入交通,重型车辆不少,通过现场的考察,整个路面结构完整,使用情况良好,没有出现车辙、横向裂缝等病害,如果采用传统的半刚性平均每15米会出现横向通缝,即使采用沥青灌封等处理措施也不能保证不渗水,影响道路的使用、美观。

现场观看了SRX聚合物稳定碎石成型试件。

而后对SRX聚合物稳定碎石的施工工艺进行了现场考察,现场没有正在施工作业的场面,对以前使用的拌合设备进行了了解,施工工艺与水泥稳定碎石基本相同,相对水泥稳定碎石的拌合设备,只增加了一个聚合物储存罐和计量泵,设备增加投入很少。

2、技术咨询:

Romix公司中国办事处邀请了国内知名的道路结构专家北京建筑工程学院张新天教授、高金岐教授进行了专项咨询研讨会,考察组对SRX聚合物技术进行了全面的咨询,:SRX聚合物技术应用领域,国外应用情况,国内应用情况,设计基本理念,质量控制指标及检测方法,经济技术比选,摘要如下:

(1)国外应用情况:用于城市道路、公路、矿区道路、港口道路,根据使用要求不同使用SRX聚合物的方法位置不同,有使用于路面结构层基层,有使用于路面结构面层,有的使用于路面损毁修补。

(2)国内应用情况:国内现在由交通部组织正在进行SRX聚合物的专项研究,Romix公司中国办事处自2008年进入国内市场以来,基本以试验段形式使用,尚无大面积推广的业绩,国内共铺筑试验性路段50公里左右,主要应用于北京的城市道路、公路及安徽泗许高速公路,但据前期的使用情况看有效的解决了路面横向裂缝过早出现的问题。

(3)设计理念:整体理念按照柔性路面进行结构设计,采用美国AASHO试验段校核,推荐了几种不同道路类型下的结构厚度。

(4)质量控制标准:Romix公司中国办事处提供了公司标准规范《路用水基-聚合物(SRX-VR系列)稳定道路基层施工技术规范》提出了完整的质量管理体系及质量控制管理及检查验收的办法,按照开封新区的施工管理水平应该可以满足其要求。

(5)经济技术比选:根据提供的材料价格及一般的施工工艺,按照现行的规范进行计算,每平方米的造价为8元,高于水泥稳定碎石价格,但按照全寿命周期费用及等同的路面结构换算,一般水泥碎石半刚性基层造价为:4cm沥青(64元)+7cm沥青下面层(84元)+30cm水泥稳定碎石(69元)以上合计217元/m2,SRX聚合物复合结构:5cm沥青(70元)+15cmSRX聚合物碎石(120元)+15cm水泥稳定碎石(34.5元)以上合计224.5元/m2,考虑全寿命周期费用计算,SRX聚合物复合结构在经济比选中占有一定的优势。从技术比选情况看,SRX聚合物复合结构避免了横向裂缝的出现,保证了路面的美观及功能。

结论:SRX聚合物复合结构是一种新技术、新材料的应用,在开封新区基础设施建设工作中可以在预防道路病害的出现起到一定的作用,但其可行性需在工程实践中及道路使用中做具体的验证,推荐采用试验段方式进行验证,试验段推荐长度为500米。

第五篇:聚合物加工原理习题

第四章

1、举例说明高聚物熔体粘弹性行为的表现。

聚合物流动过程最常见的弹性行为是端末效应和不稳定流动。端末效应包括入口效应和模口膨化效应(离模膨胀)即巴拉斯效应。不稳定流动即可由于熔体弹性回复的差异产生熔体破碎现象。

2、简述高聚物熔体流动的特点。由于高聚物大分子的长链结构和缠绕,聚合物熔体、溶液和悬浮体的流动行为远比低分子液体复杂。在宽广的剪切速率范围内,这类液体流动时剪切力和剪切速率不再成比例关系,液体的粘度也不是一个常此因而聚合物液体的流变行为不服从牛顿流动定律。即非牛顿型流动。

