功率分析仪简单测试方法

时间:2019-05-13 16:36:10下载本文作者:会员上传
简介:写写帮文库小编为你整理了多篇相关的《功率分析仪简单测试方法》,但愿对你工作学习有帮助,当然你在写写帮文库还可以找到更多《功率分析仪简单测试方法》。

第一篇:功率分析仪简单测试方法

功率分析仪简单测试方法

任何计量器具由于种种原因都具有不同程度的误差计量器具的误差,只在允许的范围内才能应用,否则将带来错误的计量结果。对于新制的或修理后的计量器具必须用适当等级的计量标准来确定其计量特性是否合格,对于使用中的计量器具必须用适当等级的计量标准对其进行周期检定,另外有些计量器具必须借助适当等级的计量标准来确定其示值和其它计量性能,因此量值传递的必要性是显而易见的。

1.电压校准

我们使用功率分析仪进行分析计算时,利用的是功率分析仪内部采样得到的电压值。我们可以通过调整调压器输出不同电压,然后使用经过校准的高压探头和示波器,读取电压的数值和波形,与功率分析仪采到的电压数值和波形进行对比,进行电压的校准。

2.电流校准

我们使用功率分析仪进行分析计算时,利用的是功率分析仪内部采样得到的电流值。我们可以通过调整升流器输出不同等级的电流,然后使用经过校准的电流探头和示波器,读取电流的数值和波形,与功率分析仪采到的电流数值和波形进行对比,进行电流的校准。

3.频率校准

在进行电压校准和电流校准的过程中,可以使用经过校准的频率计测量给定的电压、电流的频率,与功率分析仪计算的频率数值进行比较,以此来进行简单的频率校准。

4.功率校准

按照电压校准和电流校准的方法,分别给定不同的电压和电流值,计算出功率,然后使用此数值和功率分析仪计算的功率数值进行比对,以此来简单判定功率分析仪的计算结果是否正确。

5.谐波校准

这个没法弄吧…

第二篇:功率分析仪校准规范,实验报告

国家计量技术法规 《 功率分析仪 校准规范》

《功率分析仪校准规范》编制小组 2020 年 09 月 08 日

目 目录

1.试验目的……………………………………………………………………………………1 2.试验方法……………………………………………………………………………………2 3.试验所用设备………………………………………………………………………………3 4.试验地点及条件……………………………………………………………………………4 5.试验结果……………………………………………………………………………………4 6.试验结论……………………………………………………………………………………17 7.试验人员……………………………………………………………………………………17 8.试验时间……………………………………………………………………………………17

《 功率分析仪 校准规范》

实 验 报 告

1 试验目的在《功率分析仪校准规范》制定过程中,为了合理的确定各校准项目的技术要求及校准方法,我们选取典型的功率分析仪作为校准对象(详见表 1),按照校准规范制定的校准项目和校准方法进行校准,验证该校准规范的正确性、可行性和可操作性。

表 1 功率分析仪信息

号 编

号 制 造 厂 主要技术指标 LMG650 功率分析仪

德国 GMC 功率精度:0.015%读数+ 0.01%量程 NORMA 4000CN 功率分析仪

美国 FLUKE 功率准确度:0.03%(0.02%读数+0.01%量程)WT3000 型功率分析仪

日本 YOKO 电压、电流基本精度:读数的 0.01% 基本功率精度:读数的 0.02%

2 试验方法

采用规范中确定的校准方法校准功率分析仪相应校准项目,见表 2。

表 2 规范中校准项目与校准方法的条款对应表

序号 校准项目 校准方法的条款 1 交流电压 6.2.3 2 交流电流 6.2.4 3 交流功率 6.2.5 4 相位(功率因数)

6.2.6 5 频率 6.2.7 6 直流电压 6.2.8 7 直流电流 6.2.9 8 直流功率 6.2.10

3 试验所用设备

试验所用测量标准及设备信息如表 3 所示。

表 3 试验所用测量标准及设备信息 设备名称 设备型号 技术指标 多功能标准源 10mV~1000 V 10 Hz~1MHz 0.003% 交流功率标准源 10 mV~600 V 10 mA~50 A DC~1 kHz 0.005% 电压/电流交直流转换标准装置 ACV:

10mV~1000V 10Hz~1MHz ACI:

10mA~100A 10Hz~100kHz ACV: 0.005%

(k=2)ACI: 0.01%

(k=2)宽频电阻分压器 ACV: 10V~600V 相位误差:

0.01%

(k=2)高精度分流器 ACI: 10mA~100A DCI: 10mA~100A 相位误差:

0.01%

(k=2)DCI:

0.002%

(k=2)数字多用表 3458A DCV: 10 mV~1000 V DCV:

0.005% (k=2)

4 试验 地点及 条件

环境温度:(203)℃ 相对湿度:35%~75% 供电电源:电压(22022)V,频率(500.5)Hz 试验地点:5 5 试验结果

5.1 NORMA 4000CN 型功率分析仪,0.03 级(一)交流电压测量 量程 测量电压 频率(Hz)

名义值(V)实测值(V)

不确定度(k=2)

Auto 60 V 50 60.00

60.00

2×10-4

V 50 100.00

100.00

1×10-4 150 V 50 150.00

150.00

1×10-4 220 V 50 220.00

219.99

1×10-4

300 V 50 300.00

299.98

1×10-4 400 V 50 400.00

399.98

1×10-4 0.6 kV 50 600.0

599.9

1×10-4

(二)交流电流测量 量程 测量电流 频率(Hz)

名义值(A)实测值(A)不确定度(k=2)

Auto 0.5 A 50 0.5000

0.5001

2×10-4A 50 1.0000

0.9997

1×10-4 2 A 50 2.0000

1.9994

1×10-4 5 A 50 5.000

5.000

1×10-4A 50 10.000

10.001

1×10-4 20 A 50 20.000

20.004

1×10-4

(三)交流功率测量 输入电压

输入电流

相位

频率

名义值(W)

实测值(W)

不确定度(k=2)

V 5 A 1 50 Hz 300.00

300.06

2×10-4

V 0.5 A 1 50 Hz 50.000

49.993

2×10-4 100 V 1 A 1 50 Hz 100.00

99.98

2×10-4 100 V 2 A 1 50 Hz 200.00

199.95

2×10-4

V 5 A 1 50 Hz 500.00

500.13

2×10-4 100 V 5 A 0.5 L 50 Hz 250.00

250.06

2×10-4 100 V 5 A 0.5 C 50 Hz 250.00

250.09

2×10-4

V 10 A 1 50 Hz 1000.0

1000.3

2×10-4

V 5 A 1 50 Hz 750.00

750.20

2×10-4 220 V 0.5 A 1 50 Hz 110.00

109.98

2×10-4 220 V 1 A 1 50 Hz 220.00

219.93

2×10-4

220 V 2 A 1 50 Hz 440.00

439.90

2×10-4 220 V 5 A 1 50 Hz 1100.0

1099.9

2×10-4 220 V 5 A 0.5 L 50 Hz 550.00

549.98

2×10-4

220 V 5 A 0.5 C 50 Hz 550.00

550.01

2×10-4

220 V 10 A 1 50 Hz 2200.0

2199.7

2×10-4 300 V 5 A 1 50 Hz 1500.0

1500.2

2×10-4 500 V 1 A 1 50 Hz 500.00

499.79

2×10-4

500 V 5 A 1 50 Hz 2500.0

2500.2

2×10-4 500 V 10 A 1 50 Hz 5000.0

5000.1

2×10-4 5.2

WT3000 型功率分析仪,0.02 级

(一)直流功率测量 量程 输入电压 输入电流 标准值 W)

示值(W)

不确定度(V/V)k=2 Auto 100 V 0.5 A 50.0000

50.0076

5×10-5

V 1 A 100.000

100.021

5×10-5

V 2 A 200.000

200.035

5×10-5

V 5 A 500.000

500.046

5×10-5

V 10 A 1000.00

1000.15

5×10-5

V 20 A 2000.00

2000.43

5×10-5

200 V 0.5 A 100.000

100.009

5×10-5

200 V 1 A 200.000

200.021

5×10-5

200 V 2 A 400.000

400.058

5×10-5

200 V 5 A 1000.00

1000.10

5×10-5

200 V 10 A 2000.00

2000.27

5×10-5

200 V 20 A 4000.00

4000.71

5×10-5

220 V 1 A 220.000

220.045

5×10-5

220 V 5 A 1100.00

1100.11

5×10-5

220 V 10 A 2200.00

2200.45

5×10-5

220 V 20 A 4400.00

4400.84

5×10-5

380 V 1 A 380.000

380.081

5×10-5

380 V 5 A 1900.00

1900.20

5×10-5

380 V 10 A 3800.00

3800.79

5×10-5

380 V 20 A 7600.0

7601.4

5×10-5

600 V 1 A 600.000

600.117

5×10-5

600 V 5 A 3000.00

3000.18

5×10-5

600 V 10 A 6000.00

6000.87

5×10-5

600 V 20 A 12000.0

12002.2

5×10-5

(二)交流电压测量 量程 电压 频率(Hz)

标准值(V)

示值(V)

不确定度(V/V)k=2 Auto 10 V 55 10.0000

10.0005

5×10-5

V 400 10.0000

10.0007

5×10-5V 1 k 10.0000

10.0009

5×10-5V 5 k 10.0000

10.0018

5×10-5V 10 k 10.0000

10.0012

5×10-5V 20 k 10.0000

10.0033

1×10-4

V 50 k 10.0000

10.0064

1×10-4V 100 k 10.0000

10.0272

1×10-4

V 55 100.000

100.006

5×10-5

V 400 100.000

100.007

5×10-5

V 1 k 100.000

100.009

5×10-5

V 5 k 100.000

100.024

5×10-5

V 10 k 100.000

100.033

5×10-5

V 20 k 100.000

100.050

1×10-4

V 50 k 100.000

100.111

1×10-4

V 100 k 100.000

100.330

1×10-4

200 V 55 200.000

200.005

5×10-5

200 V 400 200.000

200.009

5×10-5

200 V 1 k 200.000

200.014

5×10-5

200 V 5 k 200.000

200.054

5×10-5

200 V 10 k 200.000

200.083

5×10-5

200 V 20 k 200.000

200.093

1×10-4

200 V 50 k 200.000

200.229

1×10-4

200 V 100 k 200.000

200.661

1×10-4

220 V 55 220.000

220.003

5×10-5

220 V 400 220.000

220.006

5×10-5

220 V 1 k 220.000

220.012

5×10-5

380 V 55 380.000

380.005

5×10-5

380 V 400 380.000

380.012

5×10-5

380 V 1 k 380.000

380.019

5×10-5

500 V 55 500.000

500.017

5×10-5

500 V 400 500.000

500.025

5×10-5

500 V 1 k 500.000

500.039

5×10-5

1000 V 55 1000.00

1000.02

5×10-5

1000 V 400 1000.00

1000.04

5×10-5

1000 V 1 k 1000.00

1000.06

5×10-5

(三)交流电流测量 量程 电压 频率(Hz)

