第一篇:提高汽轮机热效率
提高汽轮机热效率首先从安装基础抓起
一、概括
内蒙古上都发电有限公司三期工程为两台660MW超临界空冷燃煤发电机组,锅炉采用哈尔滨锅炉有限责任公司制造的660MW超临界参数燃煤锅炉,为超临界参数变压直流炉,一次再热,平衡通风,紧身封闭,固态排渣,全钢结构,全悬吊结构TT型锅炉,型号HG—2141/25.4—HM15,汽轮机为东方汽轮机厂设计制造660MW主汽轮机为超临界,一次中间再热,单轴、三缸四排汽直接空冷汽轮机,型号为NZK660—24.2Mpa/566℃/566℃;汽轮机排汽采用直接空气冷却技术(以下简称空冷)进行冷却,空冷岛主要设备由斯必克冷却技术(北京)有限公司和斯必克冷却技术(张家口)有限公司供货,发电机由东方电机有限公司生产的QFSN—660—2—22型水—氢—氢冷却,三相交流两级同步发电机,采用南端集团公司电气控制分公司制造的FWL/B—600型自并励静止可空硅励磁系统,机组热工控制为单元制机、炉、电集中控制方式,控制采用西屋公司的OVATION分散控制系统(DCS),单元机组将接收电网调度系统送来的机组负荷指令,实现发电机自动控制功能(AGC)。
汽轮机高中压缸为合缸,双层结构,没有单独设计缸体疏水管道;低压缸分为A、B两缸,均为双缸双排汽结构,高压缸排汽管道有两根,后经合并流向锅炉再热器。
汽轮机调节系统用油采用高压抗燃油,抗燃油系统配有两台100%
缸至中压缸的轴封泄漏排向凝汽器,降低机组的超速。
二、提高汽轮机热效率必须从减少热耗做起,上都发电有限责任公司总经理李向良亲自落实贯彻内蒙古北方公司精细化管理文件精神,2011年04月28日内蒙古北方公司工程部经理王新宇亲临上都电厂主持组织召开三期工程6#机汽机本体通流部分间隙调整。技术研讨专题会,参加单位:北方公司工程部经理王新宇;上都电厂工程部汽机专工秦书文;中达联监理部汽机专工呼世豪;东方汽轮机厂驻上都电厂代表张兵;内蒙古第一电力建设公司汽机专工张晓东、张忠清,经过讨论协商,争得东汽厂技术处的意见,达成共识: 1、6#机组汽机本体高、中压缸、A、B低压缸全部汽封块更换,采纳东汽厂DAS新型耐磨汽封,并规定按东汽出厂证明书下限执行。
2、高中压缸、A、B低压缸更换汽封块,同时汽封间隙和隔板汽封间隙,阻汽片间隙按出厂证明书设计最小值上浮0.05mm,偏差值±0.05mm为准则执行。3、6#机组汽机本体各级阻汽片间隙超标,必须经业主、监理、东方汽轮机厂代及施工单位代表研究确认按设备缺陷单处理由厂家来人换阻汽片。4、6#机组本体汽封间隙,隔板汽封间隙及各级阻汽片间隙,要求监理师必须按监理程序进行四级验收制,采取用压铅丝和贴胶布法双重检测为依据。
三、2011年05月30日东汽厂供DAS新型耐磨汽封块第一批到
第一次验收合格的基础上,采用贴胶布方法检测,再次进行四级验收合格。上部汽封间隙同样用压铅丝和贴胶布,左右侧只用贴胶布检测验收,蒙电一公司汽机分公司经过昼夜奋战,监理、业主、施工、厂家各位专工共同努力下,于2011年07月13日至15日完成三缸扣盖工作。
为了保证6#机汽机本体汽封间隙不受外界施工造成变化,监理师、施工单位质检员、施工技术员共同商定如下:
1、高中压缸左右侧、中压主汽门预压支架弹簧和供汽管道吊架弹簧拔销时保证汽缸上下中心不受变化;
2、高中压缸安装时下猫爪受力转换成正常运行时为上猫爪受力过程中,汽缸上下中心不受变化的措施,如有变化必须调正到原始数据。3、6#机组经过首次冲车检查未发现有摩擦现象,经168h运行考核,能够满足设计要求带满负荷660MW。