3、聚合物熔体在剪切流动过程中有哪些弹性表现形式?在塑料成型过程中可采取哪些措施以减少弹性表现对制品质量的不良影响? 聚合物熔体在加工过程中的弹性行为主要有入口效应、离模膨胀和熔体破裂。随熔体在口模内停留时间延长,弹性变形得到恢复,离模膨胀呈指数关系减小。故增长口模长度可减小离模膨胀。保证挤出速率在临界挤出速率以下,γc随挤塑温度的增加而变大,但与口模的表面粗糙度无关。因此,升高温度是挤塑成功的有效办法。入口收敛角α↑,γc↓,L/D↑, γc↑减小入口收敛角,增大长径比可增大临界挤出速率。

4、取向度对注塑制品的力学性能有何影响? 非晶聚合物取向后,沿应力作用方向取向的分子链大大提高了取向方向的力学强度,但垂直于取向方向的力学强度则因承受应力的是分子间的次价键而显著降低。团此拉伸取向的非品聚合物沿拉伸方向的拉伸强度,断裂伸长率和冲击强度均随取向度提高而增大。取向结晶聚合物的力学强度主要由连接晶片的伸直链段所贡献,其强度随伸直钱段增加而增大,晶片间伸直链段的存在还使结晶聚合物具有韧性和弹性。通常,随取向度提高,材料的密度和强度都相应提高,而伸长率则逐渐降低

5、聚合物在成型过程中为什么会发生取向?成型时取向产生的原因及形式有哪几种?取向对高分子材料制品的性能有何影响?

成型加工时,受到剪切和拉伸力的影响,高分子分子链发生取向。依受力方向分为:

1、流动取向:系指在熔融成型或浓缩成型中,高分子化合物的分子链、链段或其他添加剂,沿剪切流动的方向排列。次表层的取向度最高。

2、拉伸取向:系指高分子化合物的分子链、链段或结晶等受到拉伸力的作用沿受力方向排列。有单向拉伸和双向拉伸。

影响因素:

1、分子结构(结构简单,柔性的有利于取向)

2、低分子化合物(降低Tg/Tf有利于取向)

3、温度(升温有利取向)

4、拉伸比(增加有利取向)高分子材料经取向后,拉伸强度、弹性模量、冲击强度、透气性等增加,单轴拉伸后,取向方向(纵向)和垂直于取向方向(横向)强度不一样,纵向强度增加,横向减少,对于结晶性高分子,取向拉伸后结晶度增加,玻玻璃化温度增加。

6、入口压力降产生原因有哪些?(1)、物料从料筒进入口模时,熔体粘滞流动流线在入口处产生收敛所引起的能量损失;(2)、在入口处由于聚合物熔体产生弹性变形,因弹性能的储蓄所造成的能量消耗;(3)、熔体流经入口处时,由于剪切速率的剧烈增加而引起速度的激烈变化,为达到稳定的流速分布所造成的压力降。

7、聚合物的结晶度将如何影响注射制品的性能?对结晶度较高的材料,在注射工艺参数的选择中应该注意那些问题?

聚合物结晶度对制品性能影响包括:密度、力学性能、热性能及其他性能等。密度:结晶度高, 分子链排列有序而紧密, 分子间作用力强, 所以密度随结晶度的提高而增大。拉伸强度:结晶度高, 拉伸强度高。弹性模量:弹性模量随结晶度的增加而增大。冲击强度:冲击强度随结晶度的提高而减小。热性能:结晶度增加有利于提高软化温度和热变形温度。光泽度:结晶度提高会增加制品的致密性, 使制品表面光泽度提高, 但由于球晶的存在会引起光波的散射, 而使透明度降低。翘曲:结晶度提高会使体积变小, 收缩率加大。对结晶度较高的塑料设定工艺参数应注意:主要是模温的设定,当聚合物熔体温度高于熔融温度时(T > Tm), 大分子链的热运动显著增加, 当大于分子的内聚力时, 分子就难以形成有序排列而不易结晶;当温度过低时, 大分子链段的运动能很低, 甚至处于冻结状态, 也不容易结晶。所以结晶的温度范围是在T g 和Tm 之间。冷却速度: 冷却速度决定于熔体温度与模具温度的温差。冷却速度快, 结晶时间短, 结晶度低, 制品密度也会降低。注射压力:对于结晶性高聚物而言, 在注塑过程中, 可通过提高注塑压力和注射速率获得较高的结晶度, 当然, 提高的程度应以不发生熔体破裂为限。挤出成型