标准值(A)

示值(A)

不确定度(A/A)k=2 Auto 20 mA 55 0.020000

0.019990

1×10-4

mA 400 0.020000

0.019989

1×10-4mA 1 k 0.020000

0.019991

1×10-4

mA 55 0.100000

0.100008

5×10-5

mA 400 0.100000

0.100011

5×10-5

mA 1 k 0.100000

0.100034

5×10-5

mA 5 k 0.100000

0.100061

5×10-5

mA 10 k 0.100000

0.100055

5×10-5

mA 20 k 0.100000

0.100074

1×10-4

mA 50 k 0.100000

0.100077

1×10-4

mA 100 k 0.100000

0.100042

1×10-4

200 mA 55 0.200000

0.200022

5×10-5

200 mA 400 0.200000

0.200040

5×10-5

200 mA 1 k 0.200000

0.200072

5×10-5

200 mA 5 k 0.200000

0.200119

5×10-5

200 mA 10 k 0.200000

0.200116

5×10-5

200 mA 20 k 0.200000

0.200153

1×10-4

200 mA 50 k 0.200000

0.200168

1×10-4

200 mA 100 k 0.200000

0.200073

1×10-4

500 mA 55 0.500000

0.500072

5×10-5

500 mA 400 0.500000

0.500078

5×10-5

500 mA 1 k 0.500000

0.500171

5×10-5

500 mA 5 k 0.500000

0.500296

5×10-5

500 mA 10 k 0.500000

0.500274

5×10-5

500 mA 20 k 0.500000

0.500370

1×10-4

500 mA 50 k 0.500000

0.500408

1×10-4

500 mA 100 k 0.500000

0.500194

1×10-4

A 55 1.00000

1.00014

5×10-5

A 400 1.00000

1.00022

5×10-5A 1 k 1.00000

1.00042

5×10-5

A 5 k 1.00000

1.00066

5×10-5A 10 k 1.00000

1.00066

5×10-5

A 20 k 1.00000

1.00077

1×10-4

A 50 k 1.00000

1.00092

1×10-4A 100 k 1.00000

1.00065

1×10-4

A 55 2.00000

2.00030

5×10-5

A 400 2.00000

2.00046

5×10-5

A 1 k 2.00000

2.00085

5×10-5A 55 5.00000

5.00038

5×10-5

A 400 5.00000

5.00050

5×10-5

A 1 k 5.00000

5.00073

5×10-5A 55 10.0000

10.0017

1×10-4

A 400 10.0000

10.0020

1×10-4A 1 k 10.0000

10.0025

1×10-4

A 5 k 10.0000

10.0028

1×10-4

A 10 k 10.0000

10.0031

1×10-4A 20 k 10.0000

10.0045

1×10-4

A 55 20.0000

20.0050

1×10-4

A 400 20.0000

20.0054

1×10-4A 1 k 20.0000

20.0063

1×10-4

(四)交流功率测量 输入电压 输入电流 功率 因数 频率 标准值(W)示值(W)不确定度(W/W)k=2 100 V 0.5 A 1 55 Hz 50.0000

50.0055

1×10-4 100 V 0.5 A 1 400 Hz 50.0000

50.0103

1×10-4

V 0.5 A 1 1 kHz 50.0000

50.0214

1×10-4 100 V 1 A 1 55 Hz 100.000

99.977

1×10-4

V 1 A 1 400 Hz 100.000

99.986

1×10-4 100 V 1 A 1 1 kHz 100.000

100.006

1×10-4

V 1 A 1 5 kHz 100.000

100.045

1×10-4 100 V 1 A 1 10 kHz 100.000

100.049

1×10-4

V 1 A 1 20 kHz 100.000

100.076

1×10-4 100 V 1 A 1 50 kHz 100.000

100.140

2×10-4 100 V 1 A 1 100 kHz 100.000

100.312

2×10-4

V 2 A 1 55 Hz 200.000

200.044

1×10-4 100 V 2 A 1 400 Hz 200.000

200.063

1×10-4

V 2 A 1 1 kHz 200.000

200.108

1×10-4 100 V 5 A 1 55 Hz 500.000

499.968

1×10-4

V 5 A 1 400 Hz 500.000

499.989

1×10-4 100 V 5 A 1 1 kHz 500.000

500.031

1×10-4

V 10 A 1 55 Hz 1000.00

1000.30

1×10-4 100 V 10 A 1 400 Hz 1000.00

1000.34

1×10-4

V 10 A 1 1 kHz 1000.00

1000.42

1×10-4 100 V 10 A 1 5 kHz 1000.00

999.84

1×10-4

V 10 A 1 10 kHz 1000.00

999.90

1×10-4 100 V 10 A 1 20 kHz 1000.00

1000.22

1×10-4

V 20 A 1 55 Hz 2000.00

2000.26

1×10-4 100 V 20 A 1 400 Hz 2000.00

2000.36

1×10-4 100 V 20 A 1 1 kHz 2000.00

2000.49

1×10-4

V 5 A 0.5 L 55 Hz 250.000

250.040

1×10-4 100 V 5 A 0.5 L 400 Hz 250.000

250.033

1×10-4

V 5 A 0.5 L 1 kHz 250.000

250.002

1×10-4 100 V 5 A 0.5 L 5 kHz 250.000

248.638

1×10-4

V 5 A 0.5 L 10 kHz 250.000

249.073

1×10-4 100 V 5 A 0.5 L 20 kHz 250.000

249.147

1×10-4

V 5 A 0.5 C 55 Hz 250.000

250.042

1×10-4 100 V 5 A 0.5 C 400 Hz 250.000

250.029

1×10-4

V 5 A 0.5 C 1 kHz 250.000

250.044

1×10-4 100 V 5 A 0.5 C 5 kHz 250.000

251.659

1×10-4

V 5 A 0.5 C 10 kHz 250.000

251.185

1×10-4 100 V 5 A 0.5 C 20 kHz 250.000

251.194

1×10-4

200 V 0.5 A 1 55 Hz 100.000

100.005

1×10-4 200 V 0.5 A 1 400 Hz 100.000

100.015

1×10-4

200 V 0.5 A 1 1 kHz 100.000

100.037

1×10-4 200 V 1 A 1 55 Hz 200.000

199.948

1×10-4

200 V 1 A 1 400 Hz 200.000

199.962

1×10-4 200 V 1 A 1 1 kHz 200.000

200.011

1×10-4

200 V 1 A 1 5 kHz 200.000

200.095

1×10-4 200 V 1 A 1 10 kHz 200.000

200.115

1×10-4

200 V 1 A 1 20 kHz 200.000

200.141

1×10-4 200 V 1 A 1 50 kHz 200.000

200.285

2×10-4

200 V 1 A 1 100 kHz 200.000

200.639

2×10-4 200 V 2 A 1 55 Hz 400.000

400.065

1×10-4 200 V 2 A 1 400 Hz 400.000

400.099

1×10-4

200 V 2 A 1 1 kHz 400.000

400.195

1×10-4 200 V 5 A 1 55 Hz 1000.00

999.81

1×10-4

200 V 5 A 1 400 Hz 1000.00

999.85

1×10-4 200 V 5 A 1 1 kHz 1000.00

999.94

1×10-4

200 V 10 A 1 55 Hz 2000.00

2000.00

1×10-4 200 V 10 A 1 400 Hz 2000.00

2000.08

1×10-4

200 V 10 A 1 1 kHz 2000.00

2000.24

1×10-4 200 V 10 A 1 5 kHz 2000.00

1999.85

1×10-4

200 V 10 A 1 10 kHz 2000.00

2000.05

1×10-4 200 V 10 A 1 20 kHz 2000.00

2000.48

1×10-4

200 V 20 A 1 55 Hz 4000.00

4000.41

1×10-4 200 V 20 A 1 400 Hz 4000.00

4000.56

1×10-4

200 V 20 A 1 1 kHz 4000.00

4000.82

1×10-4 200 V 5 A 0.5 L 55 Hz 500.00

500.07

1×10-4

200 V 5 A 0.5 L 400 Hz 500.00

500.10

1×10-4 200 V 5 A 0.5 L 1 kHz 500.00

500.03

1×10-4

200 V 5 A 0.5 L 5 kHz 500.00

497.27

1×10-4 200 V 5 A 0.5 L 10 kHz 500.00

498.36

1×10-4

200 V 5 A 0.5 L 20 kHz 500.00

498.68

1×10-4 200 V 5 A 0.5 C 55 Hz 500.00

500.09

1×10-4

200 V 5 A 0.5 C 400 Hz 500.00

500.07

1×10-4 200 V 5 A 0.5 C 1 kHz 500.00

500.13

1×10-4

200 V 5 A 0.5 C 5 kHz 500.00

503.20

1×10-4 200 V 5 A 0.5 C 10 kHz 500.00

502.20

1×10-4 200 V 5 A 0.5 C 20 kHz 500.00

501.95

1×10-4

220 V 1 A 1 55 Hz 220.000

220.027

1×10-4 220 V 1 A 1 400 Hz 220.000

220.048

1×10-4

220 V 1 A 1 1 kHz 220.000

220.097

1×10-4 220 V 5 A 1 55 Hz 1100.00

1099.79

1×10-4

220 V 5 A 1 400 Hz 1100.00

1099.83

1×10-4 220 V 5 A 1 1 kHz 1100.00

1099.91

1×10-4

220 V 10 A 1 55 Hz 2200.00

2199.94

1×10-4 220 V 10 A 1 400 Hz 2200.00

2200.04

1×10-4

220 V 10 A 1 1 kHz 2200.00

2200.22

1×10-4 220 V 20 A 1 55 Hz 4400.00

4400.16

1×10-4

220 V 20 A 1 400 Hz 4400.00

4400.39

1×10-4 220 V 20 A 1 1 kHz 4400.00