第二篇:提高火力发电厂热效率的几种方法
提高火力发电厂热效率的几种方法
技术探讨 2009-10-20 17:10:36 阅读449 评论0 字号:大中小
汽轮机发电机组的常用热经济性指标为热耗率,其含义是汽轮发电机组单位发电量的耗热量。现代大容量汽轮发电机组的热耗率为7900千焦/千瓦时左右。提高汽轮机发电机组的热效率,目前主要有以下6个方法:
①提高蒸汽参数。理论上,热源与冷源的温度决定在此温差范围内的任何热机所能具有的最高热效率。因此,尽可能提高汽轮机动力装置的新蒸汽参数,降低排汽温度,可显著提高该装置的热效率。现代制造的汽轮机动力装置采用的初蒸汽温度基本上已达到了当前冶金工业技术经济水平所能达到的最高极限值(565左右)。再提高汽温则需要大量使用价格昂贵、加工工艺复杂的奥氏体钢,综合经济效果并非有利。提高进汽压力也能提高该装置的热效率。但在一定的进汽温度下,过高的进汽压力会导致排汽湿度增大,不但会加大湿汽损失,而且会加剧低压部分叶片的冲刷腐蚀。所以现代汽轮机动力装置参数的提高,主要体现在中间再热循环的采用上。
② 降低蒸汽终参数:
③ 采用给水回热循环。将已经在汽轮中膨胀做功的蒸汽,在某一合适的参数下从汽轮机中抽出一部分,并用这部分蒸汽来加热送往锅炉的给水。与纯冷凝循环相比,回热循环中排给冷源的热量损失要小一些,因为从汽轮机中抽出来的那部分蒸汽的热能完全被用来加热给水,不再构成冷源损失,进入凝汽器的热量相应减少了,从而提高了循环热效率。对不同进汽参数的汽轮机装置,都分别有一个最佳抽汽回热量(常以最佳给水温度表示)。加热给水的抽汽通常是在汽轮机不同压力点上多次抽出并逐级将给水加热的。这样,以较低温度的抽汽先加热较低温度的给水,这部分抽汽就能在汽轮机内多做些功,从而进一步提高装置的热效率。理论上,给水回热的级数越多,装置热效率也就提高越多。但过多的回热级数会增加设备投资费用。一般是中等功率汽轮机动力装置的回热系统不超过4~5级,高参数大功率装置(100兆瓦以上)采用7~8级基至9级给水回热。
④采用中间再热循环。将在汽轮机的高压部分(通常是高压缸内)已膨胀做功的蒸汽(温度和压力都有所降低,其压力一般在主汽压力的18~22%)从汽轮机中全部引出,送至锅炉的再热器中再次加热(一般加热到新蒸汽同样水平的温度),然后再引回汽轮机内(一般为中压缸的进汽端),继续膨胀做功。采用中间再热能起到与提高进汽温度同样的效果,又能降低排汽的湿度。从而为在进汽温度的提高受到金属材料限制的情况下进一步提高进汽压力提供了可能。现代大容量高参数的汽轮机动力装置都采用中间再热循环。采用一次中间再热,一般可使装置的热效率提高5%以上。如采用二次中间再热,可使机组的热效率再提高2%左右。但过多次的中间再热会使汽轮机动力装置的结构布置及运行方式过于复杂。
⑤采用联合循环。利用热力性能不同的工质组成联合动力装置,可改善整个装置的经济性。一个主要的联合方式是,以高温工质循环的排气(汽)作为低温工质循环的热源。联合装置的工质有燃气-蒸汽、汞蒸气-蒸汽、蒸汽-氨(或氟里昂)等多种形式。
⑥实行热电联产或者是热电冷三联产。
火力发电厂
火力发电厂简称火电厂,是利用煤、石油、天然气作为燃料生产电能的工厂,它的基本生产过程是:燃料在锅炉中燃烧加热水使成蒸汽,将燃料的化学能转变成热能,蒸汽压力推动汽轮机旋转,热能转换成机械能,然后汽轮机带动发电机旋转,将机械能转变成电能。
