天线测试方法介绍

时间:2019-05-12 18:41:19下载本文作者:会员上传
简介:写写帮文库小编为你整理了多篇相关的《天线测试方法介绍》,但愿对你工作学习有帮助,当然你在写写帮文库还可以找到更多《天线测试方法介绍》。

第一篇:天线测试方法介绍

天线测试方法介绍

天线测试方法介绍

对天线与某个应用进行匹配需要进行精确的天线测量。天线工程师需要判断天线将如何工作,以便确定天线是否适合特定的应用。这意味着要采用天线方向图测量(APM)和硬件环内仿真(HiL)测量技术,在过去5年中,国防部门对这些技术的兴趣已经越来越浓厚。虽然有许多不同的方法来开展这些测量,但没有一种能适应各种场合的理想方法。例如,500MHz以下的低频天线通常是使用锥形微波暗室(Anechoic Chamber),这是20世纪60年代就出现的技术。遗憾的是,大多数现代天线测试工程师不熟悉这种非常经济的技术,也不完全理解该技术的局限性(特别是在高于1GHz的时候)。因此,他们无法发挥这种技术的最大效用。随着对频率低至100MHz的天线测量的兴趣与日俱增,天线测试工程师理解各种天线测试方法(如锥形微波暗室)的优势和局限的重要性就愈加突出。在测试天线时,天线测试工程师通常需测量许多参数,如辐射方向图、增益、阻抗或极化特性。用于测试天线方向图的技术之一是远场测试,使用这种技术时待测天线(AUT)安装在发射天线的远场范围内。其它技术包括近场和反射面测试。选用哪种天线测试场取决于待测的天线。

为更好地理解选择过程,可以考虑这种情况:典型的天线测量系统可以被分成两个独立的部分,即发射站和接收站。发射站由微波发射源、可选放大器、发射天线和连接接收站的通信链路组成。接收站由AUT、参考天线、接收机、本振(LO)信号源、射频下变频器、定位器、系统软件和计算机组成。

在传统的远场天线测试场中,发射和接收天线分别位于对方的远场处,两者通常隔得足够远以模拟想要的工作环境。AUT被距离足够远的源天线所照射,以便在AUT的电气孔径上产生接近平面的波阵面。远场测量可以在室内或室外测试场进行。室内测量通常是在微波暗室中进行。这种暗室有矩形的,也有锥形的,专门设计用来减少来自墙体、地板和天花板的反射(图1)。在矩形微波暗室中,采用一种墙面吸波材料来减少反射。在锥形微波暗室中,锥体形状被用来产生照射。

图1:这些是典型的室内直射式测量系统,图中分别为锥形(左)和矩形(右)测试场。

近场和反射测量也可以在室内测试场进行,而且通常是近场或紧缩测试场。在紧缩测试场中,反射面会产生一个平面波,用于模拟远场行为。这使得可以在长度比远场距离短的测试场中对天线进行测量。在近场测试场中,AUT被放置在近场,接近天线的表面上的场被测量。随后测量数据经过数学转换,即可获得远场行为(图2)。图3显示了在紧缩测试场中由静区上的反射面产生的平面波。

图2:在紧缩测试场,平坦波形是由反射测量产生。

一般来说,10个波长以下的天线(中小型天线)最容易在远场测试场中测量,这是因为在可管理距离内往往可以轻松满足远场条件。对大型天线(Electrically Large Antenna)、反射面和阵列(超过10个波长)来说,远场通常在许多波长以外。因此,近场或紧缩测试场可以提供更加可行的测量选项,而不管反射面和测量系统的成本是否上升。

假设天线测试工程师想要在低频下进行测量。国防部门对此尤感其兴趣,因为他们需要研究诸如在低频下使用天线等事项,以便更好地穿透探地雷达(GPR)系统中的结构(针对工作在400MHz范围的射频识别(RFID)标签),以及支持更高效的无线电设备(如软件定义无线电(SDR))和数字遥感无线电设备。在这种情况下,微波暗室可以为室内远场测量提供足够好的环境。

矩形和锥形是两种常见的微波暗室类型,即所谓的直接照射方法。每种暗室都有不同的物理尺寸,因此会有不同的电磁行为。矩形微波暗室处于一种真正的自动空间状态,而锥形暗室利用反射形成类似自由空间的行为。由于使用了反射的射线,因此最终形成的是准自由而非真正自由的空间。

众所周知,矩形暗室比较容易制造,在低频情况下的物理尺寸非常大,而且随着频率的提高工作性能会更好。相反,锥形暗室制造起来较复杂,也更长一些,但宽度和高度比矩阵暗室要小。随着频率的提高(如2GHz以上),对锥形暗室的操作必须十分小心才能确保达到足够高的性能。

通过研究每种暗室中使用的吸波措施可以更清楚地认识矩形和锥形暗室之间的区别。在矩形暗室中,关键是要减小被称为静区(QZ)的暗室区域中的反射能量。静区电平是进入静区的反射射线与从源天线到静区的直接射线之差,单位是DB。对于给定的静区电平,这意味着后墙要求的正常反射率需等于或大于要达到的静区电平。

由于矩形暗室中的反射是一种斜入射,这会使吸波材料的效率打折扣,因此侧墙非常关键。但是,由于存在源天线的增益,只有较少的能量照射到侧墙(地板和天花板),因此增益差加上斜入射反射率必须大于或等于静区反射率水平。

通常只有源和静区之间存在镜面反射的侧墙区域需要昂贵的侧墙吸波材料。在其它的例子中(例如在位于源后面的发射端墙处),可以使用更短的吸波材料。在静区周围一般使用楔形吸波材料,这样有助于减少任何后向散射,并防止对测量造成负面影响。

锥形暗室中采用什么吸波措施呢?开发这种暗室的最初目的是为了规避矩形暗室在频率低于500MHz时的局限性。在这些低频频段,矩形暗室不得不使用低效率天线,而且必须增加侧墙吸波材料的厚度来减少反射并提高性能。同样,必须增加暗室尺寸以适应更大的吸波材料。采用较小的天线不是解决之道,因为更低的增益意味着侧墙吸波材料仍必须增大尺寸。

锥形暗室没有消除镜面反射。锥体形状使镜面区域更接近馈源(源天线的孔径),因此镜面反射成为照射的一部分。镜面区域可以用来通过形成一组并行射线入射进静区,从而产生照射。如图3所示,最终的静区幅度和相位锥度接近自由空间中的期望值。

图3:在紧缩测试场中由静区上的反射面产生的平面波。

使用阵列理论可以更清楚地解释锥形暗室的照射机制。考虑馈源由真实的源天线和一组映像组成。如果映像远离源(在电气上),那么阵列因子是不规则的(例如有许多纹波)。如果映像比较靠近源,那么阵列因子是一个等方性图案。对位于(远场中的)AUT处的观察者来说,他看到的源是源天线加上阵列因子后的图案。换句话说,阵列将看起来像是自由空间中的独立天线。

在锥形暗室中,源天线非常关键,特别是在较高频率时(如2GHz以上),此时暗室行为对细小的变化更加敏感(图4)。整个锥体的角度和处理也很重要。角度必须保持恒定,因为锥体部分角度的任何变化将引起照射误差。因此测量时保持连续的角度是实现良好锥形性能的关键。