单螺杆挤出机的挤出系统和传动系统包括哪几个部分? 单螺杆挤出机由传动系统,挤出系统,加热和冷却系统,控制系统等几部分组成。挤出系统和传动系统主要包括传动装置、加料装置、机筒、螺杆、机头和口模等五部分 简述单螺杆挤出机的螺杆的几个功能段的作用.加料段:自物料入口向前延伸的一段称为加料段,在加料段中,物料依然是固体,主要作用是使物料受压,受热前移,螺槽一般等距等深。压缩段:压缩段是指螺杆中部的一段,物料在这一段中受热前移并压实熔化,同时也能排气,压缩段的螺槽体积逐渐减小。均化段:螺杆最后一段,均化段的作用是使熔体进一步塑化均匀,并使料流定量,定压由机头流道均匀挤出,这段螺槽截面是恒等的,但螺槽深度较浅。

什么是螺杆的压缩比,单螺杆挤出机的螺杆通过哪些形式获得压缩比? 螺杆加料段第一个螺槽的容积与均化段的最后一个螺槽的容积之比,它表示塑料通过螺杆的全过程被压缩的程度。

在螺杆的压缩段附加一条螺纹,这两条螺纹把原来一条螺纹形成的螺槽分成两个螺槽,一条螺槽与加料段螺槽相通,用来输送固态物料;另一条螺槽与均化段相通,用于液态物料的输送。这就避免了单螺纹螺杆固液共存于一个螺槽引起的温度波动。如何获得单螺杆挤出机最大的固体输送速率? 结构角度:1增加螺槽深度; 2降低物料与螺杆的摩擦系数; 3增加物料与料筒的摩擦系数; 4选择适当的螺旋角。工艺角度:1增加料筒温度(fb↑);②降低螺杆温度(fs↓)。简述双螺杆挤出机的主要工作特性。

a.强制输送作用 在同向旋转啮合的双螺杆挤出机中,两根螺杆相互啮合,啮合处一根螺杆的螺纹插入另一根螺杆的螺槽中,使其在物料输送过程中不会产生倒流或滞流。无论螺槽是否填满。输送速度基本保持不变,具有最大的强制输送性。

b.混合作用 由于两根螺杆相互啮合,物料在挤出过程中进行着比在单螺杆挤出机中更为复杂的运动,不断受到纵向横向的剪切混合,从而产生大量的热能,使物料加热更趋均匀,达到较高的塑化质量。c.自洁作用 反同旋转的双螺杆,在啮合处的螺纹和螺槽间存在速度差,相互擦离过程中,相互剥离粘附在螺杆上的物料,使螺杆得到自洁。同向旋转的双螺杆,在啮合处两根螺杆的运动方向相反,相对速度更大,因此能剥去各种积料,有更好的自洁作用。简述聚合物物料在单螺杆挤出机中的熔化过程。

由固体输送区送入的物料,在进入熔化区后,即在前进的过程中同加热的料筒表面接触,熔化即从这里开始,且在熔化时于料筒壁留下一层熔体膜,若熔体膜的厚度超过螺翅与料筒间隙,就会被旋转的螺翅刮落,并将其强制积存在螺翅的前侧,形成熔体池,而在螺翅的后侧则为固体床,这样,在沿螺槽向前移动的过程中,固体床的宽度就会逐渐减少,直至全部消失,即完全熔化,熔体膜形成后的固体熔化是在熔体膜和固体床的界面发生的,所需热量一部分来自料筒的加热器,另一部分则来自于螺杆和料筒对熔体的剪切作用。简述聚合物熔体在挤出机均化段的流动形式。熔体在均化段的流动包括四种形式:正流、逆流、漏流和横流。正流,亦称拖曳流动:由于螺杆旋转时螺棱的推挤作用引起物料沿螺槽方向(z方向)向机头的流动,这是均化段熔体的主流。逆流,亦称压力流动:由于机头口模、过滤网等对料流的阻碍作用使料流沿螺槽反向的流动。横流:螺棱的推挤作用和阻挡作用造成的物料在落槽内的往复流动,仅限于在每个落槽内的环流。漏流:物料在螺杆和料筒的间隙沿着螺杆的轴向往料斗方向的流动,它也是由于机头和口模对物料的阻力所产生的反向流动。

什么叫螺杆的长径比?螺杆长径比的增加对物料的加工有何好处?