热电厂经济指标释义与计算 1.发电量:电能生产数量的指针。即发电机组产出的有功电能数量。计算单位:万千瓦时(1×104kwh)2.供电量:发电厂实际向外供出电量的总和。即出线有功电量总和。计算单位:万千瓦时(1×104kwh)3.厂用电量:厂用电量=发电量-供电量 单位: 万千瓦时(1×104kwh)4.供热量:热电厂发电同时,对外供出的蒸汽或热水的热量。计量单位:GJ 5.平均负荷:计算期内瞬间负荷的平均值。计量单位: MW 6.燃料的发热量:单位量的燃料完全燃烧后所放出的热量成为燃料的发热量,亦称热值。计算单位:KJ/Kg。7.燃料的低位发热量:单位量燃料的最大可能发热量(包括燃烧生成的水蒸气凝结成水所放出的汽化热)扣除水蒸汽的汽化热后的发热量。计量单位:KJ/Kg。8.原煤与标准煤的折算总和能耗计算通则(GB2589-81)中规定:低位发热量等于29271kj(7000大卡)的固体燃料,称为1kg标准煤。标准煤是指低位发热量为29271kj/kg的煤。不同发热量下的耗煤量(原煤耗)均可以折算为标准耗煤量,计算公式如下:标准煤耗量(T)=原煤耗量x原煤平均低位发热量/标准煤低位发热量=原煤耗量x原煤平均低位发热量/29271 9 .燃油与标准煤、原煤的换算低位发热量等于41816kj(10000大卡)的液体燃料,称为1kg标准油。因为煤耗率计算中的耗用煤量还应包括锅炉点火及助燃用油量,所以还应将计算期间的燃油折算成原煤量或标准煤量来进行煤耗计算。公式:燃油折标准煤量=燃油耗量×燃油的低位发热量/标准煤的低位发热量=燃油耗量×41816/29271=燃油耗量×1.4286 燃油折原煤量=燃油量×41816/原煤低位发热量
汽水损失率汽水损失量=锅炉补充水量-对外供热量汽水损失率=汽水损失量/锅炉产汽量×100%.电厂补给水率:即电厂补充水量与锅炉产汽量的比率。
热电厂发电原煤耗率热电厂发电原煤耗=发电耗原煤量/发电量热电厂供热耗原煤量=热电厂耗原煤量×供热比热电厂发电耗原煤量=热电厂原煤耗量×发电比 28.热电厂发电标煤耗率=热电厂发电标准煤耗量/发电量 29.发电标煤耗=发电标煤耗/(1-厂用电率)30.供热标煤耗=供热耗用煤量/供热量31.热电比是指计算期内供热消耗热量与供电量的当量热量的比率。热电比=供热量×供热焓值/供电量×3600
热电厂热效率:是指汽轮机组发电量的当量热量占发电耗燃料含热量的比率,即每千瓦时发电量的当量热量与每千瓦时发电量所耗用燃料的含热量的比率,反映发电厂能源加工转换的效率。公式为:热效率=10E×3600/(B×29271)B------计算期内发电标准煤耗 26.热电厂耗用标煤量:热电厂标准耗煤量=(热电厂原煤耗量×原煤低位发热量+耗用油量×41816)/29271 热电厂发电标煤耗量=(热电厂原煤耗量×原煤低位发热量+耗用油量×41816)×发电比/29271
热电厂发电热效率 q=Q’/(E/10)Q’----计算期内热电厂发电耗用热量(kj)Q’=(耗用煤量x煤低位热值+耗用油量×41816)×发电比
汽水损失率汽水损失量=锅炉补充水量-对外供热量汽水损失率=汽水损失量/锅炉产汽量×100% 18.电厂补给水率:即电厂补充水量与锅炉产汽量的比率
锅炉的输出热量与输入热量的比率。是反映燃料和介质带入炉内热量被利用程度的指标。计算公式为:锅炉正平衡效率=锅炉产汽量/(原煤耗量×原煤的低位发热量+燃油耗量×燃油
低位发热量+给水量×给水焓值)