图4:在典型的锥形暗室中,吸波材料的布局看起来很简单,但离源天线较近的区域(锥形暗区域)非常重要。

与矩形暗室一样,锥形暗室中的接收端墙体吸波材料的反射率必须大于或等于所要求的静区电平。侧墙吸波材料没有那么重要,因为从暗室立方体部分的侧墙处反射的任何射线会被后墙进一步吸收(后墙处有性能最好的吸波材料)。作为一般的“经验之谈”,立方体上的吸波材料的反射率是后墙吸波材料的一半。为减少潜在的散射,吸波材料可以呈45度角或菱形放置,当然也可以使用楔形材料。

表中提供了典型锥形微波暗室的特性,可以用来与典型的矩形暗室作比较。较少量的锥形吸波材料意味着更小的暗室,因此成本更低。这两种暗室提供基本相同的性能。不过需要注意的是,矩形暗室要想达到与锥形暗室相同的性能,必须做得更大,采用更长的吸波材料和数量更多的吸波材料。

图5:一个用于天线测试的200MHz至40GHz小型锥形暗室。

虽然从前面的讨论中可以清楚地知道,在低频时锥形暗室可以比矩形暗室提供更多的优势,但测量数据表明锥形暗室具有真正的可用性。图5 是一个200MHz至40GHz的小型锥形暗室,外形尺寸为12×12×36英尺,静区大小为1.2米。这里采用了一个双脊宽带喇叭天线照射较低频率的静区。然后利用安捷伦(Agilent)公司的N9030A PXA频谱分析仪以一个对数周期天线测量静区。在200MHz点测得的反射率大于30Db(如图6所示)。图7 和 图8分别显示了馈源顶部的源天线和静区中的扫描天线。

图6:从图中可以看出,在200MHz点测得的反射率大于30dB。

图7:图中测试采用双脊喇叭作为源。

有许多像APM和HiL那样的不同方法可进行天线测量。测量技巧在于选择正确的天线测试场,具体取决于待测的天线。对于中型天线(10个波长大小),推荐使用远场测试场。另一方面,锥形暗室可以为低于500MHz的频率提供更好的解决方案。它们也可以用于2GHz以上的频率,但操作时需要备加小心才能确保获得足够好的性能。通过了解锥形微波暗室的正确使用,今天的天线测试工程师可以使用非常有用的工具开展100MHz至300MHz以及UHF范围的天线测量。

图8:图中测试采用一个对数周期天线来扫描QZ以测量反射率。

第二篇:雷达阵列天线介绍

■开课目的

“阵列天线分析与综合”是电子信息工程专业电磁场与微波通信方向的专业选修课程。课程的任务是使学生掌握阵列天线的基本理论、基本分析与综合方法,掌握单脉冲阵列、相控阵扫描天线的基本理论和概念、以及阵列天线的优化设计思想,培养学生分析问题和解决问题的能力,为今后从事天线理论研究、工程设计和开发工作打下良好的基础。

■课程要求

● 约有五次作业 ● 考核

平时成绩占20%。包括平时作业,出勤情况。期末考试成绩占80%(一页纸开卷)

雷达阵列天线简介

1、“AN/SPY—1”S波段相控阵雷达

是海军“宙斯盾”(Aegis)武器系统中的一部分,由RCA公司研制。它有四个相控阵孔径,提供前方半空间很大的覆盖范围。

接收时它使用带68个子阵的馈电系统,每个子阵包含64个波导辐射器,总共有68×64=4352个单元。

发射时,子阵成对组合,形成32个子阵,每个子阵128个单元,总共32×128=4096辐射单元。

移相器为5位二进制铁氧体移相器,直接向波导辐射器馈电。为了避免相位量化误差引起的高副瓣电平,后来移相器改为7位二进制移相器,合成的相控阵由强制馈电功分网络馈电,辐射单元也改为4350个,单脉冲的和、差波瓣及发射波束均按最佳化设计。

AN/SPY—1天线正在进行近场测试(RCA公司电子系统部提供)目前该系统安装在导弹巡洋舰上

导弹巡洋舰上的AN/SPY—1系统

2、爱国者(PATRIOT)多功能相控阵雷达

是Raytheon公司为陆军研制的一种多功能相控阵雷达系统。其天线系统使用光学馈电的透镜阵列形式。和差波瓣分别通过单脉冲馈源达到最佳。孔径呈圆形,包含大约5000个单元,采用4位二进制铁氧体移相器和波导型辐射器单元。它安装在车辆上,并可平叠以便于运输。

爱国者多功能相控阵雷达天线(Raytheon公司提供)

3、机载预警和控制系统(AWACS)世界上第一个具有超低副瓣的作战雷达天线是由西屋电气公司为AWACS系统研制的。它取得成功后,便有很多产品紧随其后,而且常常得到比规定的副瓣电平还要低的副瓣。AWACS雷达天线是波导窄边缝隙阵列,有4000多个缝隙单元。该系统可用于空中监视的预警机,如下图所示。它在可一起转动的圆形天线罩内做机械旋转,在垂直面上用28个铁氧体精密移相器实现相控扫描。

AWACS预警机雷达天线波导窄边缝隙阵列(西屋公司提供)

4、电子捷变雷达

西屋电气公司以前为机载应用研制了这种X波段相控阵雷达。后来此系统演化为B1-B轰炸机上的AN/APQ—164雷达,如下图所示。该图显示正在装配的这种雷达天线,它有1526个圆波导口辐射单元,组成的阵列为椭圆形孔径,每个单元都带有可逆铁氧体移相器,可以实现空间二维扫描。该系统有形成波束变化的灵活性,其口径相位的变化可以实现尖锐的笔形波束、余割平方波束、垂直扇形波束。极化可从垂直极化改变为圆极化。这是通过每个单元的可开关的法拉第旋转器结合铁氧体/4薄片来实现。天馈系统还包括故障定位和隔离系统,还有检测、校验系统,这可通过合成信号的变化来确定合适的相位分布(校正馈电系统的误差),检验激励幅度,并检查极化分集的功能。

正在装配的AN/APQ—164相控阵雷达天线(西屋公司提供)

5、多功能电扫描自适应雷达(MESAR)

这是一部具有挑战性的S波段固态相控阵雷达,它由英国海军部研究中心和Plessey雷达公司共同研制。阵面为1.8m×1.8m孔径,共有918个波导型辐射单元,如下图所示。采用4位二进制移相器,功率放大器为分立器件,有22%的带宽,2W输出功率。接收时信号在模块中被前置放大和移相,并在波束形成器中聚集成16个子阵,每一子阵都有各自的接收机,这些接收机的输出用8位A/D转换器数字化,提供强大的自适应置零能力。

MESAR固态相控阵雷达天线(Plessey公司提供)

6、AN/TPS-70多波束阵列雷达

这是一种不用移相器相控扫描的低副瓣阵列,在方位上为低副瓣波束并采用机械旋转扫描,在俯仰面上实现多个波束以覆盖空间较大的范围。天线使用36根水平波导管,每根波导管上有94个缝隙以形成主瓣宽度为1.6o的方位窄波束。在俯仰面上,发射时激励22根波导管,产生20o的俯仰波束,该波束为赋形波束,低仰角时的增益高,高仰角时的增益低;接收时来自全部36根波导的能量结合在一起产生6个同时波束以覆盖0~20o的仰角范围。6个波束的仰角宽度从最低波束的2.3o变化到6o。这6个波束均有自己的接收机,通过比较这些波束中的能量可提供仰角的单脉冲信息。