4400.72

1×10-4

220 V 5 A 0.5 L 55 Hz 550.00

550.21

1×10-4 220 V 5 A 0.5 L 400 Hz 550.00

550.16

1×10-4

220 V 5 A 0.5 L 1 kHz 550.00

550.25

1×10-4 220 V 5 A 0.5 C 55 Hz 550.00

550.10

1×10-4

220 V 5 A 0.5 C 400 Hz 550.00

550.11

1×10-4 220 V 5 A 0.5 C 1 kHz 550.00

550.18

1×10-4

380 V 1 A 1 55 Hz 380.000

380.025

1×10-4 380 V 1 A 1 400 Hz 380.000

380.057

1×10-4

380 V 1 A 1 1 kHz 380.000

380.147

1×10-4 380 V 5 A 1 55 Hz 1900.00

1899.35

1×10-4

380 V 5 A 1 400 Hz 1900.00

1899.43

1×10-4 380 V 5 A 1 1 kHz 1900.00

1899.58

1×10-4 380 V 10 A 1 55 Hz 3800.00

3799.19

1×10-4

380 V 10 A 1 400 Hz 3800.00

3799.36

1×10-4 380 V 10 A 1 1 kHz 3800.00

3799.66

1×10-4

380 V 20 A 1 55 Hz 7600.0

7600.5

1×10-4 380 V 20 A 1 400 Hz 7600.0

7600.9

1×10-4

380 V 20 A 1 1 kHz 7600.0

7601.4

1×10-4 380 V 5 A 0.5 L 55 Hz 950.00

950.10

1×10-4

380 V 5 A 0.5 L 400 Hz 950.00

950.08

1×10-4 380 V 5 A 0.5 L 1 kHz 950.00

950.09

1×10-4

380 V 5 A 0.5 C 55 Hz 950.00

950.12

1×10-4 380 V 5 A 0.5 C 400 Hz 950.00

950.10

1×10-4

380 V 5 A 0.5 C 1 kHz 950.00

950.24

1×10-4 600 V 1 A 1 55 Hz 600.000

600.035

1×10-4

600 V 1 A 1 400 Hz 600.000

600.093

1×10-4 600 V 1 A 1 1 kHz 600.000

600.229

1×10-4

600 V 5 A 1 55 Hz 3000.00

2999.06

1×10-4 600 V 5 A 1 400 Hz 3000.00

2999.17

1×10-4

600 V 5 A 1 1 kHz 3000.00

2999.39

1×10-4 600 V 10 A 1 55 Hz 6000.00

5998.58

1×10-4

600 V 10 A 1 400 Hz 6000.00

5998.82

1×10-4 600 V 10 A 1 1 kHz 6000.00

5999.26

1×10-4

600 V 20 A 1 55 Hz 12000.0

12001.0

1×10-4 600 V 20 A 1 400 Hz 12000.0

12001.6

1×10-4

600 V 20 A 1 1 kHz 12000.0

12002.4

1×10-4

(五)相位测量 输入电压 输入电流 相位 频率 标准值

(°)示值

(°)不确定度(°)k=2 100 V 5 A 0 ° 50 Hz 0.000

0.001

0.001

V 5 A 30 ° 50 Hz 30.000 30.001 0.001 100 V 5 A 60 ° 50 Hz 60.000 60.002 0.001 100 V 5 A 90 ° 50 Hz 90.000 90.002 0.001 100 V 5 A 120 ° 50 Hz 120.000 120.002 0.001 100 V 5 A 150 ° 50 Hz 150.000 150.003 0.001 100 V 5 A 180 ° 50 Hz 180.000 180.004 0.001 100 V 5 A 210 ° 50 Hz 210.000 210.004 0.001 100 V 5 A 240 ° 50 Hz 240.000 240.006 0.002 100 V 5 A 270 ° 50 Hz 270.000 270.009 0.002 100 V 5 A 0 ° 1 kHz 0.000

0.001

0.001 100 V 5 A 30 ° 1 kHz 30.000 30.003 0.001 100 V 5 A 60 ° 1 kHz 60.000 60.004 0.001 100 V 5 A 90 ° 1 kHz 90.000 90.005 0.001 100 V 5 A 120 ° 1 kHz 120.000 120.009 0.001 100 V 5 A 150 ° 1 kHz 150.000 150.010 0.001 100 V 5 A 180 ° 1 kHz 180.000 180.015 0.002 100 V 5 A 210 ° 1 kHz 210.000 210.022 0.002 100 V 5 A 240 ° 1 kHz 240.000 240.025 0.002 100 V 5 A 270 ° 1 kHz 270.000 270.025 0.002 200 V 5 A 30 ° 50 Hz 30.000 30.001 0.001 200 V 5 A 60 ° 50 Hz 60.000 60.002 0.001 200 V 5 A 30 ° 1 kHz 30.000 30.003 0.001 200 V 5 A 60 ° 1 kHz 60.000 60.004 0.0015.3

LMG650 型 功率分析仪,0.03 级

(一)通道 CH1 交流电压测量

单位:V 量程 电压 频率(Hz)

名义值 实测值 不确定度(k=2)

Auto 10 V 50 10.0000 10.0004

5×10-5

V 400 10.0000 10.0001

5×10-5V 1 k 10.0000 10.0002

5×10-5V 5 k 10.0000 10.0020

5×10-5V 10 k 10.0000 10.0060

5×10-5V 20 k 10.0000 10.0192

1×10-4

V 50 k 10.0000 10.0505

1×10-4V 100 k 10.0000 10.0207

1×10-4

V 50 100.000 100.005

5×10-5

V 400 100.000 100.002

5×10-5

V 1 k 100.000 100.004

5×10-5

V 5 k 100.000 100.020

5×10-5

V 10 k 100.000 100.060

5×10-5

V 20 k 100.000 100.190

1×10-4

V 50 k 100.000 100.504

1×10-4

V 100 k 100.000 100.212

1×10-4

220 V 50 220.000 219.999

5×10-5

220 V 400 220.000 220.008

5×10-5

220 V 1 k 220.000 220.006

5×10-5

380 V 50 380.000 380.003

5×10-5

380 V 400 380.000 379.996

5×10-5

380 V 1 k 380.000 380.006

5×10-5

500 V 50 500.000 499.992

5×10-5

500 V 400 500.000 499.986

5×10-5

500 V 1 k 500.000 499.994

5×10-5

1000 V 50 1000.00 999.93

5×10-5

1000 V 400 1000.00 999.95

5×10-5

1000 V 1 k 1000.00 999.96

5×10-5

通道 CH2 交流电压测量

单位:V 量程 电压 频率(Hz)

名义值 实测值 不确定度(k=2)

Auto 10 V 50 10.0000 10.0007

5×10-5

V 400 10.0000 10.0008

5×10-5V 1 k 10.0000 10.0009

5×10-5V 5 k 10.0000 10.0026

5×10-5V 10 k 10.0000 10.0062

5×10-5V 20 k 10.0000 10.0182

1×10-4

V 50 k 10.0000 10.0471

1×10-4V 100 k 10.0000 10.0219

1×10-4

V 50 100.000 100.009

5×10-5

V 400 100.000 100.009

5×10-5

V 1 k 100.000 100.010

5×10-5

V 5 k 100.000 100.026

5×10-5

V 10 k 100.000 100.062

5×10-5

V 20 k 100.000 100.181

1×10-4

V 50 k 100.000 100.471

1×10-4

V 100 k 100.000 100.224

1×10-4

220 V 50 220.000 220.010

5×10-5

220 V 400 220.000 220.015

5×10-5

220 V 1 k 220.000 220.018

5×10-5

380 V 50 380.000 380.011

5×10-5

380 V 400 380.000 380.018

5×10-5

380 V 1 k 380.000 380.021

5×10-5

500 V 50 500.000 500.016

5×10-5

500 V 400 500.000 500.022

5×10-5

500 V 1 k 500.000 500.025

5×10-5

1000 V 50 1000.00 1000.00

5×10-5

1000 V 400 1000.00 1000.01

5×10-5

1000 V 1 k 1000.00 1000.05

5×10-5

通道 CH3 交流电压测量

单位:V 量程 电压 频率(Hz)

名义值 实测值 不确定度(k=2)

Auto 10 V 50 10.0000 10.0007

5×10-5

V 400 10.0000 10.0008

5×10-5V 1 k 10.0000 10.0008

5×10-5V 5 k 10.0000 10.0025

5×10-5V 10 k 10.0000 10.0063

5×10-5V 20 k 10.0000 10.0187

1×10-4

V 50 k 10.0000 10.0482

1×10-4V 100 k 10.0000 10.0194

1×10-4

V 50 100.000 100.007

5×10-5

V 400 100.000 100.008

5×10-5

V 1 k 100.000 100.011

5×10-5

V 5 k 100.000 100.025

5×10-5

V 10 k 100.000 100.063

5×10-5

V 20 k 100.000 100.187

1×10-4

V 50 k 100.000 100.483

1×10-4

V 100 k 100.000 100.199

1×10-4

220 V 50 220.000 220.006

5×10-5

220 V 400 220.000 220.013

5×10-5

220 V 1 k 220.000 220.016

5×10-5

380 V 50 380.000 380.005

5×10-5

380 V 400 380.000 380.014

5×10-5

380 V 1 k 380.000 380.017

5×10-5

500 V 50 500.000 500.005

5×10-5

500 V 400 500.000 500.011

5×10-5

500 V 1 k 500.000 500.004

5×10-5

1000 V 50 1000.00 999.95

5×10-5

1000 V 400 1000.00 999.97

5×10-5

1000 V 1 k 1000.00 1000.01

5×10-5

(二)通道 CH1 交流电流测量

单位:A 量程 电流 频率(Hz)

名义值 实测值 不确定度(k=2)