汽轮机组汽耗率:是指汽轮机组每发一度电所消耗的蒸汽量。计算公式: d=D’×(100-∮)/(E/10)22.汽轮机组热效率:汽轮机组每发一度电所耗用的热量。Q=d×I’ 23.汽轮机效率是指计算期内汽轮机组发出电能的当量热量与输入汽轮机发电热量的比率。抽凝机组采用公式:η=10E×3600/(D’I’- DI)
第三篇:火力发电厂锅炉热效率和供电煤耗
火力发电厂锅炉热效率和供电煤耗
一、锅炉热效率
锅炉输出的热量与输入的热量之比称为锅炉的热效率。其表明了锅炉利用热量的有效程度,计算方法分为正平衡和反平衡两种。正平衡是用锅炉有效利用热量与送入锅炉的热量之比的方法求出锅炉热效率;反平衡把锅炉的理想热效率当作100%,再减去锅炉的各项热损失与送入锅炉的总热量的比值(称为损失率)得出锅炉热效率。
如果采用正平衡法求锅炉热效率,需要先求得单位时间内锅炉消耗的燃料量。而燃料量,特别是燃煤量的测定较困难,且不易准确,使求得的锅炉热效率误差较大。相对而言,锅炉各项热损失的测量和计算比较容易,而且得出锅炉的各项热损失后,可以掌握锅炉检修或运行中存在的问题,指明了改善热效率的方向,所以目前火力发电厂广泛采用反平衡法求锅炉热效率。
二、供电煤耗
供电煤耗是指锅炉总发电量扣除厂用电后,向电网供1度电(1 kWh)所消耗的标准煤,单位为g/kWh。锅炉各辅机,如送风机、引风机、碎煤机、给煤机、磨煤机、排粉机、给粉机、燃油泵、给水泵、灰浆泵等都需要消耗电能,所有的辅助设备的总耗电量称为厂用电。供电煤耗的计算公式为
供电煤耗=总入炉煤量/(总发电量-厂用电)
一台发电机组所能达到的供电煤耗水平,反映了该机组的先进程度。同一型号的机组,煤耗低,则说明检修、运行管理水平高。而一个国家的平均供电煤耗的高低,标志着这个国家发电设备的设计制造和运行管理水平。火力发电厂生产成本中约70%为燃料费用,且电厂向外销售的是供电量,而不是发电量。所以供电煤耗是火力发电厂最重要的经济指标。
第四篇:汽轮机总结
1-2300-01-00 自己找资料总结的汽轮机一部分资料
汽轮机工作原理
汽轮机是将蒸汽的热能转换成机械能的蜗轮式机械。在汽轮机中,蒸汽在喷嘴中发生膨胀,压力降低,速度增加,热能转变为动能。如图1所示。高速汽流流经动叶片3时,由于汽流方向改变,产生了对叶片的冲动力,推动叶轮2旋转做功,将蒸汽的动能变成轴旋转的机械能。
冲动式汽轮机工作原理图
1-轴;2-叶轮;3-动叶片;4-喷嘴
汽轮机结构
汽轮机主要由转动部分(转子)和固定部分(静体或静子)组成。转动部分包括叶栅、叶轮或转子、主轴和联轴器及紧固件等旋转部件。固定部件包括气缸、蒸汽室、喷嘴室、隔板、隔板套(或静叶持环)、汽封、轴承、轴承座、机座、滑销系统以及有关紧固零件等。套装转子的结构如图2所示。套装转子的叶轮、轴封套、联轴器等部件和主轴是分别制造的,然后将它们热套(过盈配合)在主轴上,并用键传递力矩。
1-2300-01-00
套装转子结构
1-油封环 2-油封套 3-轴 4-动叶槽 5-叶轮 6-平衡槽
油动机、错油门:
油动机是调节汽阀的执行机构,它将由放大器或电液转换器输入的二次油信号转换成有足够作功能力的行程输出以操纵调节汽阀。
油动机是断流双作用往复式油动机,以汽轮机油为工作介质,动力油用0.7~0.9Mpa的调节油。油动机结构下图所示。
1.拉杆 2.调节螺栓 3.反馈板 4.活塞杆 5.油缸(缸盖)6.活塞 7.连接体 8.错油门(错油门壳体)9.反馈杠杆 10.调节螺钉 11.调节螺母 12.弯角杠杆 13.杆端关节轴承