同时多波束的优点是,在强杂波环境中它能提供实现信号处理功能所需的时间。该雷达可运输。其作用距离240英里,有3MW的峰值功率和5KW的平均功率。该雷达及其改型已在全世界广泛使用。

AN/TPS-70多波束阵列雷达天线(西屋公司提供)

7、AN/TPQ-37武器定位雷达

又称火力搜索雷达,为美军陆军装备,由休斯(Hughes)飞机公司研制。用来探测炮弹弹道,并反向寻找其发射点。该雷达使用有限扫描相控阵,它能在方位上提供宽扫描角,在仰角上提供有限的扫描角,有限扫描范围将大大减少移相器数目。系统只使用360个二极管移相器,每个移相器控制阵列垂直线上的6个辐射单元。其峰值功率为4KW,平均功率为165W。

该雷达为单脉冲体制,其馈电网络可形成和波束、方位差波束和俯仰差波束,馈电网络由空气带状线和波导功分器组成。天线尺寸8×12×2(ft)3。在美国和其他国家和地区,以装备了数十套这种雷达。

AN/TPQ-37武器定位雷达(Hughes公司提供)

8、铺路爪(Pave Paes)雷达

该雷达由Raytheon公司研制。它用于提供弹道导弹的预警,也可实现对卫星的跟踪,它是超高频(UHF)固态相控阵雷达。一套系统包含孔径相互倾斜120o的两部雷达,可提供240o的总观察范围,它可检测到3000英里处的10m2的目标。

铺路爪超高频固态相控阵雷达天线(Raytheon公司提供)

9、丹麦眼镜蛇(Cobra Dane)雷达

是Raytheon公司研制的一部庞大的L波段相控阵雷达,它是为收集国外洲际导弹试验情报而研制和部署的,其雷达天线如下图所示。它有一些与众不同的特性,它是一种稀疏阵列,直径为95ft,共有34768个单元,其中15360个单元是有源单元,其余是无源单元。有源单元分成96个子阵,每个子阵有160个辐射器。发射时由行波管馈电,加到天线上的总峰值功率为15.4MW,其频带宽度为200MHz,有2.5ft的距离分辨能力,以探测目标的尺寸和形状。

丹麦眼镜蛇L波段相控阵雷达天线(Raytheon公司提供)

10、“朱迪”眼镜蛇雷达

是一种独特的大型相控阵雷达,由Raytheon公司为美国空军研制。用以收集国外弹道导弹实验的数据。他安装在美国舰船“膫望岛”的转台上,如下图所示。阵列直径为22.5ft,包含12288个单元,由16个行波管馈电

美国舰船“膫望岛”上的“朱迪”眼镜蛇大型可旋转相控阵雷达天线

(Raytheon公司提供)

11、空中预警机雷达

又叫机载搜索雷达。最初是为远程侦察机探测舰艇研制的,第二次世界大战后期美海军研制了几种机载预警雷达,用来探测舰艇雷达天线探测不到的低空飞行的飞机。在增大对空、对海面目标的最大探测距离方面,机载雷达的优势是显而易见的。因为海面上高度为100ft的天线,其雷达视线距离只有12英里,而高度为10000ft的飞机,雷达视线距离为123英里。

日本神风突击队的袭击造成美国多艘哨舰的损失,激发了机载预警雷达的设想,后来这种系统发展成为一种用于洲际防空的边界预警巡逻机。

下图为航空母舰的舰载E-2C预警机。

E-2C预警机 12、3D雷达概念

又叫三坐标雷达,这种雷达可同时测量目标的3个基本位置坐标(距离,方位和仰角)。3D雷达是一种警戒雷达,其天线在方位上机械旋转,以测量目标的距离和方位,在仰角上扫描一个或多个波束,或者通过邻接的固定仰角波束来获得目标的仰角。

按照怎样形成仰角波束和怎样在仰角上的扫描波束,3D雷达可分为堆积多波束雷达,频扫雷达、相扫雷达,机械扫描雷达和数字波束形成雷达。

13、S713Martello堆积多波束3D雷达

它是L波段可移动的包含8个波束的堆积多波束雷达,如下图所示。其平面阵列高10.6m,宽6.1m,共有60行,每行32个辐射单元,装有60个接收机用以把接收到的射频信号下变频为中频。方位波束宽度为2.8o,机械旋转,转速为3圈/秒。仰角上,发射时为余割平方方向图,覆盖范围30 o,接收时形成并处理8个堆积窄波束。发射峰值功率为3MW,平均功率8KW。这种雷达为警戒雷达。对100英里处的小型战斗机,其测高精度达1000ft(约300m)。

S713Martello堆积多波束3D雷达(Marconi公司提供)

14、AN/SPS-52C频扫3D雷达

频率扫描雷达是指天线辐射波束指向随频率改变而改变的雷达。应用于空中监视任务的3D雷达技术之一是频率扫描。频扫阵列是利用一段波导传输线的相位频率相关特性来扫描笔形波束。馈电波导在阵列的一侧折叠成蛇形状,对波导行波阵进行耦合馈电,如下图所示。改变发射或接收频率在口径上产生不同的相位变化剃度,从而使天线辐射波束指向发射偏转。实际应用的频扫阵列天线如下图所示的AN/SPS-52C雷达天线。

频扫雷达的测量精度比不上堆积多波束雷达和相扫单脉冲雷达。其原因之一是为了控制波束指向需要改变系统工作频率,从而导致目标回波幅度的波动,降低了多波束目标回波中可用的目标角度信息的质量。

具有蛇形波导馈电的波导窄变缝隙阵列及AN/SPS-52C舰载频扫3D雷达

(Hughes公司提供)

15、AN/FPS-117相扫3D雷达

方位上采用机械旋转扫描,仰角上采用相控扫描来进行目标的三坐标定位,是3D雷达测高技术中最为灵活的雷达。可以和相扫阵列一起使用的测高技术包括各种相参同时波束转换技术(单脉冲、和相位干涉等),以及幅度比较顺序波束转换技术。相控阵雷达在当今武器市场中变得越来越普遍,这要归因于目标和环境的威胁不断地升级和变化。

AN/FPS-117固定站固态相扫3D雷达(通用电气公司提供)AN/FPS-117是典型的S波段相扫3D雷达,如上图所示。其天线为平面阵列,共有44行带状线馈电的水平振子,每行有30个单元。44行中的每一行包含它自己的固态收发组件。该收发组件由峰值功率为1KW的固态发射机、集成电源、低噪声接收机、移相器、收发开关和逻辑控制单元组成,且全部安装在天线上。平面阵列的馈源结构在接收时可产生双轴单脉冲波束集,即一个和波束与两个差波束。一个附加的列馈为最低角波束位置提供了特殊的低仰角测高能力。馈源产生一对和波束被小心地放置在某仰角上并作为单脉冲对其进行处理,采用此技术使多路径的影响为最小。