Auto 20 mA 50 0.0200000

0.0200038 5×10-5

mA 400 0.0200000

0.0200037 5×10-5mA 1 k 0.0200000

0.0200035 5×10-5

mA 50 0.100000

0.100012 5×10-5

mA 400 0.100000

0.100013 5×10-5

mA 1 k 0.100000

0.100013 5×10-5

mA 5 k 0.100000

0.100026 5×10-5

mA 10 k 0.100000

0.100046 5×10-5

mA 20 k 0.100000

0.100107 5×10-5

200 mA 50 0.200000

0.200019 5×10-5

200 mA 400 0.200000

0.200019 5×10-5

200 mA 1 k 0.200000

0.200020 5×10-5

500 mA 50 0.500000

0.500073 5×10-5

500 mA 400 0.500000

0.500075 5×10-5

500 mA 1 k 0.500000

0.500083 5×10-5

A 50 1.00000

1.00021

5×10-5A 400 1.00000

1.00019

5×10-5

A 1 k 1.00000

1.00019

5×10-5

A 5 k 1.00000

1.00032

5×10-5A 10 k 1.00000

1.00063

5×10-5

A 20 k 1.00000

1.00122

1×10-4

A 50 k 1.00000

1.00284

1×10-4A 100 k 1.00000

1.00329

1×10-4

A 50 2.00000

2.00039

5×10-5

A 400 2.00000

2.00035

5×10-5A 1 k 2.00000

2.00034

5×10-5

A 50 5.00000

5.00060

5×10-5A 400 5.00000

5.00076

5×10-5

A 1 k 5.00000

5.00123

5×10-5A 50 10.0000

10.0040

1×10-4

A 400 10.0000

10.0043

1×10-4A 1 k 10.0000

10.0054

1×10-4

A 5 k 10.0000

10.0142

1×10-4

A 10 k 10.0000

10.0226

1×10-4A 20 k 10.0000

10.0400

1×10-4

13A 50 20.0000

20.0276

1×10-4A 400 20.0000

20.0274

1×10-4

A 1 k 20.0000

20.0290

1×10-4

通道 CH2 交流电流测量

单位:A 量程 电流 频率(Hz)

名义值 实测值 不确定度(k=2)

Auto 20 mA 50 0.0200000

0.0200034 5×10-5

mA 400 0.0200000

0.0200035 5×10-5mA 1 k 0.0200000

0.0200037 5×10-5

mA 50 0.100000

0.100018 5×10-5

mA 400 0.100000

0.100019 5×10-5

mA 1 k 0.100000

0.100020 5×10-5

mA 5 k 0.100000

0.100033 5×10-5

mA 10 k 0.100000

0.100056 5×10-5

mA 20 k 0.100000

0.100120 5×10-5

200 mA 50 0.200000

0.200031 5×10-5

200 mA 400 0.200000

0.200032 5×10-5

200 mA 1 k 0.200000

0.200034 5×10-5

500 mA 50 0.500000

0.500107 5×10-5

500 mA 400 0.500000

0.500109 5×10-5

500 mA 1 k 0.500000

0.500118 5×10-5

A 50 1.00000

1.00020

5×10-5A 400 1.00000

1.00021

5×10-5

A 1 k 1.00000

1.00021

5×10-5

A 5 k 1.00000

1.00023

5×10-5A 10 k 1.00000

1.00038

5×10-5

A 20 k 1.00000

1.00064

1×10-4

A 50 k 1.00000

1.00167

1×10-4A 100 k 1.00000

1.00170

1×10-4

A 50 2.00000

2.00038

5×10-5

A 400 2.00000

2.00037

5×10-5A 1 k 2.00000

2.00036

5×10-5

A 50 5.00000

5.00051

5×10-5A 400 5.00000

5.00041

5×10-5

A 1 k 5.00000

5.00127

5×10-5A 50 10.0000

10.0017

1×10-4

A 400 10.0000

10.0021

1×10-4A 1 k 10.0000

10.0024

1×10-4

A 5 k 10.0000

10.0104

1×10-4

A 10 k 10.0000

10.0171

1×10-4A 20 k 10.0000

10.0275

1×10-4

A 50 20.0000

20.0104

1×10-4A 400 20.0000

20.0091

1×10-4

A 1 k 20.0000

20.0083

1×10-4

通道 CH3 交流电流测量

单位:A 量程 电流 频率(Hz)

名义值 实测值 不确定度(k=2)

Auto 20 mA 50 0.0200000

0.0200038 5×10-5

mA 400 0.0200000

0.0200034 5×10-5mA 1 k 0.0200000

0.0200037 5×10-5

mA 50 0.100000

0.100019 5×10-5

mA 400 0.100000

0.100018 5×10-5

mA 1 k 0.100000

0.100018 5×10-5

mA 5 k 0.100000

0.100031 5×10-5

mA 10 k 0.100000

0.100055 5×10-5

mA 20 k 0.100000

0.100121 5×10-5

200 mA 50 0.200000

0.200034 5×10-5

200 mA 400 0.200000

0.200026 5×10-5

200 mA 1 k 0.200000

0.200031 5×10-5

500 mA 50 0.500000

0.500097 5×10-5

500 mA 400 0.500000

0.500103 5×10-5

500 mA 1 k 0.500000

0.500116 5×10-5

A 50 1.00000

1.00023

5×10-5A 400 1.00000

1.00024

5×10-5

A 1 k 1.00000

1.00023

5×10-5

A 5 k 1.00000

1.00023

5×10-5A 10 k 1.00000

1.00035

5×10-5

A 20 k 1.00000

1.00049

1×10-4

A 50 k 1.00000

1.00121

1×10-4A 100 k 1.00000

1.00088

1×10-4

A 50 2.00000

2.00040

5×10-5

A 400 2.00000

2.00037

5×10-5A 1 k 2.00000

2.00034

5×10-5

A 50 5.00000

5.00083

5×10-5A 400 5.00000

5.00091

5×10-5

A 1 k 5.00000

5.00135

5×10-5A 50 10.0000

10.0025

1×10-4

A 400 10.0000

10.0026

1×10-4A 1 k 10.0000

10.0034

1×10-4

A 5 k 10.0000

10.0118

1×10-4

A 10 k 10.0000

10.0198

1×10-4A 20 k 10.0000

10.0364

1×10-4

A 50 20.0000

20.0129

1×10-4A 400 20.0000

20.0142

1×10-4

A 1 k 20.0000

20.0161

1×10-4(三)通道 CH1 交流功率测量 输入电压

输入电流

功率因数

频率

名义值(W)

实测值(W)

不确定度(k=2)

V 0.5 A 1 50 Hz 50.0000

50.0038

1×10-4 100 V 0.5 A 1 400 Hz 50.0000

50.0044

1×10-4 100 V 0.5 A 1 1 kHz 50.0000

50.0052

1×10-4

V 1 A 1 50 Hz 100.000

100.013

1×10-4 100 V 1 A 1 400 Hz 100.000

100.011

1×10-4 100 V 1 A 1 1 kHz 100.000

100.012

1×10-4 100 V 1 A 1 5 kHz 100.000

100.036

1×10-4

V 1 A 1 10 kHz 100.000

100.108

1×10-4 100 V 1 A 1 20 kHz 100.000

100.299

1×10-4 100 V 2 A 1 50 Hz 200.000

200.020

1×10-4

V 2 A 1 400 Hz 200.000

200.018

1×10-4 100 V 2 A 1 1 kHz 200.000

200.020

1×10-4 100 V 5 A 1 50 Hz 500.000

500.045

1×10-4

V 5 A 1 400 Hz 500.000

500.049

1×10-4 100 V 5 A 1 1 kHz 500.000

500.071

1×10-4 100 V 10 A 1 50 Hz 1000.00

1000.25

1×10-4

V 10 A 1 400 Hz 1000.00

1000.29

1×10-4 100 V 10 A 1 1 kHz 1000.00

1000.42

1×10-4 100 V 10 A 1 5 kHz 1000.00

1001.36

1×10-4

V 10 A 1 10 kHz 1000.00

1002.62

1×10-4 100 V 10 A 1 20 kHz 1000.00

1005.69

1×10-4

V 20 A 1 50 Hz 2000.00

2002.09

1×10-4 100 V 20 A 1 400 Hz 2000.00

2002.18

1×10-4 100 V 20 A 1 1 kHz 2000.00

2002.52

1×10-4

V 5 A 0.5 L 50 Hz 250.000

250.023

1×10-4 100 V 5 A 0.5 L 400 Hz 250.000

250.033

1×10-4 100 V 5 A 0.5 L 1 kHz 250.000

250.067

1×10-4

V 5 A 0.5 L 5 kHz 250.000

250.141

1×10-4 100 V 5 A 0.5 L 10 kHz 250.000

250.278

1×10-4 100 V 5 A 0.5 L 20 kHz 250.000

250.847

1×10-4

V 5 A 0.5 C 50 Hz 250.000

250.025

1×10-4 100 V 5 A 0.5 C 400 Hz 250.000

250.024

1×10-4 100 V 5 A 0.5 C 1 kHz 250.000

250.022

1×10-4

V 5 A 0.5 C 5 kHz 250.000

250.192

1×10-4 100 V 5 A 0.5 C 10 kHz 250.000

250.503

1×10-4 100 V 5 A 0.5 C 20 kHz 250.000

251.228

1×10-4 200 V 0.5 A 1 50 Hz 100.000

100.001

1×10-4

200 V 0.5 A 1 400 Hz 100.000

100.003

1×10-4 200 V 0.5 A 1 1 kHz 100.000

100.004

1×10-4 200 V 1 A 1 50 Hz 200.000

200.016

1×10-4

200 V 1 A 1 400 Hz 200.000

200.014

1×10-4 200 V 1 A 1 1 kHz 200.000

200.015

1×10-4 200 V 1 A 1 5 kHz 200.000

200.071

1×10-4

200 V 1 A 1 10 kHz 200.000

200.221

1×10-4 200 V 1 A 1 20 kHz 200.000

200.630

1×10-4 200 V 2 A 1 50 Hz 400.000

400.035

1×10-4

200 V 2 A 1 400 Hz 400.000

400.021

1×10-4 200 V 2 A 1 1 kHz 400.000

400.023

1×10-4 200 V 5 A 1 50 Hz 1000.00

1000.05

1×10-4

200 V 5 A 1 400 Hz 1000.00

1000.09

1×10-4 200 V 5 A 1 1 kHz 1000.00

1000.10

1×10-4 200 V 10 A 1 50 Hz 2000.00

2000.44

1×10-4 200 V 10 A 1 400 Hz 2000.00

2000.52

1×10-4

200 V 10 A 1 1 kHz 2000.00

2000.81

1×10-4 200 V 10 A 1 5 kHz 2000.00

2002.80

1×10-4 200 V 10 A 1 10 kHz 2000.00

2005.34

1×10-4

200 V 10 A 1 20 kHz 2000.00

2011.67

1×10-4 200 V 20 A 1 50 Hz 4000.00

4004.82

1×10-4 200 V 20 A 1 400 Hz 4000.00

4004.95

1×10-4

200 V 20 A 1 1 kHz 4000.00

4005.34

1×10-4 200 V 5 A 0.5 L 50 Hz 500.00

500.04

1×10-4 200 V 5 A 0.5 L 400 Hz 500.00

500.16

1×10-4 200 V 5 A 0.5 L 1 kHz 500.00

500.11

1×10-4

200 V 5 A 0.5 L 5 kHz 500.00

500.11

1×10-4 200 V 5 A 0.5 L 10 kHz 500.00

500.74

1×10-4 200 V 5 A 0.5 L 20 kHz 500.00

501.85

1×10-4 200 V 5 A 0.5 C 50 Hz 500.00

500.02

1×10-4

200 V 5 A 0.5 C 400 Hz 500.00

499.95

1×10-4 200 V 5 A 0.5 C 1 kHz 500.00

500.02

1×10-4 200 V 5 A 0.5 C 5 kHz 500.00

500.41

1×10-4

200 V 5 A 0.5 C 10 kHz 500.00

501.14

1×10-4 200 V 5 A 0.5 C 20 kHz 500.00

502.45

1×10-4 220 V 1 A 1 50 Hz 220.000

220.013

1×10-4

220 V 1 A 1 400 Hz 220.000

220.003

1×10-4 220 V 1 A 1 1 kHz 220.000

220.003

1×10-4 220 V 5 A 1 50 Hz 1100.00

1100.10

1×10-4

220 V 5 A 1 400 Hz 1100.00

1100.14

1×10-4 220 V 5 A 1 1 kHz 1100.00

1100.12

1×10-4 220 V 10 A 1 50 Hz 2200.00

2200.55

1×10-4

220 V 10 A 1 400 Hz 2200.00

2200.61

1×10-4 220 V 10 A 1 1 kHz 2200.00

2200.90

1×10-4 220 V 20 A 1 50 Hz 4400.00

4405.41

1×10-4 220 V 20 A 1 400 Hz 4400.00

4405.53

1×10-4

220 V 20 A 1 1 kHz 4400.00

4405.89

1×10-4 220 V 5 A 0.5 L 50 Hz 550.00

550.02

1×10-4 220 V 5 A 0.5 L 400 Hz 550.00

550.14

1×10-4220 V 5 A 0.5 L 1 kHz 550.00

550.09

1×10-4 220 V 5 A 0.5 C 50 Hz 550.00

550.02

1×10-4 220 V 5 A 0.5 C 400 Hz 550.00

549.92

1×10-4

220 V 5 A 0.5 C 1 kHz 550.00

549.99

1×10-4 380 V 1 A 1 50 Hz 380.000

380.015

1×10-4 380 V 1 A 1 400 Hz 380.000

380.011

1×10-4 380 V 1 A 1 1 kHz 380.000

380.013

1×10-4

380 V 5 A 1 50 Hz 1900.00

1900.03

1×10-4 380 V 5 A 1 400 Hz 1900.00

1900.09

1×10-4 380 V 5 A 1 1 kHz 1900.00

1900.10

1×10-4 380 V 10 A 1 50 Hz 3800.00

3800.55

1×10-4

380 V 10 A 1 400 Hz 3800.00

3800.71

1×10-4 380 V 10 A 1 1 kHz 3800.00

3801.21

1×10-4 380 V 20 A 1 50 Hz 7600.00

7609.71

1×10-4

380 V 20 A 1 400 Hz 7600.00

7609.93

1×10-4 380 V 20 A 1 1 kHz 7600.00

7610.61

1×10-4 380 V 5 A 0.5 L 50 Hz 950.00

950.03

1×10-4

380 V 5 A 0.5 L 400 Hz 950.00

950.03

1×10-4 380 V 5 A 0.5 L 1 kHz 950.00

950.13

1×10-4 380 V 5 A 0.5 C 50 Hz 950.00

950.01

1×10-4

380 V 5 A 0.5 C 400 Hz 950.00

950.02

1×10-4 380 V 5 A 0.5 C 1 kHz 950.00

950.00

1×10-4 600 V 1 A 1 50 Hz 600.000

600.032

1×10-4

600 V 1 A 1 400 Hz 600.000

600.021

1×10-4 600 V 1 A 1 1 kHz 600.000

600.022

1×10-4 600 V 5 A 1 50 Hz 3000.00

3000.13

1×10-4 600 V 5 A 1 400 Hz 3000.00

3000.20

1×10-4

600 V 5 A 1 1 kHz 3000.00

3000.21

1×10-4 600 V 10 A 1 50 Hz 6000.00

6000.80

1×10-4 600 V 10 A 1 400 Hz 6000.00

6001.11

1×10-4

600 V 10 A 1 1 kHz 6000.00

6001.94

1×10-4 600 V 20 A 1 50 Hz 12000.0

12016.2

1×10-4 600 V 20 A 1 400 Hz 12000.0

12016.4

1×10-4

600 V 20 A 1 1 kHz 12000.0

12017.1

1×10-4

通道 CH2 交流功率测量 输入电压

输入电流

功率因数

频率

名义值(W)

实测值(W)

不确定度(k=2)

V 0.5 A 1 50 Hz 50.0000

50.0097

1×10-4 100 V 0.5 A 1 400 Hz 50.0000

50.0108

1×10-4 100 V 0.5 A 1 1 kHz 50.0000

50.0112

1×10-4

V 1 A 1 50 Hz 100.000

100.019

1×10-4 100 V 1 A 1 400 Hz 100.000

100.018

1×10-4 100 V 1 A 1 1 kHz 100.000

100.017

1×10-4 100 V 1 A 1 5 kHz 100.000

100.035

1×10-4100 V 1 A 1 10 kHz 100.000

100.088

1×10-4 100 V 1 A 1 20 kHz 100.000

100.232

1×10-4 100 V 2 A 1 50 Hz 200.000

200.030

1×10-4

V 2 A 1 400 Hz 200.000

200.031

1×10-4 100 V 2 A 1 1 kHz 200.000

200.031

1×10-4 100 V 5 A 1 50 Hz 500.000

500.080

1×10-4

V 5 A 1 400 Hz 500.000

500.083

1×10-4 100 V 5 A 1 1 kHz 500.000

500.095

1×10-4 100 V 10 A 1 50 Hz 1000.00

1000.16

1×10-4

V 10 A 1 400 Hz 1000.00

1000.18

1×10-4 100 V 10 A 1 1 kHz 1000.00

1000.27

1×10-4 100 V 10 A 1 5 kHz 1000.00

1001.18

1×10-4

V 10 A 1 10 kHz 1000.00

1002.18

1×10-4 100 V 10 A 1 20 kHz 1000.00

1004.34

1×10-4 100 V 20 A 1 50 Hz 2000.00

2001.32

1×10-4 100 V 20 A 1 400 Hz 2000.00

2001.33

1×10-4

V 20 A 1 1 kHz 2000.00

2001.37

1×10-4 100 V 5 A 0.5 L 50 Hz 250.000

250.039

1×10-4 100 V 5 A 0.5 L 400 Hz 250.000

250.027

1×10-4

V 5 A 0.5 L 1 kHz 250.000

250.029

1×10-4 100 V 5 A 0.5 L 5 kHz 250.000

249.878

1×10-4 100 V 5 A 0.5 L 10 kHz 250.000

249.763

1×10-4

V 5 A 0.5 L 20 kHz 250.000

249.930

1×10-4 100 V 5 A 0.5 C 50 Hz 250.000

250.054

1×10-4 100 V 5 A 0.5 C 400 Hz 250.000

250.063

1×10-4 100 V 5 A 0.5 C 1 kHz 250.000

250.095

1×10-4

V 5 A 0.5 C 5 kHz 250.000

250.389

1×10-4 100 V 5 A 0.5 C 10 kHz 250.000

250.789

1×10-4 100 V 5 A 0.5 C 20 kHz 250.000

251.567

1×10-4 200 V 0.5 A 1 50 Hz 100.000

100.013

1×10-4

200 V 0.5 A 1 400 Hz 100.000

100.014

1×10-4 200 V 0.5 A 1 1 kHz 100.000

100.017

1×10-4 200 V 1 A 1 50 Hz 200.000

200.028

1×10-4

200 V 1 A 1 400 Hz 200.000

200.026

1×10-4 200 V 1 A 1 1 kHz 200.000

200.025

1×10-4 200 V 1 A 1 5 kHz 200.000

200.066

1×10-4

200 V 1 A 1 10 kHz 200.000

200.176

1×10-4 200 V 1 A 1 20 kHz 200.000

200.483

1×10-4 200 V 2 A 1 50 Hz 400.000

400.031

1×10-4

200 V 2 A 1 400 Hz 400.000

400.042

1×10-4 200 V 2 A 1 1 kHz 400.000

400.047

1×10-4 200 V 5 A 1 50 Hz 1000.00

1000.12

1×10-4

200 V 5 A 1 400 Hz 1000.00

1000.13

1×10-4 200 V 5 A 1 1 kHz 1000.00

1000.17

1×10-4 200 V 10 A 1 50 Hz 2000.00

2000.29

1×10-4 200 V 10 A 1 400 Hz 2000.00

2000.32

1×10-4

200 V 10 A 1 1 kHz 2000.00

2000.51

1×10-4 200 V 10 A 1 5 kHz 2000.00

2002.21

1×10-4 200 V 10 A 1 10 kHz 2000.00

2004.33

1×10-4

200 V 10 A 1 20 kHz 2000.00

2008.92

1×10-4 200 V 20 A 1 50 Hz 4000.00

4002.52

1×10-4 200 V 20 A 1 400 Hz 4000.00

4002.36

1×10-4

200 V 20 A 1 1 kHz 4000.00

4002.66

1×10-4 200 V 5 A 0.5 L 50 Hz 500.00

500.04

1×10-4 200 V 5 A 0.5 L 400 Hz 500.00

499.95

1×10-4 200 V 5 A 0.5 L 1 kHz 500.00

500.04

1×10-4

200 V 5 A 0.5 L 5 kHz 500.00

499.83

1×10-4 200 V 5 A 0.5 L 10 kHz 500.00

499.78

1×10-4 200 V 5 A 0.5 L 20 kHz 5...

第三篇:骨密度分析仪的五种测定方法(推荐)

骨密度分析仪的五种测定方法

骨密度的测定方法很多,但是在临床上如何更合理地应用还没有统一。对于骨密度测量方法评价其优劣之前,应首先明确该测量方法的准确性、精确性和敏感性, 准确性是指测定骨密度的能力。反映测定结果与骨密度真实值之间的差异。精确性是指方法的可重复性,通常是反映短时间内多次重复测定结果的差异。敏感性是反映骨密度真实变化的能力, 由于商业竞争和广告宣传,大大干扰了其在临床上的评估应用, 因此,选择骨密度测定方法应该遵守3个原则::(1)明确测定意义(2)估计骨质疏松的程度(3)评价治疗是否有效。

1、中子活化分析法

首先用核射线轰击人体内无放射性的48Ca,使之成为具有活性的放射性49Ca,再利用高分辨率的铬探测器对49Ca发出的高能射线立即进行测量。利用公式计算原来稳定核素含量, NNA方法测定人体骨密度在手骨-脊柱和躯干骨上进行,也可以进行全身Ca含量测量, 但由于在试验中病人受到高剂量辐射,还需要中子源和好的防护设施,并且价格昂贵成本高。目前仅仅用于实验研究,没有得到推广。

2、定量CT测定

能直接测量骨松质内部的骨密度,是利用XCT的成像原理,即人体组织对X射线吸收不同而导致X光子衰减,可计算出任何部位的组织密度, 在测量时需要注意,将标定体模块放于CT桌和病人之间;对脊柱侧位扫描;扫描平面位于各椎体中心与椎体终板平行。QCT扫描支段需使用计算机帮助定位,这种方法的优点是测定骨松质高转换率时的稳定性。由于其技术敏感性能高,在临床上常用做预测脊柱骨质疏松性骨折的测定方法。缺点是价格较贵,放射剂量高,准确性相对较低,而且重复性差,受骨内无机盐、水、脂肪含量的影响,病人受到的辐射剂量是光子吸收法的几十倍到几百倍。因此其推广价值大大受到限制。

3、光子散射法

光子散射法的原理是在射线或X射线与物质作用时,辐射能量部分辐射到物质原子核外电子上,产生康普顿电子,光子能量减弱,方向改变,临床上使用放射性核素或射线作为辐射源。用高密度的探头测量人体外骨骼部位产生的康普顿射线,其强度主要取决于原子核外的电子密度。由于此方法病人受到的辐射量比较大,甚至比QCT法还要高!又不能测量中轴骨,所以也不会得到广泛的应用。

4、X线光束法

X线光束法是利用照射集束的,X线光束!从其组织吸收率来计算骨密度的方法。因为其衰减程度和该部位的骨矿物质含量相关,此方法可分为单能X线吸收法和双能X线吸收法。单能X线吸收法用于跟骨和前臂上的测定,需要专用设备,测试时间短、精度高,而且体积小,重量轻,便于检查、缺点是只以末梢骨为对象X双能X线吸收法是利用高低两种能量的。X射线穿透人体,在软组织上差异较小,但在骨组织上较大,由相应的探头接受计数,经计算机处理,让高低能量的计数相减,消去软组织的计数。剩下的骨组织计数,再用计数方程来计算骨密度。使用这种方法的两种新技术有:(1)笔形束技术。笔形束扫描骨密度仪采用无散射及硬化的狭窄,线束及单一探测器。与可见光类似X线从球管的焦点以直线方式向各个方向辐射。这种辐射被严格集中于一条窄而直的线束范围内,在此系统中X线沿病人身体做直线运动.同时有一个探测器接收X线进行数据采集。每次在一个采样点采集一个数据。(2)扇形束技术。采用扇形束扫描的骨密度仪比传统的笔形束具有极其重要的临床诊断和研究价值。它采用一组排列紧密的探测器代替单一探测器。在X线的遮光器上开一个狭长切口,使之产生一束扇形X线束。扇形骨密度探测器的设计类似于,一般都采用高密度排列的固体探测器。从机械上说,探测器和扇形波束对齐排列。这样扇形波束的长度与探测器的长度一致。随着,X线一起移动。同时探测器通过整个波束收集数据,进而通过扇形波束获取的扫描速度得到了极大的提高。扇形束技术的优点是具有目前最好的技术设备#扫描范围大,扫描条件可变,可以根据需要测定任何部位,图像更清晰,同时提高测量结果的准确度和精密度。

5、超声波法

利用超声原理测量骨矿物质密度和骨质,用宽波段超声衰减信号来评估骨密度的方法。分为湿系和干系两类。湿系是将跟骨置于水槽中进行’而干系不需要水槽。利用耦合剂进行。目前使用的仪器有两种:

(1)跟骨超声骨质测量仪。这种仪器需要测量3个参数:声速。在骨组织中运动的速度,反映骨的弹性和密度;宽波段超声衰减;骨组织中的速度和宽波段超声衰减的组合参数。此仪器和双能X吸收法相辅相成,能更好地预测骨折。

(2)超声波骨密度分析仪。以西奈超声波骨密度分析仪为例,它利用双频超声技术,沿着长骨轴向检测骨密度、骨质。反映骨的弹性#脆性。其重复性好,误差小,精度高,运用超声波技术不但能测量骨密度,而且能反映骨强度和骨结构的情况。优点是检测方便;无放射性;价格便宜;便于搬动普查等。它不仅可以检测骨质量的减少和骨质的丢失,还适用儿童、妊娠以及哺乳期妇女。这将进一步促进它的发展。有广泛的应用前景,骨密度的测量在临床应用中是有效且可行的,但测定了骨密度能否预防骨折(能否预防骨质疏松症的发生(发生骨质疏松症后会给被检查者带来多大的生活影响,必须给每一个患者讲清楚,提供治疗方案和运动处方,才能有效地预防骨折和骨质疏松症的发生。

第四篇:材料测试方法 复习题

1.材料微观结构和成分分析可以分为哪几个层次?分别可以用什么方法分析?

化学成分分析(元素分析):谱学法:①常规方法(平均成分):湿化学法、光谱分析法②先进方法(种类、浓度、价态、分布):电子探针、俄歇电子能谱、光电子能谱、X射线荧光光谱等 晶体结构分析(物相分析):衍射法:主要包括X射线衍射、电子衍射、中子衍射、射线衍射等;

显微结构分析(显微形貌分析):显微法:主要包括光学显微镜、透射电子显微镜、扫描电子显微镜、扫描隧道显微镜、原子力显微镜、场离子显微镜等; 2.X射线与物质相互作用有哪些现象和规律?利用这些现象和规律可以进行哪些科学研究工作,有哪些实际应用?(说出三种以上分析方法及原理)3.电子与物质相互作用有哪些现象和规律?利用这些现象和规律可以进行哪些科学研究工作,有哪些实际应用?(说出四种以上分析方法及原理)4.什么是(主)共振线、分析线、灵敏线、最后线?

共振线:是指电子在基态与任一激发态之间直接跃迁所产生的谱线。

主共振线:电子在基态与最低激发态之间跃迁所产生的谱线则称为主共振线。灵敏线:原子光谱中最容易产生的谱线,一般主共振线即为灵敏线

最后线:当样品中某元素的含量逐渐减少时,最后仍能观察到的几条谱线。它也是该元素的最灵敏线。5.原子发射光谱定性分析基本原理和定量分析的依据及定性、定量分析方法。特点:最大特点是可以获得丰富的化学信息,它对样品的损伤是最轻微的,定量也是最好的。

(1)可以分析除H和He以外的所有元素,可以直接得到电子能级结构的信息。(2)它提供有关化学键方面的信息,即直接测量价层电子及内层电子轨道能级,而相邻元素的同种能级的谱线相隔较远,互相干扰少,元素定性的标志性强。(3)是一种无损分析。

(4)是一种高灵敏超微量表面分析技术。分析所需试样约10g即可,绝对灵敏

度高达10g,样品分析深度约2 nm。

它的缺点是由于X射线不易聚焦,因而照射面积大,不适于微区分析。

XPS中的化学位移作用:由于原子处于不同的化学环境里而引起的结合能位移称为化学位移。原子核附近的电子受核的引力和外层价电子的斥力,当失去价电子而氧化态升高时,电子与原子核的结合能增加,射出的光电子动能减小。化学位移的量值与价电子所处氧化态的程度和数目有关。氧化态愈高,则化学位移愈大。这种化学位移与氧化态有关的现象,在其他化合物中也是存在的,利用这一信息可研究化合物的组成。

13. 俄歇电子能谱分析的原理、应用及特点。原理:原子K层电子被击出,L层电子(L2)向K层跃迁,其能量差ΔE=EK-EL2可能不是以产生一个K系X射线光量子的形式释放,而是被邻近的电子(L2)所吸收,使这个电子受激发而成为自由电子,这就是俄歇效应,这个自由电子就称为俄歇电子。,俄歇电子的能量与参与俄歇过程的三个能级能量有关。定性分析:基本原理:如果样品中有某些元素存在,那么只要在合适的激发条件下,样品就会辐射出这些元素的特征谱线,在感光板的相应位置上就会出现这些谱线。检出某元素是否存在,必须有2条以上不受干扰的最后线与灵敏线。分析方法:常采用摄谱法,通过比较试样光谱与纯物质光谱或铁光谱来确定元素的存在。即标准试样光谱比较法和铁光谱比较法

定量分析:依据:lg I

 b lg

c 

lg

A

据此式可以绘制 lg

I  lg

c

校准曲线,进行定量分析。分析方法:校正曲线法和标准加入法6.

原子吸收光谱的基本原理与分析方法。

基本原理:当入射辐射的能量等于原子中的电子由基态跃迁到较高能态所需要的能量时,原子就要从辐射场中吸收能量,产生共振吸收,电子由基态跃迁到激发态,同时伴随着原子吸收光谱的产生。由于各元素的原子结构和外层电子的排布不同,元素从基态跃迁至第一激发态时吸收的能量不同,因而各元素的共振吸收线具有不同的特征。原子吸收光谱位于紫外区和可见区。分析方法:标准曲线法和标准样加入法7.

红外光谱分析的基本原理、方法及应用。

基本原理:分子的振动具有一些特定的分裂的能级。当用红外光照射物质时,该物质结构中的质点会吸收一部分红外光的能量。引起质点振动能量的跃迁,从而使红外光透过物质时发生了吸收而产生红外吸收光谱。被吸收的特征频率取决于物质的化学成分和内部结构。每一种具有确定化学组成和结构特征的物质,都应具有特征的红外吸收谱图(谱带位置、谱带数目、谱带宽度、谱带强度)等。当化学组成和结构特征不同时,其特征吸收谱图也就发生了变化。方法:根据红外光谱的特征吸收谱图对物质进行分析鉴定工作,按其吸收的强度来测定它们的含量。应用:1)、有机化学领域,无机化合物、矿物的红外鉴定;2)、利用红外光谱可以测定分子的键长、键角大小,并推断分子的立体构型,或根据所得的力常数,间接得知化学键的强弱,也可以从简正振动频率来计算热力学函数等;3)、主要用途:对物质作定性分析和定量分析。8.

拉曼光谱分析的基本原理及应用。什么斯托克斯线和反斯托克斯线?什么是拉曼位移?

基本原理:按照量子理论,光的散射是光量子与分子碰撞的结果;分为:弹性散射和非弹性散射。

弹性散射:光量子与分子不交换能量,因而光量子的能量和频率保持不变。非弹性散射:光量子与分子之间有能量交换。有两种情况:(1)分子处于基态振动能级,与光子碰撞后,从光子中获取能量达到较高的能级。若与此相应的跃迁能级有关的频率是ν1,那么分子从低能级跃到高能级从入射光中得到的能量为hν1,而散射光子的能量要降低到hν0-hν1,频率降低为ν0-ν1。(2)分子处于振动的激发态上,并且在与光子相碰时可以把hν1的能量传给光子,形成一条能量为hν0+hν1和频率为ν0+ν1的谱线。

通常把低于入射光频的散射线ν0-ν1称为斯托克斯线。高于入射光频的散射线ν0+ν1称为反斯托克斯线。ν1称为拉曼位移,拉曼位移的大小取决于分子振动跃迁能级差。9.

X射线荧光光谱定性、定量分析的基本原理,什么是基本体吸收效应?如何消除?

定性分析——根据波长或能量确定成分;定量分析——根据强度确定成分含量。基本体吸收效应:试样的吸收系数与其成分有关,当试样的化学成分变化时,其吸收系数也随之改变。

元素A的荧光X射线强度不但与元素A的含量有关,还与试样内其他元素的种类和含量有关。

吸收包括两部分:一次X射线进入试样时所受的吸收和荧光X射线从试样射出时所受的吸收。

吸收的多少与X射线的波长和试样中各元素的含量、吸收系数及其吸收限有关。采用实验校正法、数学校正法消除10.

波谱仪与能谱仪的展谱原理及特点。11. XPS的分析原理是什么?

XPS的测量原理是建立在Einstein光电效应方程基础上的,光电子动能为:Ec =hv-EB-(-w)式中hv和-w是已知的,Ec可以用能量分析器测出,于是EB就知道了。同种元素的原子,不同能级上的电子EB不同,所以在相同的hv和-w下,同一元素会有不同能量的光电子,在能谱图上,就表现为不止一个谱峰。其中最强而又最易识别的就是主峰,主要用主峰来进行分析。不同元素,元素各支壳层的EB具有特定值,所以用能量分析器分析光电子的Ec,便可得出EB,对材料进行表面分析。12.

XPS的应用及特点,XPS中的化学位移有什么用?

X射线光电子能谱主要应用:分析表面化学元素的组成、化学态及其分布,特别是原子的价态、表面原子的电子密度、能级结构。即元素定性分析(元素以及该元素原子所处的化学状态)、定量分析、化合物结构鉴定、表面分析、深度分布分析

ΔE=EK-EL2-EL2 能量是特定的,与入射X射线波长无关,仅与产生俄歇效应的物质的元素种类有关。

应用:1)材料表面偏析、表面杂质分布、晶界元素分析;2)金属、半导体、复合材料等界面研究;

3)薄膜、多层膜生长机理的研究;4)表面的力学性质(如摩擦、磨损、粘着、断裂等)研究;

5)表面化学过程(如腐蚀、钝化、催化、晶间腐蚀、氢脆、氧化等)研究;6)集成电路掺杂的三维微区分析;7)固体表面吸附、清洁度、沾染物鉴定等。特点:1)作为固体表面分析法,其信息深度取决于俄歇电子逸出深度(电子平均自由程)。对于能量为50eV-2keV范围内的俄歇电子,逸出深度为0.4-2nm,深度分辨率约为l nm,横向分辨率取决于入射束斑大小。2)可分析除H、He以外的各种元素。3)对于轻元素C、O、N、S、P等有较高的分析灵敏度。4)可进行成分的深度剖析或薄膜及界面分析。14.

扫描隧道显微镜基本原理及特点、工作方式。

基本原理:量子力学认为:电子波函数ψ向表面传播,遇到边界,一部分被反射(ψR),而另一部分则可透过边界(ψT),从而形成金属表面上的电子云。粒子可以穿过比它能量更高的势垒,这个现象称为隧道效应。尖锐金属探针在样品表面扫描,利用针尖-样品间纳米间隙的量子隧道效应引起隧道电流与间隙大小呈指数关系,获得原子级样品表面形貌特征图象。

特点:1)STM结构简单。2)其实验可在多种环境中进行:如大气、超高真空或液体(包括在绝缘液体和电解液中)。3)工作温度范围较宽,可在mK到1100K范围内变化。这是目前任何一种显微技术都不能同时做到的。4)分辨率高,扫描隧道显微镜在水平和垂直分辨率可以分别达到0.1nm和0.01nm。因此可直接观察到材料表面的单个原子和原子在材料表面上的三维结构图像。5)在观测材料表面结构的同时,可得到材料表面的扫描隧道谱(STS),从而可以研究材料表面化学结构和电子状态。6)不能探测深层信息,无法直接观察绝缘体。工作方式:恒电流模式:扫描时,在偏压不变的情况下,始终保持隧道电流恒定;

恒高模式:始终控制针尖在样品表面某一水平高度上扫描,随样品表面高低起伏,隧道电流不断变化。15.

原子力显微镜工作原理及应用。

工作原理:原子力显微镜是一种类似于扫描隧道显微镜的显微技术,它的仪器构成(机械结构和控制系统)在很大程度上与扫描隧道显微镜相同。如用三维压电扫描器,反馈控制器等。它们的主要不同点是扫描隧道显微镜检测的是针尖和样品间的隧道电流,而原子力显微镜检测的是针尖和样品间的力。

应用:原子力显微镜对所分析样品的导电性无要求,已成为表面科学研究的重要手段,在金属、无机、半导体、电子、高分子等材料中得到了广泛应用。

(一)几十到几百纳米尺度的结构特征研究

(二)原子分辨率下的结构特征研究

(三)在液体环境下成像对材料进行研究

(四)测量、分析表面纳米级力学性能(吸附力、弹性、塑性、硬度、粘着力、摩擦力等)

(五)实现对样品表面纳米加工与改性16.

什么是离子探针?离子探针的特点。

离子探针微区分析仪,简称离子探针。在功能方面离子探针与电子探针类似,只是以离子束代替电子束,以质谱仪代替X射线分析器。利用细小的高能(能量为1~20keV)离子束照射在样品表面,激发出正、负离子(二次离子); 利用质谱仪对这些离子进行分析,测量离子的质荷比(m/e)和强度,确定固体表面所含元素的种类及其含量。

特点:1)可作同位素分析;2)可对几个原子层深度的极薄表层进行成分分析。利用离子束溅射逐层剥离,得到三维的成分信息;3)一次离子束斑直径缩小至微米量级时,可拍摄特定二次离子的扫描图像。并可探测极微量元素(50ppm);417)可高灵敏度地分析包括氢、锂在内的轻元素,特别是可分析氢。.

场离子显微镜的成像原理。

当成像气体进入容器后,受到自身动能的驱使会有一部分达到阳极附近,在极高的电位梯度作用下气体原子发生极化,即使中性原子的正、负电荷中心分离而成为一个电偶极子。

极化原子被电场加速撞击样品表面,气体原子在针尖表面作连续的非弹性跳动。尽管样品的尖端表面呈半球形,可是由于原子的不可分性使得这一表面实质上是由许多原子平面的台阶所组成,处于台阶边缘的原子总是突出于平均的半球形表面而具有更小的曲率半径,在其附近的场强亦更高。

当弹跳中的极化原子陷入突出原子上方某一距离(约0.4nm)的高场区域时,若气体原子的外层电子能态符合样品中原子的空能级能态,该电子将有较高的几率通过“隧道效应”而穿过表面位垒进入样品,从而使成像气体原子变为正离子——场致电离。

此时,成像气体的离子由于受到电场的加速而径向地射出,当它们撞击观察荧光屏时,即可激发光信号。18.

什么是穆斯堡尔效应?穆斯堡尔谱的应用。无反冲核γ射线发射和共振吸收现象称为穆斯堡尔效应。原子核(发射体)从激发态跃迁到基态,发射出具有能量为 E(能级差)的 γ 光子.这一γ光子在通过同种元素处于基态的原子核(吸收体)时,将被原子核吸收。吸收体中的原子核吸收了γ光子的能量便可跃迁到激发态,这就是原子核的共振吸收。

应用:

(一)分析化学的工具。可用于测定矿石、合金和废物中的总含铁量和总含锡量。

(二)在金属材料研究中的应用。穆斯堡尔核作为试探原子,能获得原子尺度内微观结构的信息,是研究钢的淬火、回火,有序-无序转变、时效析出、固溶体分解等过程的动力学,晶体学和相结构等问题的有效工具。

(三)磁性材料研究。可用于判断各种磁性化合物结构的有效手段。可用于测定反铁磁性的奈尔点、居里点和其它各种类型的磁转变临界点;也可用于测定易磁化轴,研究磁性材料中的非磁性相。

(四)生物学和生物化学的应用。可用于研究包括红血蛋白、肌红蛋白、氧化酶、过氧化酶、铁氧还原蛋白和细胞色素等范围极广的含铁蛋白质的结构和反应机理研究。

(五)地质、考古方面,穆斯堡尔谱学也是一种有用的“指纹”工具。19. 核磁共振的基本原理及共振条件。20. DTA的基本原理,DTA在材料研究中有什么用处?

原理:在程序控制温度下,测量物质与参比物(基准物)的温度差随时间或温度变化。当试样发生任何物理或化学变化时,所释放或吸收的热量使样品温度高于或低于参比物的温度,从而相应地在差热曲线上得到放热或吸热峰。

用处:

1、凡是在加热(或冷却)过程中,因物理-化学变化而产生热效应的物质,均可利用差热分析法加以研究。合金相图的建立、玻璃及陶瓷相态结构的变化、非晶晶化动力学的研究、凝胶材料烧结进程研究

2、可用于部分化合物的鉴定

3、依据差热分析曲线特征,如各种吸热与放热峰的个数、形状及位置等,可定性分析物质的物理或化学变化过程,还可依据峰面积半定量地测定反应热。21. 影响差热曲线形态的因素主要有哪些?

(一)实验条件的影响1.升温速率的影响。程序升温速率主要影响DTA曲线的峰位和峰形,升温速率越大,峰位越向高温方向迁移以及峰形越陡。2.气氛的影响

3.参比物的影响

(二)仪器因素的影响。仪器因素是指与热分析仪有关的影响因素,主要包括:加热炉的结构与尺寸、坩埚材料与形状、热电偶性能及位置等。

(三)样品的影响1.样品用量的影响。通常用量不宜过多,因为过多会使样品内部传热慢、温度梯度大,导致峰形扩大和分辨率下降。2.样品形状及装填的影响。样品形状不同所得热效应的峰的面积不同,以采用小颗粒样品为好,通常样品应磨细过筛并在坩埚中装填均匀。3.样品的热历史的影响。许多材料往往由于热历史的不同面产生不同的晶型或相态,以致对DTA曲线有较大的影响 22. DSC的基本原理及应用。

DSC(差示扫描量热法)是在程序控制温度下,测量输入给样品和参比物的功率差与温度之间关系的一种热分析方法。

应用:差示扫描量热法与差热分析法的应用功能有许多相同之处,但由于DSC克服了DTA以ΔT间接表达物质热效应的缺陷,分辨率高、灵敏度高等优点,因而能定量测定多种热力学和动力学参数,且可进行晶体微细结构分析等工作。样品焓变的测定、样品比热的测定、研究合金的有序—无序转变、23. 相干散射与非相干散射及对衍射的贡献。24. 光电效应、荧光辐射、俄歇效应,荧光产率与俄歇电子产率。

光电效应:在外界光的作用下,物体(主要指固体)中的原子吸收光子的能量,使其某一层的电子摆脱其所受的束缚,在物体中运动,直到这些电子到达表面。如果能量足够、方向合适,便可离开物体的表面而逸出,成为光电子。

荧光辐射:处于激发态的原子,要通过电子跃迁向较低的能态转化,同时辐射出被照物质的特征x射线,这种由入射x射线激发出的特征x射线,称为二次特征x射线(荧光x射线)此种辐射又称为荧光辐射

俄歇效应:原子K层电子被击出,L层电子(L2)向K层跃迁,其能量差ΔE=EK-EL2可能不是以产生一个K系X射线光量子的形式释放,而是被邻近的电子(L2)所吸收,使这个电子受激发而成为自由电子,这就是俄歇效应

荧光产率与俄歇电子产率:在激发原子的去激发过程中,存在两种不同的退激发方式:一种是俄歇跃迁过程;另一种是荧光过程。俄歇跃迁几率(PA)与荧光产生几率PX之和为1:PA+PX=1 当元素的原子序数小于19时(即轻元素),俄歇跃迁几率(PA)在90以上。直到原子序数增加到33时,荧光几率才与俄歇几率相等。25. 产生衍射的必要条件(布拉格方程)及充分条件。26. 晶粒大小与X射线衍射线条宽度的关系。27. 物相定性分析、定量分析的原理。28. 扫描电镜二次电子像与背散射电子像。29. 扫描电镜图像衬度(形貌衬度、原子序数衬度)。30. 什么是电子探针?电子探针的原理及工作方式。

第五篇:功率教案

《功率》教案

1、教学目标 1)知识与技能

理解功率的概念及计算公式,知道功率的单位。2)过程与方法

通过观察和联系生活实际了解功率的物理意义。3)情感、态度与价值观

培养学生对生活中的物理知识的学习兴趣,形成对科学的求知欲,乐于探索自然现象和日常生活中的物理学道理,有将科学技术应用于日常生活、社会实践的意识。

2、学生分析

初三学生,有丰富的生活知识和生活经验,接触许多与功和功率有关的事物和现象,为这节课的教学过程奠定基础,同时学习过速度和电功率的概念,对于理解功率有很大帮助。

3、教具与学具

电化教具:多媒体课件

学具:物理课本和手表

4、教学过程 引入新课

一、播放多媒体素材(视频)或画面)如用挖掘机挖土和一个工人单独挖土比较哪一种方法更快?图中的情景说明了什么问题? 类似的事例还有吗?(启发思考)教师通过所设计的情景,将学生引入学习怎样比较做功快慢的学习主题,让学生发表自己的看法,初步知道物体做功是有快慢之分的。由情景引入吸引学生的注意,启发学生思考,并直接切入学习主题。

通过课本想想议议说出比较做功快慢的方法

二、功率的概念及计算公式

1、引导回顾“速度”的知识。速度是表示物体运动快慢的物理量。

5、提问:用什么方法可以方便准确的表示物体做功的快慢呢?

6、介绍功率的概念及计算公式 并以适当的事例加以巩固。

例:过去我们学习电功率,说说某电风扇的功率为60W,表示什么意思? 引导学生参看课本小数据图表中的资料,说出各物体功率所表示的意义。

7、巩固提高:

提问:用1牛的力在2秒内将物理课本从地上提高1米,你能算出这个力做功的功率吗?

教师启发:以前学习过要比较两物体运动的快慢,可以先确定路程再比较时间,也可以先确定时间再比较路程。同理,要比较物体做功的快慢可采用什么方法?

学生在小组讨论的基础上进行回答,由他人(同组同学或其他组同学)适当补充,再通过教师的引导使学生领悟比较物体做功快慢的方法:①做功相同,比较做功的时间,时间短的做功快;②时间相同,比较做功的多少,做功多的做功快。利用机械或人工将同一大堆砖从地上搬到五楼,你会选用什么方法?

学生讨论过程。教师点拔:在图中不知爷孙俩的体重和他们爬楼的时间,能否确定他们的功率的大小。教师引导:用一个包含有功和做功所用的时间的概念(电功率)来表示物体做功的快慢是否可行?

学生在教师的引导下,理解功率的概念,功率表示的物理意义,认识功率的相关单位及计算公式。

学生回答问题,教师作适当的讲评,加深学生对功率概念的理解。

教师先引导学生求出所做的功,再求功率,这对学生巩固前后知识均有所帮助。温故而知新,对后面的学习将起到重要的启发作用。用类比法

学生通过讨论,知道物体做功有快有慢之分,进一步知道比较做功快慢的方法,在此基础上对物体做功的快慢有进一步的认识。

学生的答案可能两方面都具有,如果教师在学生的讨论中逐步启发,加选先进的起重机,学生就会在前面讨论的基础上深刻领悟物体做功确有快慢之分。

学生的讨论也会出现分歧,教师就在学生的分歧中导入功率的概念,循序渐进,恰到好处。

设疑,引出功率是表示物体做功快慢的物理量(要比较两物体做功的快慢,可用功率直接比较)。

通过实例讲授,让学生自然知道功率的概念。

加深学生对功率的物理意义的理解,使学生对人和一些事物的功率数值有个具体的概念,懂得功率大或小的意思是什么。

让学生更好地理解和掌握功率的相关知识,包括公式的运用。

知识的运用与迁移

三、通过例题训练,加深对功率概念的理解和加强知识的运用能力。教师适当的引导,拓展知识。引导学生回到前面所举的例子,通过讨论及训练,培养学生运用所学知识解决实际问题的能力。

学生边边思考,边动手进行计算解答。教师把学生的答案进行投影,可进行全班讨论,加深理解。

学生自己进行阅读、解答,教师在课室巡视,给有学习困难的学适当的帮助。学生解答完后,教师再用解题示范,强调解题的方法和习惯。

使学生加深对做功快慢的理解及加强学生对功率知识的应用能力

四、小结

请同学们总结一下,本节课你学到了哪些知识,有哪些收获?

学生先自己总结归纳,教师引导个别代表回答并作适当的讲解。

给学生充分表现自我的机会,同时教师也能借此机会发现学生学习的问题,并获得教学效果的即时反馈。

五、巩固检测:学生独立完成教师出示答案同桌互批教师抽批

下载功率分析仪简单测试方法word格式文档
下载功率分析仪简单测试方法.doc
将本文档下载到自己电脑,方便修改和收藏,请勿使用迅雷等下载。
点此处下载文档

文档为doc格式


声明:本文内容由互联网用户自发贡献自行上传,本网站不拥有所有权,未作人工编辑处理,也不承担相关法律责任。如果您发现有涉嫌版权的内容,欢迎发送邮件至:645879355@qq.com 进行举报,并提供相关证据,工作人员会在5个工作日内联系你,一经查实,本站将立刻删除涉嫌侵权内容。

相关范文推荐

    功率教案

    功率 教学目标: 1.知识与技能 (1)知道功率的概念和功率是表示做功快慢的物理量。 (2)结合实例理解功率的概念并用P=W/t进行解题。 (3)正确理解公式P=Fv的意义,并能用其解决相关问题。......

    《功率》教案

    《功率》教案 教学目标: 1、知识与技能 (1)知道功率的概念。 (2)结合实例理解功率的概念。 (3)了解功率在实际中的应用。 2、过程与方法 通过观察和联系生活实际了解功率的物理意义......

    《功率》教案[范文模版]

    《7.3功率》教案平江四中 何功科 ●教学目的: (一).知识与技能 1、理解功率的定义及额定功率与实际功率的定义。 2、PW,PFv的运用 tW通常指平均功率,t0为瞬时功率 t(二).过程......

    功率物理教案

    (一)引入课题 首先以提问方式复习上一节所学习的主要内容,重点是功的概念和功的物理意义. 然后提出力对物体做功的实际问题中,有做功快慢之分,物理学中又是如何来描述的?这节课我们......

    《功率》说课稿

    新人教版高中物理必修二 说课稿 第七章 机械能守恒定律 第三节 功率 一.教材分析 《功率》是普通高中课程标准实验教科书物理必修2第七章《机械能守恒定律》的第3节内容。功......

    功率说课稿

    功率说课稿15篇 功率说课稿1 教材分析:《电功率》是鲁科版九年级上册第十四章第三节。是继电流,电阻,电压,电能之后学生学习的又一个电学基本概念,也是生活中用电器铭牌上一个重......

    建筑设备功率

    你的意思我明白,是要做一个建筑企业机械设备资产表吧,我把我单位的给你好了,但是不太全,你要自己再找找啊() 另外,总功率就是你说的,以千瓦时计算. 基本上,有电动机的设备,......

    功率学案

    《功率》学案 【学习目标】 1、理解功率的概念,能运用功率的公式P=W/t进行有关的计算。 2、掌握平均功率和瞬时功率,理解额定功率和实际功率。能用公式P=Fv进行分析和计算。......