1-2300-01-00 油动机
油动机主要由油缸、错油门、连接体和反馈机构组成。错油门(8)通过连接体(7)与油缸(5)连接在一起,错油门与油缸之间的油路由连接体沟通,油路接口处装有O形密封圈。连接体有铸造和锻件两种加工件,图示为锻件形式。油缸由底座、筒体、缸盖、活塞、活塞杆等构成。筒体与底座、缸盖之间装有O形密封圈,它们由4只长螺栓组装在一起。活塞配有填充聚四氟乙烯专用活塞环。活塞动作时在接近上死点处有~10mm的阻尼区,用以减小活塞的惯性力和载荷力并降低其动作速度。缸盖上装有活塞杆密封组件,顶部配装活塞杆导轨及弯角杠杆支座。油缸靠底座下部双耳环与托架上的关节轴承、销轴连接并支撑在托架上。在油缸活塞杆(4)上端有拉杆(1)和杆端关节关节轴承(13),通过(13)使油缸与调节汽阀杠杆相连。错油门结构下图所示。
套筒(25、26、27)装在错油门壳体(8)中,其中上套筒(25)及下套筒
14.错油门弹簧 15.推力球轴承 16.转动盘 17.滑阀体 18.泄油孔 19.调节阀 20.放油孔 21.调节阀 22.喷油进油孔 23螺塞 24.喷油孔 25.上套筒 26.中间套筒 27.下套筒
C 二次油 P 动力油 T 回油
(27)与壳体用隙缝螺钉固定,中间套筒(26)在装配时配作锥销与壳体定位固定。套筒与壳体中的腔室构成5档功用不同的油路,对照图1可看出,中间是动力油进油,相邻两个分别与油缸活塞上、下腔相通,靠外端的两个是油动机回油。油的流向由错油门滑阀控制,滑阀是滑阀体(17)和转动盘(16)的组合件,滑阀在套筒中作轴向、圆周向运动,在稳定工况,滑阀下端的二次油作用力与上端
1-2300-01-00 的弹簧(14)力相平衡,使滑阀处在中间位置,滑阀凸肩正好将中间套筒的油口封住,油缸的进、出油路均被阻断,因此油缸活塞不动作,汽阀开度亦保持不变。若工况发生变化,如瞬时由于机组运行转速降低等原因出现二次油压升高情况时,滑阀的力平衡改变使滑阀上移,于是,在动力油通往油缸活塞上腔的油口被打开的同时,活塞下腔与回油接通,由于油缸活塞上腔进油,下腔排油,因此活塞下行,使调节汽阀开度加大,进入汽轮机的蒸汽流量增加,使机组转速上升。与此同时,随着活塞下行,通过反馈板(3),弯角杠杆(12),反馈杠杆(9)等的相应动作,使错油门弹簧的工作负荷增大,当作用在滑阀上的二次油压力与弹簧力达到新的平衡时,滑阀又恢复到中间位置,相应汽阀开度保持在新的位置,机组也就在新工况下稳定运行。如出现二次油压降低的情况,则各环节动作与 上述过程相反,不再赘述。
抽气器和抽汽器
抽气器的功能是以保持凝汽器的真空和良好的传热。抽汽器在背压式汽轮机上是很重要的一件部套。主要功能是把汽封漏汽抽出,防止蒸汽进入汽轮机的前后轴承座内。蒸汽一旦进入前后轴承座内就凝结成水,是油中带水的主要成因。小型汽轮机就直接用抽汽器,2MW以上机组要增加汽封换热器,提高抽汽器的性能以及整个机组的经济性。速关阀(N)
速关阀也称为主汽门,它是主蒸汽管路与汽轮机之间的主要关闭机构,在紧急状态时能立即节断汽轮机的进汽,使机组快速停机。
速关阀水平装配在汽轮机进汽室侧面。按照汽轮机进汽容积流量的不同,一台汽轮机可配置一只或两只速关阀。
汽轮机停机时速关阀是关闭的,在汽轮机起动和正常运行期间速关阀处于全开状态。