螺杆有效工作长度与直径之比。n一定时,L/D增加,物料在螺杆中运行时间延长,有利于物料塑化与混合,使升温过程变缓;可使均化段长度增加,可减少逆流和漏流,有利提高生产能力。简述管材挤出的工艺过程及管材挤出的定径方法。

挤出工艺:物料经挤出机塑化、机头口模成型后,经定型装置冷却定型、冷却水槽冷却、牵引、切割,得到管材制品。

定内径:定径套装于挤出的塑料管内,即从机头挤出的管子内壁与定径套的外壁相接触,在定径套内通冷却水,将管子冷却定型。由于定径套的冷却水管是从管芯处插入的,故这种定型法只有直角式机头或偏移式机头的挤出才能使用。定外径:使挤出管子的外壁与定径套内壁相接触而起定型作用。内压法:向管内通入压缩空气的内压法真空法:在管子外壁抽真空法

以尼龙棒材的挤出成型为例,说明挤出成型的工艺过程,并讨论原料和设备结构的选择,工艺条件的控制中应注意的问题。

①原料的选择:尼龙的熔融温度范围窄,黏度偏低,须特别注意选择高黏度的尼龙作为挤出棒材的原料,以保证成型的稳定性;②原料干燥:尼龙极易吸水,挤出前必须充分干燥,否则,会导致尼龙在加工过程中出现降解;③挤出成型:是棒材制造的主要过程,挤出成型中应注意两点,一是挤出速度要慢,否则影响定型;二是温度控制波动范围要小,否则容易造成黏度的较大波动,从而影响挤出稳定性; ④制品的定型与冷却:定型部分要长一些,采用缓慢冷却,若使用急冷,很容易造成棒体内部缩孔;⑤牵伸和后处理:牵引要均匀,牵引切割后的棒材要进行调湿处理,以防止使用过程中的尺寸变化。注射成型

注塑机有几种类型,包括哪些组成部分。

按传动方式:机械式注塑机,液压式注塑机,机械液压式注塑机按操纵方式:手动注塑机、半自动注塑机、全自动注塑机按塑化方式:柱塞式注塑机、预塑式注塑机、橡胶注塑机包括以下:注射装置、合模装置、液压电气控制系统 嵌件预热有何意义。

为了装配和使用强度的要求,理解塑件内常常嵌入金属嵌件。注射前,金属嵌件先放进模具内的预定位段,而后经注射成型才能和塑料成为一个整体。由于塑料与金属的热性能差异很大,两者收缩率不同,因此,有嵌件的塑料制品,在嵌件周围易出现裂纹或制品强度较低。设计制品时应加入制件周围塑料的厚度,同时对金属嵌件进行预热也是必要的。因为嵌件预热可以减小塑料熔体与嵌件的温差,使嵌件周围的塑料熔体冷却比较慢,收缩比较均匀,产生一定的熔料收缩作用,以防止嵌件周围产生较大的内应力。

注射机常用喷嘴类型?从加工塑料性能和成型制品特点来考虑,如何选择喷嘴?

1、通用式喷嘴:是最普遍的形式,这种喷嘴结构简单,制造方便,无加热装置,注射压力损失小,常用于PE、PS、PVC及纤维等注射成型。

2、延伸式喷嘴:是通用是彭罪的改进型,结构也较简单,制造方便,有加热装置,注射压力姜较小,适用于PMMA、POM、PSF、PC等高粘度树脂

3、弹簧针阀式喷嘴:是一种自锁式喷嘴,结构较复杂,制造困难,流程较短,注射压力损失较大,较适用于PA、PET等熔体粘度较低的塑料注射。

试问一旦在注射成型过程中(使用螺杆式注射机)发现未熔的颗粒料,将如何调整工艺参数以获得理想的制品?

注射成型过程中发现未熔的颗粒料,其主要原因是塑化不良。调整工艺参数:可适当提高塑化背压,适当提高料筒温度,延长物料在料筒中停留时间,提高螺杆转速等。随着螺杆转速的增加,橡胶注射成型的硫化时间为何呈现“U”形变化?

随着螺杆转速的提高,机筒内的胶料受到剪切、塑化和均化的效果提高,可获得较高的注射温度,缩短注射时间和硫化时间。螺杆转速过高时,螺杆表面橡胶分子链发生拉伸取向,形成多层取向状态,产生一种收缩力,起到一种钳制作用,使胶料成团抱着螺杆一起转动,产生较严重的“包轴现象”,不能使胶料很好地受到剪切作用,故胶温反而下降,注射温度降低,硫化时间延长。注塑制件后处理主要有哪些方法,各有什么意义。

随着螺杆转速的提高,机筒内的胶料受到剪切、塑化和均化的效果提高,可获得较高的注射温度,缩短注射时间和硫化时间。螺杆转速过高时,螺杆表面橡胶分子链发生拉伸取向,形成多层取向状态,产生一种收缩力,起到一种钳制作用,使胶料成团抱着螺杆一起转动,产生比较严的“包轴现象”,不能使胶料很好的剪切作用,故胶温反而下降,注射温度降低,硫化时间延长。

注塑制件后处理主要有哪些方法,各有什么意义

热处理,调湿处理,热处理的实质:使强迫冻结的分子链得到松他,凝固的大分子链段转向无规位置,从而消除这一部分的内应力。提高结晶度,稳定结晶结构,从而提高结晶塑料制品的弹性模量和硬度,降低断裂伸长率。调湿处理是为了在较短的时间内稳定的尺寸。同时还可以加快达吸湿平衡,从而改善制件的柔曲性和韧性,使它的冲击强度和拉伸强度均有提高。结晶性塑料和非晶塑料在注塑工艺上有何不同。塑化阶段,结晶性塑料的塑化需要更长的时间冷却阶段,结晶性塑料的冷却要严格控制,冷却的快慢直接影响塑件物性 某塑胶公司有如下原料: 聚乙烯A(熔体流动指数为7g/10min);聚乙烯B(熔体流动指数为 0.3g/10min);聚苯乙烯;聚碳酸酯;尼龙66。

–(1)拟生产Φ50cm、高300cm的垃圾桶,可选用什么成型方法,选择上述什么原料(要简述选择的理由)?为了降低生产成本,打算在聚合物中加入30%碳酸钙填料,请问在加入填料后,成型工艺可能做那些调整?

– 选择聚乙烯A,相对B而言,熔体流动指数较高,加工较容易。聚苯乙烯太脆,会被强酸强碱腐蚀,不抗油脂,不适合做垃圾桶,PC和尼龙66原材料费较高,也不适合做垃圾桶。大型垃圾桶可以用挤吹中空塑料成型。– 加入填料后,材料的黏度会有所提高,所以挤出过程中应该提高温度,以降低材料黏度,即降低加工难度。在吹塑时,气体压力不宜过大,避免基体和填料间的应力开裂。拟生产手机外壳,该公司有的工程师认为采用聚苯乙烯较好,而有的工程师认为采用聚碳酸酯较好,你认为选用那种聚合物合适,谈谈理由。若选用聚碳酸酯,在成型过程中应注意那些问题?

– 选用PC较好。聚苯乙烯的化学稳定性比较差,作为手机外壳可以被多种有机溶剂溶解,会被强酸强碱腐蚀,不抗油脂,并且在受到紫外光照射后易变色。质地硬而脆,抗冲击性能较差,作为手机外壳不耐摔,易破裂。

– 聚碳酸酯无色透明,耐热,抗冲击,阻燃,在普通使用温度内都有良好的机械性能。但其耐磨性差,一些用于易磨损用途的聚碳酸酯器件需要对表面进行特殊处理。

– PC遇水容易水解,产生断键、分子量下降和物理强度降低等现象。所以应该严格控制PC中的水分,避免产品出现气泡银纹等,通常在PC加工前需用热风干燥机干燥3-5小时。中空吹塑成型

简述注塑吹塑工艺过程。聚酯透明瓶的成型为例,聚酯的特点是易吸潮,结晶速度慢,为了得到尺寸精度高,透明性好的聚酯透明瓶,一般采用两步法进行注射吹塑成型。第一阶段为型坯的制造(注射法),第二阶段为坯件的吹塑成型。第一阶段型坯的制造(注射法)主要有三个步骤,首先是注射成型前的准备,对聚酯型坯的成型前准备主要是物料的干燥,一般要对聚酯切片在120℃下干燥6-12小时;其次是借助注射机和型坯成型模具进行注射成型;最后是后处理,型坯的后处理仅限于修边,不可进行热处理。第二阶段型坯的吹塑分四个步骤,第一是对型坯加热到Tg以上,进入橡胶态;第二是入模,即把加热好的型坯迅速移入模具中;第三是吹塑成型,即在已加热的型坯吹入压缩空气,型坯即胀大脱离金属管贴于模壁上成型;第四是冷却脱模。

简述挤出吹塑工艺过程。①管坯直接由挤出机挤出,并垂挂在安装于机头正下方的预先分开的型腔中;

②当下垂的型坯达到规定长度后立即合模,并靠模具的切口将管坯切断; ③从模具分型面上的小孔送入压缩空气,使型坯吹胀紧贴模壁而成型; ④保持充气压力使制品在型腔中冷却定型后开模脱出制品。

以尼龙6制备的汽车油杯的成型为例,说明挤出吹塑的工艺过程,并分析原料的选择和成型各阶段的工艺条件控制中应注意的问题。

– 汽车油杯的成型过程包括原料的选择和干燥,挤出型坯,闭模,吹塑,冷却脱模等几个过程。由于尼龙粘度相对较低型坯易下垂,原料的选择应特别注意选择高粘尼龙作为基础原料;同时,由于尼龙粘度对温度敏感性大,挤出吹塑过程应特别注意温度控制。热成型的定义。

热成型是一种以热塑性塑料板材和片材为成型对象的二次成型技术,其法一般是先将板材裁切成一定形状和尺寸的坯件,再将坯件在一定温度下加热到弹塑性状态,然后施加压力使坯件弯曲与延伸,在达到预定的型样后使其冷却定型,经过适当的修整,即成为制品。热成型过程中对坯件施加的压力,在大多数情况下是靠真空和引进压缩空气在坯件两面形成气压差,有时也借助于机械压力或液压力。

要制作一直径达2米、高5米、厚15毫米的大型聚乙烯圆筒,可以采用哪些方法?

– 对于这种大尺寸的圆筒,很难采用挤出法生产,可以采用热成型法生产。如可以用机械 加压法生产两、三块弧形板,通过热熔连接成一个完整筒体。也可以采用加热后卷绕的办法直接卷绕成型。其他成型工艺

铸塑成型有哪几种方式?

铸塑技术包括静态铸塑、嵌铸、离心浇铸以及流延铸塑、搪塑和滚塑等。请分别写出以下制品最多可以用哪些成型加工方法来生产:

– 线缆包覆层:挤出成型– 沙滩鞋底:压延成型、注射成型 – 橡胶的胎面:压出成型、模型硫化

– 小型儿童玩具:热成型、注射成型、挤出成型、搪塑成型 – 尼龙薄膜:压延成型、挤出成型、吹塑成型 – 矿泉水瓶:注射成型、挤出成型 – 塑料水桶:注射成型 – 医用标本:嵌铸成型

简述PTFE成型加工方法原理并说明如何调节其制品性能? – 原理:PTFE 室温下冷压成型坯后再烧结,经冷却后得到制品。(可用图示说明)– 措施:控制冷却速度,调整结晶程度来调节其制品性能。

下列哪些参数与挤出机的产量无关? D A.螺杆直径 B.螺杆长度 C.螺杆转速 D.切粒机转速 当双螺杆挤出机机头压力过高时应该调整 B A.喂料量 B。螺杆转速 C。机筒温度 D。螺杆组合 挤出机的测温装置热电偶的作用是 A A.测量温度 B。控制温度 C.加热 D。冷却 挤出过程中料条表面粗糙是因为 D A.塑料水分太大 B。熔体温度太高 C。挤出速度太低 D。挤出速率太高 挤出过程中料条带有黑点是因为 AB A.挤出温度太高 B.机头口模处有不干净的地方 C。挤出温度太低 D。原料太脏 物料塑化时的热量来源为 AB A.料筒传热 B。物料内部摩擦 C。物料反应热 D。环境热量 挤出成型的控制系统不包括 D A.电气传动系统 B。温度控制 C。压力控制 D。喂料控制 双螺杆有清除机筒、螺杆表面物料的能力,这种能力称为 A A.自洁 B。自转 C。扫堂 D。振动 塑料熔体指数越大,其流动就越容易,所以挤出量随塑料熔体指数的增加而 B A.降低 B。增加 C。无影响 D。以上都错

结晶会提高制品的许多重要性能,也会使(D)性能下降。A.密度 B。拉伸强度 C。刚度 D。透明

在加工过程中影响熔体的热稳定性及制品的耐化学试剂性和渗透性等的聚合物结构是 A A.聚合物分子中的单个原子与官能团 B。分子量 C。分子柔性 D。分子间键合 在中空吹塑成型过程中,可确定型坯成型难易程度的聚合物结构是 B A.分子柔性 B。分子量 C。结晶与取向 D。分子间键合 不管是哪类添加剂,在选用时应注意 ABCD A.相容性 B。协同性 C。功能性 D。经济性 外润滑剂加入分子中是为了 ABD A.降低塑化熔料温度 B。减少熔料与设备表面的摩擦力 C.减少熔料间的摩擦 D。阻止熔料粘在设备金属表面上 在吹塑制品过程中,若型坯的壁厚膨胀太大会造成 D A.过多的飞边 B。制品上出现褶皱 C。制品壁会太薄 D。原料的浪费 在挤出成型中会产生熔体破裂现象的因素有 D A.挤出速率 B。熔体温度 C。机头结构 D。以上都是 通过()可消除挤出过程中出现的熔体破裂现象。AD A.提高机头温度 B。降低机头温度 C。提高挤出速度 D。降低挤出速度 在中空吹塑成型制品中,影响制品收缩率的因素有 ABCD A.塑料的种类 B。型坯的熔体温度 C。制品的壁厚 D。模具的温度 吹塑容器的底部为(),可以很好的补偿收缩率。

A.凹形 B。凸形 C。平形 D。以上三种均可

下载聚合物(polymer)的基础知识(5篇)word格式文档
下载聚合物(polymer)的基础知识(5篇).doc
将本文档下载到自己电脑,方便修改和收藏,请勿使用迅雷等下载。
点此处下载文档

文档为doc格式


声明:本文内容由互联网用户自发贡献自行上传,本网站不拥有所有权,未作人工编辑处理,也不承担相关法律责任。如果您发现有涉嫌版权的内容,欢迎发送邮件至:645879355@qq.com 进行举报,并提供相关证据,工作人员会在5个工作日内联系你,一经查实,本站将立刻删除涉嫌侵权内容。

相关范文推荐

    主要3D打印聚合物介绍

    3D打印材料 3D打印技术的快速发展使其成为近几年国内外快速成形技术研究的重点。目前,美国、欧洲和日本都站在21世纪制造业竞争的战略高度,对快速成形技术投入了大量的研究,使3D打印......

    个人主要先进事迹-中国聚合物网(★)

    个人主要先进事迹 丁瑞军同志主要先进事迹丁瑞军,男,1964年出生,中共党员,硕士,现任中国科学院上海技术物理研究所材料器件研究中心主任,研究员。长期从事红外焦平面技术研究。负......

    聚合物防水涂料外墙施工方案

    外墙JS聚合物防水涂料施工方案 一、工程概况: 该工程属新建工程。鉴于我公司工程人员对该工程作现场了解,根据我公司多年实践及甲方和设计要求,再加上南方高温多雨防水要求高的......

    液晶聚合物项目商业计划书

    第一章 摘要 一、项目背景 二、项目简介 三、项目竞争优势 第二章 项目公司概况 一、公司基本信息 二、公司治理与管理团队 (一)组织结构 (二)管理团队 三、公司主营业务 四、公......

    聚合物基纳米复合材料研究进展

    聚合物基纳米复合材料研究进展 摘要: 针对聚合物基纳米复合材料的某些热点和重点问题进行了总结和评述,并讨论了碳纳米管、石墨烯及纳米增强界面等以增强为主的纳米复合材料......

    聚合物材料的动态力学性能测试

    DMA 测量形状记忆高聚物性能原理及应用 聚合物材料的动态力学性能测试 在外力作用下,对样品的应变和应力关系随温度等条件的变化进行分析,即为动态力学分析。动态力学分析能得......

    国家标准《聚合物水泥防水涂料》国家标准通过审查!

    国家标准《聚合物水泥防水涂料》国家标准通过审查! 来源:中国物资采购网时间:2008年10月30日10时53分 【大 中 小】 全国轻质与装饰装修建筑材料标准化技术委员会于2008年10月......

    JS聚合物防水涂料施工方案

    JS聚合物防水涂料施工方案 1、基层处理:施工表面必须干燥;对施工表面的浮灰、杂质、油污必须清理干净,对凸凹量超过基准面±10mm的凸起坑洼和疏松、蜂窝部位用纳米硅抗渗堵漏剂......