16、其他雷达天线

波导宽壁纵缝阵

低副瓣的波导窄壁斜缝阵(机载预警雷达天线)

机载雷达天线及馈电网络

机场监视雷达天线及馈电网络形式

圆环阵列天线

多普勒角度扫描缝隙阵列

圆柱形频率扫描阵列

俯视图

A方向侧视图

B方向侧视图

圆锥共形阵列(单元为直缝、斜缝和横缝)

俯视图

A方向侧视图

B方向侧视图

圆锥共形阵列(单元为“十”字缝)

弹头锥体上的“十”字缝隙阵,及单元形式

球形开关阵列

双极化C波段微带贴片天线

八木天线阵列

对称振子天线阵列

第三篇:相控阵雷达天线近场多任务测试系统设计方法论文

【摘要】针对相控阵雷达天线近场多任务测试系统设计问题,从系统设计的功能需求进行分析,设计系统层次架构与功能模块等,进而构建多任务测试系统,以提高天线近场测试效率。

【关键词】相控阵雷达;天线;多任务;测试系统;设计方法

近场天线测试系统作为相控阵雷达天线性能测试的主要手段,该系统随着相控阵天线技术的完善,其测试效率也不断提升。基于应用需求,近场天线测试系统实现多任务测试是发展的主要趋势,目前该系统也已经被广泛的推广应用。

一、相控阵雷达天线概述

相控阵雷达包括有源电子扫描阵列雷达、无源电子扫描阵列雷达,其主要是通过改变天线表面的阵列波束合成形式,进而改变波束扫描方向的雷达。此类型的雷达天线的侦测范围较为广泛,利用电子扫描,能够快速的改变波束方向,精准的测量目标信号。

二、近场天线测试系统建设功能需求分析

近场天线测试系统设计,需要做好软件需求分析,此系统功能需求如下:1)要能够满足全测试周期可配置,以及软件通用化需求。此功能需求的实现,责任需要构建众多数据源输入接口,配置通信协议以及软件界面等,面向各类相控阵天线测试,进而达到通用化需求目标。2)实现多任务测试。相控阵雷达天线的不断发展,使得传统的单任务测试方法,已经难以满足天线测试需求,基于此进行多任务测试方法设计,在测试探头单独扫描条件下,采取高密度测试方法,即多个频率与波束等,实现高效测试。

三、相控阵雷达天线近场多任务测试系统设计方法

多任务测试系统主要是利用软件,进行测试参数预设,包括测试频率、波束角度、扫描架运用范围等。利用数据处理软件,进行分解转换测试,计算各采样点数据,获取天线方向图性能参数,最后显示图像。3.1架构设计方法相控阵雷达天线近场多任务测试系统架构设计,其是基于构件化设计思想,利用软件构成元素,由标准接口负责提供特定服务,以支持系统开发。系统架构中的构件库,主要分为数据采集类、三维扫描控制补偿类、方向图与数据处理类,构件存在形式为COM、dll等,使用构件管理工具,则能够进行动态加载与管理,进而在系统开发过程中,进行构件注册与复制,实现版本控制。利用GetTypes静态方法,来获取Assembly内的构件类型,判断构件类型,看其是否为构件接口所派生的,若是则运用Activator动态方法,即CreateInstan函数,来获取构件,实现动态加载[1]。3.2多任务设计方法相控阵雷达天线近场多任务测试系统设计时,需要进行多任务设计。相控阵天线的各波束状态,主要是天线波控分系统控制,天线接收波控指令包,由波控分系统进行分解处理,对天线上的波束扫描进行控制。近场天线多任务测试设计,其核心思想是实现天线实时扫面测试,同时控制天线频率与波束等的切换,进而实现实时同步切换。多任务测试系统运行的过程中会产生大量的数据,因此为了避免数据访问冲突,则采取创建多线程的方法,进行数据处理,将其分为数据处理与显示型、接收机测试型、伺服控制型线程。线程创建后,将会独立运行,各线程将会在其自身的时间段内,使用CPU,实现轮流执行与并发执行。3.3系统接口设计方法相控阵雷达天线近场多任务测试系统功能实现,数据源要与数据服务层实现交互,同时还需要确保数据服务层和客户端实现交互。天线近场测试系统主要是利用数据源插件,来封装底层API驱动或者通讯协议,基于标准函数,形成动态链接库,以实现测试的实时性。系统数据服务层的功能为插件容器,当系统运行时能够实现快速配置查找,动态的将插件放入系统构架中,或者从构架中取出,实现系统功能配置。利用TCP网络通信,实现数据服务层和客户端的信息交互,用户可以登录账号,通过身份验证后,完成界面文件下载,由客户端负责发送TCP连接请求,基于通讯协议,进而实现交互。3.4控制器设计相控阵雷达天线近场多任务测试系统控制器设计,主要包括雷控信号仿真电路、GPIB接口电路、信号转换电路与电源等。系统运行前,控制器通过GPIB接口电路,来接收系统中心的指令,记录测试所需要的频率码与波位码等,将其传送给雷控信号仿真电路,基于定时协议,实现解码与缓存。开始测试后,信号电路接收外触发信号,基于各测试点,将雷控与定时信号传送给天线,实现波位切换,同时而仿真电路能够和雷控信号、定时信号协调发出信号。最后协调控制天线测试所需要的各种信号,实现多任务测试[2]。3.3结束语相控阵雷达天线近场多任务测试系统设计,需要合理设计系统架构,以及多任务测试功能、接口设计等,以确保系统能够实现多任务测试与可拓展性,提高天线测试的效率。

参考文献

[1]樊会涛,闫俊.相控阵制导技术发展现状及展望[J].航空学报,2015(09):2807-2814.[2]金林,刘小飞,李斌,刘明罡,高晖.微波新技术在现代相控阵雷达中的应用与发展[J].微波学报,2013(Z1):8-16.

第四篇:无线通信产品FCC认证及测试方法介绍

无线通信产品FCC认证及测试方法介绍

凡进入美国的通信电子类产品都需要进行FCC认证,即通过由FCC直接或者间接授权的实验室根据FCC技术标准进行检测和批准。

1、FCC认证申请的基本要求

FCC对无线通信产品的要求主要包含在CFRTitle47的Part2和Part24两部分中,而工作在1920MHz-1930MHz频段的个人通信业务(PCS)相关的设备则在Part15的subpartD中作了规定,其他相关信息如费用要求、管理要求等则在Part0和Part1中描述。

基本申请信息

申请人需要准备的基本信息主要包括三类:申请人及申请产品的基本信息、产品规格和认证信息。申请人必须清晰、明确地回答有关问题,对不属于申请范围的内容要明确标注。基本信息通过网络以电子文档的形式提交给FCC。

基本信息

这些信息包括如下几方面:

(1)申请人的基本信息,如完整的法人名称、FCC注册码、通信地址、联系人信息等。对美国以外的国家或地区的申请人,可以直接获取FCC的产品授权,也可以指定由美国国内的代理人来获取产品授权。FCC要求申请人提供的联系人分为技术相关的联系人和法律、经济等非技术相关的联系人。

(2)申请人代码及产品代码。

(3)保密信息,即确定申请中涉及的信息是否有保密要求。如果不作保密要求,则其他人也可以看到申请中的相关信息,有时候这可能会造成产品关键信息的泄漏。因此从考虑申请人技术保密的要求出发,FCC允许申请人提出对部分或全部信息实行保密的要求。

(4)延迟发布产品授权信息,即确定产品授权是否需要延迟。出于某些原因(如保密等),申请人可以选择一个产品授权生效日期,在这个日期之前,所有申请信息将被保密。

(5)确定申请产品的类别。对于无线通信产品,一般属于PCB,PCE或者PUB等,视具体产品而定。

(6)说明申请类别。申请可以是针对新产品的申请。也可以是已获得授权的产品的FCCID、第Ⅱ类或者第Ⅲ类的变更申请。

(7)对于复合产品及作为其他复杂系统组成部分的产品,还需要确定除本申请之外的其他相关认证要求。

(8)提供测试实验室的信息。FCC网站上列出了所有具有FCC测试资质的实验室名称,因此申请人所提供的测试实验室也只能是表单上的某一家。

产品规格

提交申请时,必须对产品的规格做最基本的说明,包括产品工作的频率范围、额定输出功率、频率容限、发射类型、微处理器型号、产品所依据的法规、产品的标准化描述等。对发射类型的说明,FCC要求用三字符方法,即用已定义好的三个代表字符和表示方法,说明调制类型、信号特性和传输的信息的类型,并说明发射的占用带宽和必要带宽。占用带宽是指发射的总平均功率的99%所占用的带宽,且要求最低频率以下和最高频率以上部分所占的功率均为0.5%,对于多信道频率分割系统,此规定可以按有效性原则进行处理。必要带宽指在确保传输信息的速率和质量要求的前提下,占用带宽的最小值,其表示方法也遵循一套规定的体系。最后还必须对产品的一些重要特征进行描述。FCC规定了一系列标准化的描述语句,申请人以此为参考对申请的产品进行描述。

以上的这些信息必须在72小时内提交,否则,所有的相关信息将会被系统删除,下次申请时需重新提交所有的信息。确认信息

确认信息是一份确认书,即申请人对所有申请的信息的真实性进行最后的确认。如果提交的信息中,存在弄虚作假成分,申请人将会受到罚款、监禁、撤销执照、没收等处罚。申请人还要承诺满足管制药物相关的规定。

技术报告

申请人除了提供基本信息外,还必须提供一份技术报告。技术报告中至少应包含以下内容:

(1)产品制造商和认证申请人的名称和地址。

(2)FCCID。

(3)最终产品的安装和操作说明书。对于还处于原型机阶段的产品,如果暂时还不能提供最终的说明书,可以先提供草案,待完善之后再提供正式的说明书。

(4)发射类型及频率范围。

(5)正常工作时的功率值范围,或者功率级,以及相应法规规定的限值。如果功率是可调的,还要说明调节方法。

(6)正常工作时,馈入到射频放大电路的电压和电流值,并说明在正常功率或特定功率级范围内功率值的调节程序。

(7)所有与确定并稳定频率、抑制杂散、调制信号和限制功率相关的电路和元器件的电路图及相应原理的说明。

(8)产品标识或者标签的照片或者图片。

(9)产品照片,包括各种视角及内、外部结构,要求照片的尺寸为8×10英寸,并且最好在拍照时辅以尺子以说明产品的几何尺寸。外部的照片要能够清楚地显示出产品的结构、布局、控制键及按钮等;内部照片要能够反映出产品的内部结构、元器件的位置和框架结构等。如果说明书中已包含这些照片且说明书已提交给FCC。则技术报告中可以只包含必要的补充说明。

(10)对采用数字调制技术的产品,报告中必须详细说明调制系统的特征,包括滤波器的频率与相位、幅度的响应特征和产品在最大额定功率下工作时的调制波形。

(11)相关性能指标的测试方法和结果,这将在下一部分说明。

2、性能指标的测试方法

向FCC提交的技术报告中,包括了射频输出功率、调制特征、占用带宽、天线端口的杂散发射、杂散辐射场强、频率稳定性和频谱特征等方面的性能指标,FCC法规原则上规定了每种性能指标的限值和测试要求,这里仅对相应的测试方法做简单的介绍。

射频输出功率

按照功率的调节程序,调节馈入到射频放大电路的电压和电流值,使其处于最大额定功率发射状态,并在射频输出端口加上合适的负载,从而测试得最大射频输出功率。对不同的发射类型,功率调节的方法将会有所不同,在技术报告中应对此作详细说明。

调制特征

(1)对语音调制的通信产品,需测定100-5000Hz频率范围内音频调制电路的频率响应曲线。如果产品使用了音频低通滤波器,还要测定该音频滤波器的频率响应曲线。

(2)对采用调制限制处理的产品,需测定在整个调制的频率和信号功率级范围内的调制百分比—输入电压的关系曲线。

(3)对采用限制峰值包络功率电路的单边带、独立边带的无线电话发射机,需测定峰值包络输出功率—输入电压之间的关系曲线。

(4)其他类型的产品将根据申请的认证类型及相应的法规进行处理。

占用带宽 测量占用带宽时,对采用不同调制方式的产品,测量方法将有所不同,但基本原则是选择典型业务模式下调制信号具有最大幅度的情况来进行测试,并且在报告中对输入的调制信号做详细说明。

天线端口的杂散发射

除了产品有用频点处的射频功率或电压外,还需要对无用的杂散频率进行测量。测量时,可以在天线输出端口加上合适的假天线;谐波和一些比较显著的杂散发射点需要重点关注。

杂散辐射场强

该项测试主要检测产品机壳端口、控制电路模块和电源端口的谐波和一些较显著的杂散发射频点的场强。工作频率低于890MHz的产品,测量需要在开阔场或者电波暗室中进行。对于现场测试,需要对测量现场附近的射频源及明显的反射物体做详细的调查分析与说明。

频率稳定性

需要考查的频率稳定性包括环境温度和输入电压变化时,产品频率确定和稳定电路的频率的变化情况,在特殊情况下,还可能包括产品配用不同的天线或在较大的金属物体附近移动时的频率稳定性。

温度变化的范围是-30℃~+50℃,测量的温度间隔不大于10℃。测量每个温度点的频率时,都需要等待足够长的时间以使谐振电路相关的元件达到稳定状态。

电压变化的范围是额定工作电压的85%~115%,对依靠电池工作的便携产品,最低电压可以是截止电压。

频谱特征

对杂散发射和辐射场强评估和测量的频谱范围,将依据产品的工作频率来确定。进行频谱特征研究的最低频率可以选择产品实际使用的最低频率点;如果最低频率低于9kHz,则选择9kHz作为研究的最低频率点。最高频率的选择遵循以下原则:

(1)对于工作频率在10GHz以下的产品,选择最高基频的10次谐波作为评估的最高频率,如果10次谐波的频率大于40GHz,则选择40GHz作为评估的最高频率。

(2)对于工作频率在10GHz和30GHz之间的产品,选择最高基频的5次谐波作为评估的最高频率,如果5次谐波的频率大于100GHz,则选择100GHz作为评估的最高频率。

(3)对于工作频率在30GHz以上的产品,选择最高基频的5次谐波作为评估的最高频率,如果5次谐波的频率大于200GHz,则选择200GHz作为评估的最高频率。

第五篇:材料测试方法 复习题

1.材料微观结构和成分分析可以分为哪几个层次?分别可以用什么方法分析?

化学成分分析(元素分析):谱学法:①常规方法(平均成分):湿化学法、光谱分析法②先进方法(种类、浓度、价态、分布):电子探针、俄歇电子能谱、光电子能谱、X射线荧光光谱等 晶体结构分析(物相分析):衍射法:主要包括X射线衍射、电子衍射、中子衍射、射线衍射等;

显微结构分析(显微形貌分析):显微法:主要包括光学显微镜、透射电子显微镜、扫描电子显微镜、扫描隧道显微镜、原子力显微镜、场离子显微镜等; 2.X射线与物质相互作用有哪些现象和规律?利用这些现象和规律可以进行哪些科学研究工作,有哪些实际应用?(说出三种以上分析方法及原理)3.电子与物质相互作用有哪些现象和规律?利用这些现象和规律可以进行哪些科学研究工作,有哪些实际应用?(说出四种以上分析方法及原理)4.什么是(主)共振线、分析线、灵敏线、最后线?

共振线:是指电子在基态与任一激发态之间直接跃迁所产生的谱线。

主共振线:电子在基态与最低激发态之间跃迁所产生的谱线则称为主共振线。灵敏线:原子光谱中最容易产生的谱线,一般主共振线即为灵敏线

最后线:当样品中某元素的含量逐渐减少时,最后仍能观察到的几条谱线。它也是该元素的最灵敏线。5.原子发射光谱定性分析基本原理和定量分析的依据及定性、定量分析方法。特点:最大特点是可以获得丰富的化学信息,它对样品的损伤是最轻微的,定量也是最好的。

(1)可以分析除H和He以外的所有元素,可以直接得到电子能级结构的信息。(2)它提供有关化学键方面的信息,即直接测量价层电子及内层电子轨道能级,而相邻元素的同种能级的谱线相隔较远,互相干扰少,元素定性的标志性强。(3)是一种无损分析。

(4)是一种高灵敏超微量表面分析技术。分析所需试样约10g即可,绝对灵敏

度高达10g,样品分析深度约2 nm。

它的缺点是由于X射线不易聚焦,因而照射面积大,不适于微区分析。

XPS中的化学位移作用:由于原子处于不同的化学环境里而引起的结合能位移称为化学位移。原子核附近的电子受核的引力和外层价电子的斥力,当失去价电子而氧化态升高时,电子与原子核的结合能增加,射出的光电子动能减小。化学位移的量值与价电子所处氧化态的程度和数目有关。氧化态愈高,则化学位移愈大。这种化学位移与氧化态有关的现象,在其他化合物中也是存在的,利用这一信息可研究化合物的组成。

13. 俄歇电子能谱分析的原理、应用及特点。原理:原子K层电子被击出,L层电子(L2)向K层跃迁,其能量差ΔE=EK-EL2可能不是以产生一个K系X射线光量子的形式释放,而是被邻近的电子(L2)所吸收,使这个电子受激发而成为自由电子,这就是俄歇效应,这个自由电子就称为俄歇电子。,俄歇电子的能量与参与俄歇过程的三个能级能量有关。定性分析:基本原理:如果样品中有某些元素存在,那么只要在合适的激发条件下,样品就会辐射出这些元素的特征谱线,在感光板的相应位置上就会出现这些谱线。检出某元素是否存在,必须有2条以上不受干扰的最后线与灵敏线。分析方法:常采用摄谱法,通过比较试样光谱与纯物质光谱或铁光谱来确定元素的存在。即标准试样光谱比较法和铁光谱比较法

定量分析:依据:lg I

 b lg

c 

lg

A

据此式可以绘制 lg

I  lg

c

校准曲线,进行定量分析。分析方法:校正曲线法和标准加入法6.

原子吸收光谱的基本原理与分析方法。

基本原理:当入射辐射的能量等于原子中的电子由基态跃迁到较高能态所需要的能量时,原子就要从辐射场中吸收能量,产生共振吸收,电子由基态跃迁到激发态,同时伴随着原子吸收光谱的产生。由于各元素的原子结构和外层电子的排布不同,元素从基态跃迁至第一激发态时吸收的能量不同,因而各元素的共振吸收线具有不同的特征。原子吸收光谱位于紫外区和可见区。分析方法:标准曲线法和标准样加入法7.

红外光谱分析的基本原理、方法及应用。

基本原理:分子的振动具有一些特定的分裂的能级。当用红外光照射物质时,该物质结构中的质点会吸收一部分红外光的能量。引起质点振动能量的跃迁,从而使红外光透过物质时发生了吸收而产生红外吸收光谱。被吸收的特征频率取决于物质的化学成分和内部结构。每一种具有确定化学组成和结构特征的物质,都应具有特征的红外吸收谱图(谱带位置、谱带数目、谱带宽度、谱带强度)等。当化学组成和结构特征不同时,其特征吸收谱图也就发生了变化。方法:根据红外光谱的特征吸收谱图对物质进行分析鉴定工作,按其吸收的强度来测定它们的含量。应用:1)、有机化学领域,无机化合物、矿物的红外鉴定;2)、利用红外光谱可以测定分子的键长、键角大小,并推断分子的立体构型,或根据所得的力常数,间接得知化学键的强弱,也可以从简正振动频率来计算热力学函数等;3)、主要用途:对物质作定性分析和定量分析。8.

拉曼光谱分析的基本原理及应用。什么斯托克斯线和反斯托克斯线?什么是拉曼位移?

基本原理:按照量子理论,光的散射是光量子与分子碰撞的结果;分为:弹性散射和非弹性散射。

弹性散射:光量子与分子不交换能量,因而光量子的能量和频率保持不变。非弹性散射:光量子与分子之间有能量交换。有两种情况:(1)分子处于基态振动能级,与光子碰撞后,从光子中获取能量达到较高的能级。若与此相应的跃迁能级有关的频率是ν1,那么分子从低能级跃到高能级从入射光中得到的能量为hν1,而散射光子的能量要降低到hν0-hν1,频率降低为ν0-ν1。(2)分子处于振动的激发态上,并且在与光子相碰时可以把hν1的能量传给光子,形成一条能量为hν0+hν1和频率为ν0+ν1的谱线。

通常把低于入射光频的散射线ν0-ν1称为斯托克斯线。高于入射光频的散射线ν0+ν1称为反斯托克斯线。ν1称为拉曼位移,拉曼位移的大小取决于分子振动跃迁能级差。9.

X射线荧光光谱定性、定量分析的基本原理,什么是基本体吸收效应?如何消除?

定性分析——根据波长或能量确定成分;定量分析——根据强度确定成分含量。基本体吸收效应:试样的吸收系数与其成分有关,当试样的化学成分变化时,其吸收系数也随之改变。

元素A的荧光X射线强度不但与元素A的含量有关,还与试样内其他元素的种类和含量有关。

吸收包括两部分:一次X射线进入试样时所受的吸收和荧光X射线从试样射出时所受的吸收。

吸收的多少与X射线的波长和试样中各元素的含量、吸收系数及其吸收限有关。采用实验校正法、数学校正法消除10.

波谱仪与能谱仪的展谱原理及特点。11. XPS的分析原理是什么?

XPS的测量原理是建立在Einstein光电效应方程基础上的,光电子动能为:Ec =hv-EB-(-w)式中hv和-w是已知的,Ec可以用能量分析器测出,于是EB就知道了。同种元素的原子,不同能级上的电子EB不同,所以在相同的hv和-w下,同一元素会有不同能量的光电子,在能谱图上,就表现为不止一个谱峰。其中最强而又最易识别的就是主峰,主要用主峰来进行分析。不同元素,元素各支壳层的EB具有特定值,所以用能量分析器分析光电子的Ec,便可得出EB,对材料进行表面分析。12.

XPS的应用及特点,XPS中的化学位移有什么用?

X射线光电子能谱主要应用:分析表面化学元素的组成、化学态及其分布,特别是原子的价态、表面原子的电子密度、能级结构。即元素定性分析(元素以及该元素原子所处的化学状态)、定量分析、化合物结构鉴定、表面分析、深度分布分析

ΔE=EK-EL2-EL2 能量是特定的,与入射X射线波长无关,仅与产生俄歇效应的物质的元素种类有关。

应用:1)材料表面偏析、表面杂质分布、晶界元素分析;2)金属、半导体、复合材料等界面研究;

3)薄膜、多层膜生长机理的研究;4)表面的力学性质(如摩擦、磨损、粘着、断裂等)研究;

5)表面化学过程(如腐蚀、钝化、催化、晶间腐蚀、氢脆、氧化等)研究;6)集成电路掺杂的三维微区分析;7)固体表面吸附、清洁度、沾染物鉴定等。特点:1)作为固体表面分析法,其信息深度取决于俄歇电子逸出深度(电子平均自由程)。对于能量为50eV-2keV范围内的俄歇电子,逸出深度为0.4-2nm,深度分辨率约为l nm,横向分辨率取决于入射束斑大小。2)可分析除H、He以外的各种元素。3)对于轻元素C、O、N、S、P等有较高的分析灵敏度。4)可进行成分的深度剖析或薄膜及界面分析。14.

扫描隧道显微镜基本原理及特点、工作方式。

基本原理:量子力学认为:电子波函数ψ向表面传播,遇到边界,一部分被反射(ψR),而另一部分则可透过边界(ψT),从而形成金属表面上的电子云。粒子可以穿过比它能量更高的势垒,这个现象称为隧道效应。尖锐金属探针在样品表面扫描,利用针尖-样品间纳米间隙的量子隧道效应引起隧道电流与间隙大小呈指数关系,获得原子级样品表面形貌特征图象。

特点:1)STM结构简单。2)其实验可在多种环境中进行:如大气、超高真空或液体(包括在绝缘液体和电解液中)。3)工作温度范围较宽,可在mK到1100K范围内变化。这是目前任何一种显微技术都不能同时做到的。4)分辨率高,扫描隧道显微镜在水平和垂直分辨率可以分别达到0.1nm和0.01nm。因此可直接观察到材料表面的单个原子和原子在材料表面上的三维结构图像。5)在观测材料表面结构的同时,可得到材料表面的扫描隧道谱(STS),从而可以研究材料表面化学结构和电子状态。6)不能探测深层信息,无法直接观察绝缘体。工作方式:恒电流模式:扫描时,在偏压不变的情况下,始终保持隧道电流恒定;

恒高模式:始终控制针尖在样品表面某一水平高度上扫描,随样品表面高低起伏,隧道电流不断变化。15.

原子力显微镜工作原理及应用。

工作原理:原子力显微镜是一种类似于扫描隧道显微镜的显微技术,它的仪器构成(机械结构和控制系统)在很大程度上与扫描隧道显微镜相同。如用三维压电扫描器,反馈控制器等。它们的主要不同点是扫描隧道显微镜检测的是针尖和样品间的隧道电流,而原子力显微镜检测的是针尖和样品间的力。

应用:原子力显微镜对所分析样品的导电性无要求,已成为表面科学研究的重要手段,在金属、无机、半导体、电子、高分子等材料中得到了广泛应用。

(一)几十到几百纳米尺度的结构特征研究

(二)原子分辨率下的结构特征研究

(三)在液体环境下成像对材料进行研究

(四)测量、分析表面纳米级力学性能(吸附力、弹性、塑性、硬度、粘着力、摩擦力等)

(五)实现对样品表面纳米加工与改性16.

什么是离子探针?离子探针的特点。

离子探针微区分析仪,简称离子探针。在功能方面离子探针与电子探针类似,只是以离子束代替电子束,以质谱仪代替X射线分析器。利用细小的高能(能量为1~20keV)离子束照射在样品表面,激发出正、负离子(二次离子); 利用质谱仪对这些离子进行分析,测量离子的质荷比(m/e)和强度,确定固体表面所含元素的种类及其含量。

特点:1)可作同位素分析;2)可对几个原子层深度的极薄表层进行成分分析。利用离子束溅射逐层剥离,得到三维的成分信息;3)一次离子束斑直径缩小至微米量级时,可拍摄特定二次离子的扫描图像。并可探测极微量元素(50ppm);417)可高灵敏度地分析包括氢、锂在内的轻元素,特别是可分析氢。.

场离子显微镜的成像原理。

当成像气体进入容器后,受到自身动能的驱使会有一部分达到阳极附近,在极高的电位梯度作用下气体原子发生极化,即使中性原子的正、负电荷中心分离而成为一个电偶极子。

极化原子被电场加速撞击样品表面,气体原子在针尖表面作连续的非弹性跳动。尽管样品的尖端表面呈半球形,可是由于原子的不可分性使得这一表面实质上是由许多原子平面的台阶所组成,处于台阶边缘的原子总是突出于平均的半球形表面而具有更小的曲率半径,在其附近的场强亦更高。

当弹跳中的极化原子陷入突出原子上方某一距离(约0.4nm)的高场区域时,若气体原子的外层电子能态符合样品中原子的空能级能态,该电子将有较高的几率通过“隧道效应”而穿过表面位垒进入样品,从而使成像气体原子变为正离子——场致电离。

此时,成像气体的离子由于受到电场的加速而径向地射出,当它们撞击观察荧光屏时,即可激发光信号。18.

什么是穆斯堡尔效应?穆斯堡尔谱的应用。无反冲核γ射线发射和共振吸收现象称为穆斯堡尔效应。原子核(发射体)从激发态跃迁到基态,发射出具有能量为 E(能级差)的 γ 光子.这一γ光子在通过同种元素处于基态的原子核(吸收体)时,将被原子核吸收。吸收体中的原子核吸收了γ光子的能量便可跃迁到激发态,这就是原子核的共振吸收。

应用:

(一)分析化学的工具。可用于测定矿石、合金和废物中的总含铁量和总含锡量。

(二)在金属材料研究中的应用。穆斯堡尔核作为试探原子,能获得原子尺度内微观结构的信息,是研究钢的淬火、回火,有序-无序转变、时效析出、固溶体分解等过程的动力学,晶体学和相结构等问题的有效工具。

(三)磁性材料研究。可用于判断各种磁性化合物结构的有效手段。可用于测定反铁磁性的奈尔点、居里点和其它各种类型的磁转变临界点;也可用于测定易磁化轴,研究磁性材料中的非磁性相。

(四)生物学和生物化学的应用。可用于研究包括红血蛋白、肌红蛋白、氧化酶、过氧化酶、铁氧还原蛋白和细胞色素等范围极广的含铁蛋白质的结构和反应机理研究。

(五)地质、考古方面,穆斯堡尔谱学也是一种有用的“指纹”工具。19. 核磁共振的基本原理及共振条件。20. DTA的基本原理,DTA在材料研究中有什么用处?

原理:在程序控制温度下,测量物质与参比物(基准物)的温度差随时间或温度变化。当试样发生任何物理或化学变化时,所释放或吸收的热量使样品温度高于或低于参比物的温度,从而相应地在差热曲线上得到放热或吸热峰。

用处:

1、凡是在加热(或冷却)过程中,因物理-化学变化而产生热效应的物质,均可利用差热分析法加以研究。合金相图的建立、玻璃及陶瓷相态结构的变化、非晶晶化动力学的研究、凝胶材料烧结进程研究

2、可用于部分化合物的鉴定

3、依据差热分析曲线特征,如各种吸热与放热峰的个数、形状及位置等,可定性分析物质的物理或化学变化过程,还可依据峰面积半定量地测定反应热。21. 影响差热曲线形态的因素主要有哪些?

(一)实验条件的影响1.升温速率的影响。程序升温速率主要影响DTA曲线的峰位和峰形,升温速率越大,峰位越向高温方向迁移以及峰形越陡。2.气氛的影响

3.参比物的影响

(二)仪器因素的影响。仪器因素是指与热分析仪有关的影响因素,主要包括:加热炉的结构与尺寸、坩埚材料与形状、热电偶性能及位置等。

(三)样品的影响1.样品用量的影响。通常用量不宜过多,因为过多会使样品内部传热慢、温度梯度大,导致峰形扩大和分辨率下降。2.样品形状及装填的影响。样品形状不同所得热效应的峰的面积不同,以采用小颗粒样品为好,通常样品应磨细过筛并在坩埚中装填均匀。3.样品的热历史的影响。许多材料往往由于热历史的不同面产生不同的晶型或相态,以致对DTA曲线有较大的影响 22. DSC的基本原理及应用。

DSC(差示扫描量热法)是在程序控制温度下,测量输入给样品和参比物的功率差与温度之间关系的一种热分析方法。

应用:差示扫描量热法与差热分析法的应用功能有许多相同之处,但由于DSC克服了DTA以ΔT间接表达物质热效应的缺陷,分辨率高、灵敏度高等优点,因而能定量测定多种热力学和动力学参数,且可进行晶体微细结构分析等工作。样品焓变的测定、样品比热的测定、研究合金的有序—无序转变、23. 相干散射与非相干散射及对衍射的贡献。24. 光电效应、荧光辐射、俄歇效应,荧光产率与俄歇电子产率。

光电效应:在外界光的作用下,物体(主要指固体)中的原子吸收光子的能量,使其某一层的电子摆脱其所受的束缚,在物体中运动,直到这些电子到达表面。如果能量足够、方向合适,便可离开物体的表面而逸出,成为光电子。

荧光辐射:处于激发态的原子,要通过电子跃迁向较低的能态转化,同时辐射出被照物质的特征x射线,这种由入射x射线激发出的特征x射线,称为二次特征x射线(荧光x射线)此种辐射又称为荧光辐射

俄歇效应:原子K层电子被击出,L层电子(L2)向K层跃迁,其能量差ΔE=EK-EL2可能不是以产生一个K系X射线光量子的形式释放,而是被邻近的电子(L2)所吸收,使这个电子受激发而成为自由电子,这就是俄歇效应

荧光产率与俄歇电子产率:在激发原子的去激发过程中,存在两种不同的退激发方式:一种是俄歇跃迁过程;另一种是荧光过程。俄歇跃迁几率(PA)与荧光产生几率PX之和为1:PA+PX=1 当元素的原子序数小于19时(即轻元素),俄歇跃迁几率(PA)在90以上。直到原子序数增加到33时,荧光几率才与俄歇几率相等。25. 产生衍射的必要条件(布拉格方程)及充分条件。26. 晶粒大小与X射线衍射线条宽度的关系。27. 物相定性分析、定量分析的原理。28. 扫描电镜二次电子像与背散射电子像。29. 扫描电镜图像衬度(形貌衬度、原子序数衬度)。30. 什么是电子探针?电子探针的原理及工作方式。

下载天线测试方法介绍word格式文档
下载天线测试方法介绍.doc
将本文档下载到自己电脑,方便修改和收藏,请勿使用迅雷等下载。
点此处下载文档

文档为doc格式


声明:本文内容由互联网用户自发贡献自行上传,本网站不拥有所有权,未作人工编辑处理,也不承担相关法律责任。如果您发现有涉嫌版权的内容,欢迎发送邮件至:645879355@qq.com 进行举报,并提供相关证据,工作人员会在5个工作日内联系你,一经查实,本站将立刻删除涉嫌侵权内容。

相关范文推荐

    健身方法介绍范文大全

    一、侧身弯腰运动 直立。双腿分开,两臂左右平举,上体前屈,用左手去够右脚,右臂自然上举,两腿和两臂都不要弯曲,吸气,然后还原,呼气。再换方向重复一次,连做8次。 二、屈腿运动 仰卧位......

    固定资产折旧方法介绍

    大兴安岭职业学院 毕业设计(论文)论文题目:浅析固定资产折旧对企业所得税的影响 学 生:王迪 指导教师: 张娣 系 : 林业管理系 专 业: 财务管理2016年4月 浅析固定资产折旧对企业......

    产品介绍方法

    产品介绍方法伙伴们,在我们产品推广中,如何更好的介绍自己和产品可以说是一门艺术,怎样更好的掌握这一门艺术呢?锦鸿高绩效商学院为你介绍如何使用FABTEF产品介绍法来向顾客介绍......

    日本语能力测试介绍

    日本语能力测试介绍 为了适应世界各国学习日语人数日渐增加的趋势,日本国际交流基金及其财团法人日本国家教育协会于1984年建立了一套较为完整的考试评价体系——日本语能力......

    手机测试个人介绍

    Goodmorning ladies and gentlemen I am appreciating(感激) to have this chance a face-to-face interview,(it is really a great honor to have this opportunity for t......

    网络性能指标及测试方法

    网络性能指标及测试方法 1、网络可用性。 网络可用性是指网络是否能正常通信,路径是否可达,可以在终端电脑上用“ping”命令来测试网络的连通性。 例如:ping 10.48.128.1,这条......

    软件测试方法总结

    软件测试方法总结(一) 发布时间: 2008-12-12 17:07作者: lxm_lxm来源: 51Testing论坛 软件测试方法的总结,是lxm_lxm根据个人所做过的项目整理的,提供给新来的的朋友们。软件测......

    App测试方法总结

    一、安全测试 1.软件权限 1)扣费风险:包括短信、拨打电话、连接网络等。 2)隐私泄露风险:包括访问手机信息、访问联系人信息等。 3)对App的输入有效性校验、认证、授权、数据加密......