图1是用于N型汽轮机的速关阀,它主要由阀和油缸两部分构成。阀体部分有两种结构形式,图1是无单独阀壳的速关阀,在三系列汽轮机中,大多采用这种阀壳与汽缸进汽室为整体构件的结构形式。
1. 主阀碟 2. 卸载阀 3. 蒸汽滤网 4. 导向套筒
5. 阀盖 6. 汽封套筒
7. 阀杆 8. 专用螺栓
9. 螺母 10. 油缸
11. 压力表接口 13. 活塞 15. 弹簧座 17. 挡盘 12. 试验活塞 14. 弹簧
16. 活塞盘
18. 阀座D 蒸汽入口 E 速关油 F 启动油 H 试验油 K 漏汽 T1 回油 T2 漏油
1-2300-01-00
图1 速关阀
阀体部分主要由件1~8及18组成,阀盖(5)不仅用于进汽室端面的密封,而且也是阀与油缸间的连接件。
在速关阀末开启时新蒸汽经蒸汽滤网(3)通至主阀碟(1)前的腔室,阀碟在蒸汽力及油缸弹簧(14)关闭力作用下被紧压在阀座(18)上,新蒸汽进入汽轮机通流部分的通路被切断。主阀碟中装有卸载阀(2),由于在速关阀的开启过程中调节汽阀处于关闭状态,所以随着卸载阀的提升,主阀碟前后的压力很快趋于平衡,使得主阀碟开启的提升力大为减小。
在速关阀开启过程中或速关阀关闭后(隔离阀未关)有一部分蒸汽沿着阀杆(7)与导向套筒(4)及汽封套筒(6)之间的间隙向外泄漏,漏汽从接口K引出。而当速关阀全开后,主阀碟与导向套筒的密封面紧密贴合,阀杆漏汽被阻断。
速关阀中的蒸汽滤网大多是采用不锈钢波形钢带卷绕结构的滤网,也有一些汽轮机的滤网由带孔不锈钢板卷焊而成。
速关阀的油缸部分主要由油缸(10)、活塞(13)、弹簧(14)、活塞盘(16)及密封件等构成,油缸用螺栓固定在阀盖(5)上。基于油缸装、拆操作的安全性,在油缸端面装有3只专用长螺栓(8),在螺栓旋入处配有钢丝螺纹套。注意:油缸的装拆须借助螺栓(8)和螺母(9),以免发生人身伤害事故。
油缸部分是速关阀开启和关闭的执行机构。在通过启动调节器(1-1840-)的操作开启速关阀时,油缸部分相应如下动作:启动油F通至活塞(13)右端,活塞在油压作用下克服弹簧(14)力被压向活塞盘(16),使活塞与活塞盘的密封面相接触,之后速关油E通入活塞盘左侧,随着活塞盘后速关油压的建立,启动油开始有控制的泄放,于是活塞盘和活塞如同一个整体构件在两侧油压差作用下,持续向右移动直至被试验活塞(12)限位,由于阀杆右端是与活塞盘连接在一起,所以在活塞盘移动的同时速关阀也就随之开启。
速关阀的关闭由保安系统操纵,如果保安系统中任何一个环节发生速关动作,都会使速关油失压,在弹簧力作用下,活塞与活塞盘脱开,活塞盘左侧的速关油从T1排出,活塞盘连同阀杆、阀碟即刻被推至关闭位置。
油缸部分还装有试验活塞(12),如图2所示,由试验活塞,试验阀及压力表等构成速关阀试验机构,其作用是在机组运行期间检验速关阀动作的可靠性。试验阀是手动换向阀(或电动换向阀),它可装接在管路上,也可组装在速关组件(参见1-2001-)中,通过操作试验阀使压力油经节流孔进入试验活塞右端腔室,由于试验活塞面积大于活塞面积,因此当P2达到某一值后,在油压
力作用下试验活塞推动活塞、活塞盘、阀杆、阀碟同时向关闭方向移动,行程为h,这一行程不会影响机组的正常运行,所以试验可在包括额定工况在内的任意负荷下进行。当试验阀切换至图示位置时退出试验。
图2 速关阀试验机构
若速关阀状况良好,试验结果就是P2<P1,P2是试验活塞开始位移时的试验油压,P1是许用试验压力。
P1≤A+B(P4-1),其中A、B是与规格有关的特性值,见技术数据0-0300-T.Nr-00。
P4是机组运行时的速关油压值。
若试验测得P2≥P1,则表明阀杆上因有盐垢或活塞等可动件上因油垢沉积而产生了额外的运动阻力,致使速关阀动作不正常,为使速关阀能正常动作,在这种情况下试验应重复多次,如最终仍然是P2>P1,那就要尽快安排检修,拆出速关阀,查出原因,消除故障。
根据需要速关阀可配装行程开关,用于在阀的关闭、全开位置发送相应的信号。
固定在阀杆上的档盘有多种功用:万一油缸密封件损坏速关油外泄时,它可阻挡油喷到高温部分;阻挡阀杆漏冒向油缸;兼作行程开关的触发器。
速关阀按新蒸汽进口通径有100、125、150、200、250及320六种规格,除320之外其它速关阀的结构是类同的。
320速关阀因阀碟尺寸较大为减小主阀碟开启的提升力,避免阀杆弯曲,阀碟、阀盖、阀座部分如图3所示,其它部分与图1是一样的。
图4是带有独立阀壳的速关阀,除阀壳外,它的结构和工作方式与上述相同,不再贅述。
图3
图4
第五篇:汽轮机试题
余热发电技术员竞聘试题
姓名:
岗位:
分数:
一、判断题(20分)
1、对于汽轮机转子在第一临界转速以下发生动静摩擦比转子在第一临界转速以上发生动静摩擦时对振动的影响大。(v)
2、汽轮机组的油膜振动荡现象,可通过提高转速的方法来消除。(x)
3、凝汽器的端差是指凝结水温度与冷却水出口温度的差。(x)
4、所谓最佳真空,是指汽轮机出力达到最大时,所对应凝汽器的真空。(x)
5、汽轮机冲转前,主蒸汽温度至少高于汽缸金属温度,对蒸汽过热度可不予考虑。(x)
6、凡是经过净化的水都可以作为电厂的补给水。(x)
7、除氧器应有水位报警及高水位自动放水装置,以防止除氧器满水后灌入汽轮机。(v)
8、主蒸汽压力、温度随负荷变化而变化的运行方式称为滑压运行。(x)
9、汽机水冲击的主要象征之一是主蒸汽温度急剧下降。(v)
10、汽机发电机组在转速超过电网当时运行频率而跳闸停机称为汽轮机超速事故。(x)
11、汽轮机的超速多发生于保护动作跳开发电机主开关之后。(x)
12、汽轮发电机组发生超速事故时,事故的破坏性完全来自随转速的平方而增大的离心力。(x)
13、危急保安器是防止机组发生超速事故的主要保护,只要危急保安器能够正常动作,就不会发生机组超速事故。(x)
14、汽轮机射水抽气器喷嘴堵塞时将影响真空下降,此时抽气器喷嘴前压力也降低。(x)
15、汽轮机冷态启动中,从冲动转子到定速,一般相对膨胀差出现正值。(v)
16、汽轮机启动中暖机的目的是为了提高金属部件的温度。(x)
17、给水泵出口装设再循环管的目的是为了防止给水泵在低负荷时发生汽化。(v)
18、软水设备是利用树脂机械性过滤掉水中的钙镁离子。(x)
19、发电机频率应控制在50±0.5Hz以内。()20、我们的除氧器是压力除氧器。()
二、选择题(10分)
1、汽轮机上下缸金属温差通常出现在(A)。
A:调节级 B:中间级 C:末级
2、下列哪种参数蒸汽的放热系数最小_B_。
A、湿蒸汽 B、低压微过热蒸汽 C、高压蒸汽
3、在绝热流动过程中,喷咀出口汽流实际焓值__A__理想焓值。
A、大于 B、小于 C、等于
4、在凝汽器中,压力最低、真空最高的地方是(D)。
A、凝汽器喉部 B、凝汽器热井处 C、靠近冷却水管入口的部位 D、空气冷却区
5、当主蒸汽温度和凝汽器真空不变,主蒸汽压力下降时,若保持机组额定负荷不变,则对机组的安全运行(C)。
A、有影响 B、没有影响 C、不利 D、有利
6、我厂炉跟机的控制方式特点是(C)。
A、主蒸汽压力变化平稳 B、负荷变化平稳 C、负荷变化快,适应性好 D、锅炉运行稳定
7、汽轮机运行时,监视段压力高与(C)无关。
A、通流部分结垢 B、通流部分故障 C、通流部分热应力 D、汽轮机调节阀开度
8、汽轮机凝汽器真空应始终维持在(C)才是最有利的。
A、高真空下运行。B、低真空下运行。C、经济真空下运行。
9、低油压保护动作信号来自(D)。
A、主油泵出口油压 B、主油泵进口油压 C、保护系统的安全油压 D、冷油器出口润滑油压
10、回油泡沫多是由(D)引起的。
A:油温高 B:油温低 C:对轮中心不好 D:油质不良
三、填空题(10分)
1、汽轮机产生共振时的转速,叫做(临界转速)。
2、汽轮机油系统的主要作用为保证各轴承部位的(润滑)、(冷却)、(清洗)及防止(氧化)等。
3、我厂汽轮机使用的是()汽轮机油。
4、同步发电机并列的三个要素()、()、()。
5、我厂安全阀的型式是()安全阀。
四、问答题(40分)
1、什么叫热冲击?
答:所谓热冲击就是金属材料受到急剧的加热和冷却时,其内部产生很大的温差,从而引起很大的冲击热应力,这种现象称为热冲击。
2、何为凝结水的过冷却?有何危害?
答:所谓凝结水的过冷却就是凝结水温度,低于汽轮机排汽的饱和温度由于凝结水的过冷却必须增加锅炉的燃料消耗,使发电厂的热经济性降低,此外,过冷却还会使凝结水中的含氧量增加,加剧了热力设备和管道的腐蚀,降低了运行的安全性。
3、机启动时为什么要限制上下缸的温差?
答:汽轮机汽缸上下存在温差,将引起汽缸的变形。上下缸温度通常是上缸高于下缸,引起汽缸向上拱起,发生热翘曲变形,俗称“猫拱背”。汽缸的这种变形使下缸底部径向动静间隙减小甚至消失,造成动静部分摩擦,尤其当转子存在热弯曲时,动静部分摩擦的危险更大。
上下缸温差是监视和控制汽缸热翘曲变形的指标。大型汽轮机高压转子一般是整段的,轴封部分在轴体上车旋加工而成,一旦发生摩擦就会引起大轴弯曲发生振动,如不及时处理,可能引起永久变形。汽缸上下温差过大,是造成大轴弯曲的初始原因,因此汽轮机启动时,一定要限制上下缸的温差。
五:论述题(20分)
1、汽轮全厂失电跳停时,中控和现场应如何进行应对操作?
答:全厂失电跳停时,中控和现场应做如下操作:
中控:首先手动关闭201V、211V、212V,防止蒸汽直接冲入凝汽器,等待电源恢复;与现场保持联系,当电源恢复时(需确认电源是应急电源还是市电电源),首先对锅炉进出口挡板进行操作,打开361V、461V、2606V泄压;观察各部位温度及水位情况。
市电正式恢复时,依照操作规程对辅机按顺序进行起动;注意起动循环冷却水泵时,在开启出口阀门时,需事先确认凝汽器内温度,如太高,等其自然冷却后再通冷却水;在向锅炉补水时,不可盲目急剧地补水,需缓慢进行。
现场:紧急关闭主蒸汽及混汽手动切断阀2001V、2101V、2121V;打开真空破坏阀1905V;确认事故油泵是否已经自动起动供油;手动对汽轮机进行盘车(以保证5Min转子盘车180°为目标)。与总降联系确认失电故障原因以确定是否联系启用应急电源;如启动应急电源,应按操作规程按顺序进行操作,并注意所开启设备的容量不要超过应急电源规定容量。当市电正式恢复后,对应急电源作倒闸操作,恢复向MCC正式供电,通知中控开启辅机设备,开启过程中应与中控紧密联系,确认各部位、各设备及联络管线有无异常、损坏情况。
2、叙述从锅炉上完水到带负荷的操作步骤及注意事项: