提高高中物理力学解题能力方法谈(小编整理)

时间:2019-05-12 22:29:28下载本文作者:会员上传
简介:写写帮文库小编为你整理了多篇相关的《提高高中物理力学解题能力方法谈》,但愿对你工作学习有帮助,当然你在写写帮文库还可以找到更多《提高高中物理力学解题能力方法谈》。

第一篇:提高高中物理力学解题能力方法谈

提高高中物理力学解题能力方法谈

在高中物理教学中,力学解题贯穿整个过程,熟悉并掌握力学解题对提高解题能力至关重要。要把学生的解题过程看作是“获取信息、思维启动、思维逻辑、思维深化”的过程,在指导学生解题上,抓住“明确对象、弄清概念、运用规律、设疑点拨”四个方面。

一、认真审题,明确对象,联想图景,启动思维

力学习题有的给出了一个物体,有的给出了两个或多个相关联的物体;从物理过程看,有的给出了部分,有的给出了全部。认真审题就是要实现几个转换:

1.由个别向一般转换。所有的力学解题开始应对研究对象进行受力分析,代入运算时统一用力学的国际单位制(SI制),解题结束应对结果的合理性作出判断。

2.研究对象的实体向物理图景转换。宏观物体(大到天体),有做匀速运动的,也有做变速运动的;有个体,也有相关联的群体。要对题目给定的研究对象进行抽象思维,形成一定条件下清晰的物理图景。有趣的物理图景能够促进学生的注意转移,情感与图景贴近,达到情境结合,有助于学生思维的正常启动。

3.物理过程向物体的状态转化。在力学范畴内物体的运动状态有平衡状态(静止、匀速直线运动、匀速转动)和非平衡状态,物体处于何种状态由所受的合力和合力矩决定。

4.已知条件向解题目标转换。力学解题目标一般包括:画出研究对象的示意图,在图上进行受力分析(不能遗漏所受到的每一个力,也不能凭空增加力),物体在各个时刻的状态、位置、运用的物理规律、公式、要求的物理量等。

5.文字叙述向示意图形转换。在根据题意画出的图上标明受力情况(按重力、弹力、摩擦力顺序思考);某一时刻或某一位置的运动状态,也用符号标出。学生通过画图对物理图景有了直观了解,触景生情,增强了解题的信心。

二、弄清概念,策略认知,分配注意,发散思维

物理概念是物理知识的重要组成部分,对其有严格的科学界定。一些能力较差的学生对物理概念的界定模糊不清、思维混乱,解题注意分配不合理。为了解决这个问题,要引导学生强化以下几方面的意识:

1.增强物理概念的物质意识。每引入一个力学概念,应充分利用实验或学生生活积累的已有经验,把物理概念建立在充实的物质基础上。

2.强化物理概念的界定意识。速度与加速度二者仅一字之差,都是力学中的重要物理量。一些认知策略较差的学生把速度与加速度归结在一个“光环”上,认为速度为零,加速度必为零。在这里描述物体运动快慢与运动状态变化快慢是速度与加速度的界定。速度和速率、功和功率、动能和动量、重量和质量等也是一字之差,它们的物理意义却不相同。功和能的单位相同,前者是过程量,后者是状态量,它们也有严格的界定。

三、运用规律,感知范围,网络信息,逻辑思维

中学力的概念主要有牛顿运动三定律、万有引力定律、机械能守恒定律、动能定理、动量定理、动量守恒定律等。一些能力中下的学生把物理规律成立的条件及适用范围置于思维盲区,需要对已建立的解题信息加以选择。

1.根据物理过程选择规律;2.从已知条件选择物理规律;3.从解题结果检验物理规律选择的合理性。

四、设疑开拓,点拨解惑,触类旁通,深化思维

课本上的力学习题是教学大纲的最低要求,一些能力较强的学生从中获取了探求知识的方法,思维敏捷;一些能力较差的学生解题一旦受阻,思维停滞,需要点拨才能展开。可通过“设疑→点拨→探究→解惑”,让学生思维进入新的层次。

1.指导语点拨;2.资料点拨;3.情境点拨;4.交流点拨;5.一题多解点拨。

在力学解题中增强解题思维的自我调控意识是发展智力、培养能力、提高素质的必要条件。在力学解题全过程中有计划、有目标、由简到繁、循序渐近、反复多次地引导学生自己实践,是提高力学解题效益的充分条件,中学生力学习题难的心理障碍可以排除。每个人都有一种自我实现、获取承认、取得成功的愿望和需要。成功时,会情绪高昂、兴趣倍增;多次努力仍然失败时,就会产生畏难情绪,影响积极性。其实,中学生感到学物理难并不都是学生的智力问题,相比之下,非智力因素的影响更大。因此,给学生创造一个成功的机会,是提高学生学习情绪的一种有效方法。在教学中,可以结合教材和学生实际,设置教学内容的层次与梯度,适应学生的智力发展创设更多的条件让每个学生都能取得学习上的成功,使他们获得心理上的满足。例如,在设置课堂提问的内容与对象时,可根据不同的学生提出不同的问题,难的问题不应提问差生,以免他们由于答不出而处于尴尬的境地,从而产生自卑感。在布置作业时,要根据不同的班级、不同的学生布置不同层次的题目,使不同层次的学生都能获得成功的喜悦。在每单元授课完后,要认真进行单元归类复习,精心设计测试题,对于较难的题目在复习时可进行一些暗示,对差班甚至不惜“漏题”,使他们在复习时具有针对性,在测试时获得一定的成功,从而激发和巩固他们的学习兴趣。

总之,在物理教学中,教师的解颐笑语,有深入浅出、“雅俗共赏”、智中见志的特点和功能;生动有趣的实验,把外在的信息,即物理课题,以新奇的方式揭示在学生面前,能使课堂气氛活跃,引人入胜,从而培养学生的学习兴趣,并在乐趣中获得知识、巩固知识。这样的教学方法,无疑会产生良好的效果。

第二篇:高中物理教学论文 高考物理力学题解题方法分析 人教版

高考物理力学题解题方法分析

力学题解法,根据所应用的规律,有3种,一是牛顿运动定律和运动学公式,二是动能定理和机械能 守恒定律,三是动量定理和动量守恒定律。对于新课标地区的考生,因为动量部分移到了选修3-5,所以主要是前两种方法。

力学题解法,根据解题的形式,有2种,一种是公式法,另一种是图象法。图象包括xt图象,vt图象,at图象等,主要是vt。

力学题解法,根据解题的程序,有2种,一种是分析法,另一种是综合法。分析法程序是:要求的问题需求的问题已知的条件;综合法程序是:已知的条件可求的问题要求的问题。

力学题解法,根据思维的顺序,有2种,一种是正向思维法,另一种是逆向思维法。正向思维法思维的顺序是:原因结果;逆向思维法思维的顺序是:结果原因。

例1.2009年高考江苏省物理卷第13题

航模兴趣小组设计出一架遥控飞行器,其质量m =2㎏,动力系统提供的恒定升力F =28 N。试飞时,飞行器从地面由静止开始竖直上升。设飞行器飞行时所受的阻力大小不变,g取210m/s。

(1)第一次试飞,飞行器飞行t1 = 8 s 时到达高度H = 64 m。求飞行器所受阻力f的大小;

(2)第二次试飞,飞行器飞行t2 = 6 s 时遥控器出现故障,飞行器立即失去升力。求飞行器能达到的最大高度h;

(3)为了使飞行器不致坠落到地面,求飞行器从开始下落到恢复升力的最长时间t3。解法1.用牛顿运动定律和运动学公式解

(1)第一次飞行中,设加速度为a1 匀加速运动H2H12a1t1,解得a122m/s2 2t1由牛顿第二定律Fmgfma1

用心

爱心

专心 1

解得fFmgma282044(N)

(2)第二次飞行中,设失去升力时的速度为v1,上升的高度为s1 匀加速运动s1121a1t2=26236m 22设失去升力后的加速度为a2,上升的高度为s2 由牛顿第二定律mgfma2,a210412m/s2 2v1a1t2=12m/s v12122s2=6m

2a2212解得hs1s242(m)

(3)设失去升力下降阶段加速度为a3;恢复升力后加速度为a4,恢复升力时速度为v3 由牛顿第二定律 mgfma3,a31048m/s2 222 3Ffmgma4,a422v3v3h,v3且2a32a4284106m/s2222ha3a4a3a424268122m

68v3a3t3

解得t3=32(s)(或2.1s)2注意:失去升力下降不能下降到地面,因为有速度,还要在恢复升力后减速下降(恢复升力后不能马上上升),要在到达地面前速度减为0,然后才能上升。解法2.用动能定理和动量定理解

(1)第一次飞行中,设末速度为v,根据动能定理,有(Fmgf)H根据动量定理,有(Fmgf)t1mv 解得fFmg12mv 22mH282044(N)2t1(2)第二次飞行中,设失去升力时的速度为v1,上升的高度为s1

用心

爱心

专心 2

根据动能定理,有(Fmgf)s112mv21 根据动量定理,有(Fmgf)t2mv1 解得:v1=12m/s

s136m

sv2112222a=6m

2212失去升力后上升的高度为s12,根据动能定理,有(mgf)s202mv211解得s22mv21122mgf=2046m

得hs1s242(m)

(3)设失去升力下降s3,恢复升力后下降s4,恢复升力时速度为v3 失去升力下降阶段,根据动能定理(mgf)s312mv23 根据动量定理(mgf)t3mv3

恢复升力下降阶段,根据动能定理(Fmgf)s1402mv23 并且s3s4h42m 解得:v3122m 得t323=2(s)(或2.1s)解法3.用vt图象和v2s图象解(1)根据h12at2,作出ht2图象,如下图 用心

爱心

专心 3

求出加速度a2h2m/s2,进而求出f4N。2t2

(2)正常上升时,加速度a12m/s,根据v1a1t2,作出vt图象,如下左图,得

14436m,遥控器414422出现故障后,加速度a212m/s,作出vs图象,见下右图,得s26m,在24v112m/s,根据v22as,作出v2s图象,如下右图,得s1v2s图象中,s42m。

(2)失去升力下降阶段加速度为a3=8m/s;恢复升力后加速度为a4=6m/s,前者的末速度等于后者的初速度,根据v2as,以及s3s4h42m,作出vs图象,如下左图,可求得v288(m/s),从而v122m/s,作出vt图象,如下右图,得t3=

22222232(s)。2用心

爱心

专心 4

例2.2009年高考真题全国理综1卷第25题

如图所示,倾角为的斜面上静止放置三个质量均为m的木箱,相邻两木箱的距离均为l。工人用沿斜面的力推最下面的木箱使之上滑,逐一与其它木箱碰撞。每次碰撞后木箱都粘在一起运动。整个过程中工人的推力不变,最后恰好能推着三个木箱匀速上滑。已知木箱与斜面间的动摩擦因数为,重力加速度为g。设碰撞时间极短,求

(1)工人的推力;

(2)三个木箱匀速运动的速度;(3)在第一次碰撞中损失的机械能。

【解析】第(1)问:设工人的推力为F,根据“最后恰好能推着三个木箱匀速上滑”,有

F3mgsin3mgcos0,所以F3mgsin3mgcos

第(2)问,笔者给出4种解法

解法1 用牛顿运动定律和运动学公式以及动量守恒定律解 在第一个l运动期间,加速度末速度v1a1Fmgsinmgcos2g(sincos)

m2al2gl(sincos)

第一个木箱与第二个木箱碰撞,根据动量守恒定律,有

mv12mv1',所以,碰撞后的速度v1'在第二个l运动期间,加速度末速度v2v12gl(sincos)

a2F2mgsin2mgcos1g(sincos)

2m2v1'22a2l2gl(sincos)

前2个木箱与第三个木箱碰撞,根据动量守恒定律,有

用心

爱心

专心 5

2mv23mv,所以,碰撞后的速度v即为所要求的三个木箱匀速运动的速度。解法2.用动能定理以及动量守恒定律解

22v22gl(sincos),33在第一个l运动期间,根据动能定理Flmglsinmgcosl所以末速度v12gl(sincos)

第一个木箱与第二个木箱碰撞,根据动量守恒定律,有

12mv1 2mv12mv1',所以,碰撞后的速度v1'在第二个

v12间

gl(sincos),根

l运动期

121Fl2mglsin2mgcolsmv2mv1'2

22末速度v22gl(sincos)

前2个木箱与第三个木箱碰撞,根据动量守恒定律,有

2mv23mv,所以,碰撞后的速度v即为所要求的三个木箱匀速运动的速度。

解法3.用vt图象解

22v22gl(sincos),33

设速度的单位是v0,v0gl(sincos),加速度的单位是a0,a0g(sincos),时间的单位是t0,t0v0a0l,则

g(sincos)2lt0,2a0在第一个l运动期间,加速度

a12a0,根据l12at,运动时间t12末速度v1a1t12a0t02v0,第一个木箱与第二个木箱碰撞后的速度,v1'1v1v0 2用心

爱心

专心 6

在第二个l运动期间,加速度

a211a0,根据lv0ta2t2,运动时间22t22(21)t00.8t0,速度增加v2a2t21a02(21)t0=(21)v0,则末速度为2v2v1'v2=2v01.4v0

前2个木箱与第三个木箱碰撞,根据动量守恒定律,有碰撞后的速度v22v22v00.9v0,即所要求的三个木箱匀速运动的速度为332v2gl(sincos)。

32解法4.用vx图象

设速度的单位是v0,v0gl(sincos),加速度的单位是a0,a0g(sincos),位移的单位是l,根据速度的平方与位移成正比的理念。在第一个l运动期间,加速度2a12a0

2末速度平方v12a1l22a0l4v0,末速度v12v0 第一个木箱与第二个木箱碰撞后的速度,v1'在第二个l运动期间,加速度速度平方的增加21v1v0 212v1'22a2l,得 a0,根据v22122(v2)2a2l2a0lv0,则末速度平方为

2a2v2v1'2(v2)2=2v0所以末速度为v22v01.4v0

前2个木箱与第三个木箱碰撞,根据动量守恒定律,碰撞后的速度v222v22v0,速33用心

爱心

专心 7

2度平方为v2822 v0。即所要求的三个木箱匀速运动的速度为v2gl(sincos)。93v12第(3)问:第一此碰撞,即第一个木箱与第二个木箱碰撞,根据动量守恒定律,有

mv12mv1',所以,碰撞后的速度v1'损失的机械能为:Egl(sincos)

121mv12mv1'2mgl(sincos)。22例3.2009年高考天津市理综物理第10题

如图所示,质量m10.3kg的小车静止在光滑的水平面上,车长L1.5m,现有质量m20.2kg可视为质点的物块,以水平向右的速度v02m/s从左端滑上小车,最后在车面上某处与小车保持相对静止。物块与车面间的动摩擦因数0.5,取g10m/s,求(1)物块在车上滑行的时间t;

(2)要使物块不从小车右端滑出,物块滑上小车左端的速度v0不超过多少。

'2

解法1.原答案的解法:用功能关系解

(1)设物块与小车共同速度为v,以水平向右为正方向,根据动量守恒定律有

m2v0(m1m2)v

物块与车面间的滑动摩擦力为F,对物块应用动量定理有

Ftmv2mv0

② 又

Fm2g

③ 解得

tm1v0

(m1m2)g代入数据得

t0.24s

(2)要使物块恰好不从车面滑出,须物块到车面最右端时与小车有共同的速度,设其为

v',则

m2v0(m1m2)v'

⑤ 由功能关系有 '11'2m2v0(m1m2)v'2m2gL

⑥ 22'代入数据解得

v05m/s

故要使物块不从小车右端滑出,物块滑上小车左端的速度v0不超过5m/s。

用心

爱心

专心

'

以下是笔者的解法

解法2.用牛顿定律和运动学公式解

(1)设物块与小车共同速度为v,以水平向右为正方向,根据动量守恒定律有

m2v0(m1m2)v

解得 v0.8m/s① 物块与车面间的滑动摩擦力为F,根据牛顿定律有

am2gFg5m/s2 m2m2根据运动学公式,tv0v20.8s0.24s a5(2)要使物块恰好不从车面滑出,须物块到车面最右端时与小车有共同的速度,设其为v',则

m2v0(m1m2)v'

则v'0.4v0⑤

'v0v'2物块运动的位移x1,2a2''小车的加速度a2m2gm10.50.21010m/s2m/s2

0.33v'2小车前进的位移x2

2a2要满足条件,须x1x2L 代入数据解得v05m/s。

解法3.图象法

(2)作出物块和小车的vt图象,如下图 '

则又1v0tL1.5m 2v00.4v0at5t

用心

爱心

专心 9

解得v05m/s。看起来非常简便。解法4.用相对运动概念解

以小车为参照物,则物块的加速度为

aa1a2m2gm2m2gm151025m/s2 332v0物块的位移为L

2a所以v02aL2251.5m/s5m/s。3也非常简便。

例4.2010年高考福建卷第22题(20分)如图所示,物体A放在足够长的木板B上,木板B静止于水平面。t=0时,电动机通过水平细绳以恒力F拉木板B,使它做初速度为零,加速度aB=1.0m/s2的匀加速直线运动。已知A的质量mA和B的质量mB均为2.0kg, A、B之间的动摩擦因数1=0.05,B与水平面之间的动摩擦因数2=0.1,最大静摩擦力与滑动摩擦力大小视为相等,重力加速度g取10m/s2。求

(1)物体A刚运动时的加速度aA(2)t=1.0s时,电动机的输出功率P;

(3)若t=1.0s时,将电动机的输出功率立即调整为P`=5W,并在以后的运动过程中始终保持这一功率不变,t=3.8s时物体A的速度为1.2m/s。则在t=1.0s到t=3.8s这段时间内木板B的位移为多少?

【解析】

(1)物体A在水平方向上受到向右的摩擦力,由牛顿第二定律得

1mAgmAaA

代入数据解得

aA0.5m/s(2)t=1.0s,木板B的速度大小为

2vaBt1m/s

木板B所受拉力F,由牛顿第二定律有

F1mAg2(mAmB)gmBaB

解得:F=7N 电动机输出功率 P= Fv=7W

用心

爱心

专心

(3)电动机的输出功率调整为5W时,设细绳对木板B的拉力为F',则 P'F'v

解得

F'=5N 木板B受力满足F1mAg2(mAmB)g0

所以木板B将做匀速直线运动,而物体A则继续在B上做匀加速直线运动直到A、B速度相等。设这一过程时间为t',有

v1a1(t1t')

解得t'1s

这段时间内的位移S1v1t'

解得s11m

A、B速度相同后,由于F’>2(mAmB)g且电动机输出功率恒定,A、B将一起做加速度逐渐减小的变加速运动,由动能定理有:

11P'(t2t't1)2(mAmB)gS2(mAmB)vA2(mAmB)v12

22由以上各式代入数字解得:s22.03m

木板B在t=1.0s到3.8s这段时间内的位移为:ss1s23.03m 解法2。图象法

根据图象,B在1~2s内的位移s1111m

151.82(1.221.02)2根据动能定理,B在2~3.8s内的位移s2m2.03m,0.1410所以,木板B在t=1.0s到3.8s这段时间内的位移为:ss1s23.03m。

本题考查牛顿定律、动能定理、功和功率等力学综合知识以及分析判断能力。难度:难。例5.(2010年高考海南卷第16题)图1中,质量为m的物块叠放在质量为2m的足够长的木板上方右侧,木板放在光滑的水平地面上,物块与木板之间的动摩擦因数为0.2。在木板上施加一水平向右的拉力F,在0~3s内F的变化如图2所示,图中F以mg为

用心

爱心

专心 11

单位,重力加速度g=10m/s.整个系统开始时静止。

(1)求1s、1.5s、2s、3s末木板的速度以及2s、3s末物块的速度;

(2)在同一坐标系中画出0~3s内木板和物块的v—t图象,据此求0~3s内物块相对于木板滑过的距离。

(2010海南16)【解析与答案】(1)设木板和木块的加速度分别为a和a',速度分别为v和v'

则当vv'时,a'g,a2Fmg 2m0-1s a14m/s,a'2m/s,v14m/s,v1'2m/s 1-1.5s a21m/s,a'2m/s,v1.54.5m/s,v1.5'3m/s

21.5-2s a31m/s,a'2m/s,v24m/s,v2'4m/s 22222-3s 因为木板与木块速度相等,二者没有相对运动,摩擦力为0,加速度皆为0,a0,a'0,二者一起匀速运动,所以v34m/s,v3'4m/s

(2)由⑥⑦式得到物块与木板运动的v—t图象,如右图所示。

在0~3s内物块相对于木板滑过的距离s等于木板和物块v—t图线下的面积之差,即图中带阴影的四边形面积。该四边形由两个三角形组成:上面的三角形面积为0.25(m)下面的三角形面积为2(m),因此s2.25m。

用心

爱心

专心

总结:高考力学题取材于实践,比以前的单纯的抽象的“物体”具有实践意义。本题源于生活,高于生活,所谓“ 高于”,是从物理的角度,综合应用了牛顿运动定律,运动学公式(速度公式,位移公式,速度位移关系公式),或动能定理,动量守恒定律等物理规律,是一道综合性强的题目,但是又不偏,不特别难。

物理高考要在较短的时间内考查考生对物理知识的掌握情况和对物理方法的应用情况,在知识上,要突出主干知识,即力学和电磁学,在方法上,要应用重要方法解题,解力学题的重要方法,就是用牛顿运动定律和运动学公式解题的方法,用动能定理和机械能守恒定律解题的方法,用动量定理和动量守恒定律解题的方法,力学题都可以用,使考生有选择方法的余地。

用心

爱心 专心 13

第三篇:如何提高高中数学解题能力

如何提高高中数学解题能力

在近年的高中教学中,存在着一个普遍的问题:有些学生课堂似乎能够听得懂,教材内容也能读得懂,可就是在各种类型的考试中总有不少试题不会解答,以致成绩难以提高。这一问题的主要原因存在于教师的教和学生的学两个方面,应当从教师和学生两个方面下功夫才能有效解决。

从教师方面看,应积极改进教学行为:

一、强化敬业精神,提高课堂教学效果

目前实施的新一轮课程改革倡导教师要实现由教学生“学会”到教学生“会学”的转变,学校应切实加强教师职业道德建设,重点强化这部分教师的敬业精神,增强其负责意识和工作热情,引导其充满激情地上好每一节课,吃透教情和学情,把教师的教和学生的学有机地结合起来,保证《教学大纲》、《课程标准》规定的“应知”、“应会”目标的实现。

二、根据学生实际,合理确定教学的起点和难度

同级、同班高中学生之间存在着很大差别,教师要通过课堂、作业、测验、反馈和调查等方法,掌握学生的学业基础和接受能力,对不同层次的学生可制定不同层次的教学目标要求,使所有学生掌握基础知识和基本技能,会做基础题,稳拿中档分。在此基础上,再考虑适当提高优秀生的需要。

三、选择典型试题,突出课堂训练

“学习的目的全在于运用”。新课改强调要提高学生运用所学知识解决实际问题的能力,课堂教学中“以训练为主线”的指导思想必须坚持。讲授新知识后,应选择具有典型性、代表性的例题向学生作解题示范,再由学生上讲台或在练习本上做同类试题,掌握解题的基本规律、方法和思路,达到举一反

三、触类旁通之程度。教师讲例题,要把重点放在试题分析和解题思维方法的构想上,使学生从中学会基本的方法和技能。

从学生方面看,应切实改进学习行为。

一、增强学习信心,端正学习态度

面对激烈的高考竞争,一些同学缺乏必胜的信念,对自己要求不严,同学们一定要明确学习目的,充分认识高中阶段是每个同学学业发展变化的关键时期,一切全在自己努力。只有下功夫,谁都能成功。从而增强信心,转变学习态度,专心致志、聚精会神地去学习。

二、抓住中心环节,课堂认真听讲

据调查,不少同学不会做题的原因,主要是对一些基础知识似懂非懂,或者缺乏解题的思路和方法。解决之法是应大力关注老师讲解例题的分析过程和解题步骤,掌握运用本节所学知识解题的基本规律及其综合运用知识分析问题的思路。这样,解题答卷能力就能从根子上提高。

三、遵循学习规律,力求融会贯通

解题能力是以扎实的知识功底作基础的,提高解题能力,必须着手知识的全面学习掌握和融会贯通。按照学习的一般规律,除课堂认真听讲外,对学习难度较大的课程,课前必须预习,读熟课文内容,找出重点和难懂的内容,为课堂学习打好基础。所有课程都应当在课后认真复习巩固。

四、强化解题练习,达到熟能生巧

“熟能生巧”是掌握一切知识和技能的普遍规律,提高解题技能也不例外。必须强化解题训练,课堂练习、作业和平时的考练题都应当一丝不苟地去做,步骤、单位等要书写完整。各科都要建立错题纠正本,重做错题,定期回头望,确保同类错误不再发生。在复课阶段,要归纳各科试题类型,每类选做代表性试题,总结出方法,做到举一反三,触类旁通。在数学方面,能力比具体的知识更重要。

第四篇:提高力学教学效果方法探讨论文

摘要:针对力学课程的重要性与独特性,探讨了如何提高学生对力学的学习兴趣。建议使用多媒体与板书相结合的方式教学,提高学生的主动性;适当增添力学大师的典故,使力学课程注入新的活力;采用互动式教学,培养学生的学习兴趣。

关键词:多媒体;板书;力学典故;师生互动力学课程的重要性与独特性

力学专业的基础课程主要包括理论力学、材料力学与工程力学(由理论力学的静力学部分和材料力学构成)。其中,理论力学是经典力学的基础,是力学类各专业的一门重要基础理论,是培养工科技术人才必修的基础课程,其基本理论可以直接用于解决某些工程问题,也可与其它专门知识结合解决较复杂的工程问题。而材料力学是固体力学专业学生必修的专业基础课,也是工科高校机械、土建、土木工程等专业学生必修的技术基础课,其内容紧密联系工程实际,实用性很强,是学生进入大学校门后最早接触工程领域的课程之一。力学课程,尤其是理论力学,其内容较多,公式推导比较繁琐,计算结果比较复杂,常常导致学生对此课程产生厌学情绪,以致上课感到“害怕”,最终大量同学考试不及格。

如何将这门课程讲活。引起学生的兴趣,是一个难度很大的问题,也给高校力学教师提出了更高的要求。提高学生的力学兴趣

“兴趣是最好的老师”,兴趣也是进行积极思维活动,探索事物真谛的动力源泉。学生学习兴趣的大小,直接影响到学习的效果。在学习力学之前,多数学生不了解力学的内容,基本没有什么兴趣。因此,教师在讲授绪论时,要采用板书和多媒体相结合的教学,使学生对力学的主题思想、总体内容有一个清楚的了解,从而培养学生对力学学习的兴趣。在教学过程中,要多讲一些工程实例,采用多种教学手段,保持并增加学生的学习兴趣,进而提高学生的学习效果。

(1)采用多媒体与板书相结合的方法。

多媒体技术为现代教育提供了便利。利用多媒体技术对文本、声音、图形、图像和动画进行综合处理,能够创造出一个生动逼真的教学环境,为教师教学的顺利实施提供良好的保障;利用多媒体技术可以提高学生的学习兴趣,大量地减轻教师板书的工作量,使教师能腾出更多的时间,采用灵活的教学方法进行教学;一定程度上突破时间和空间的限制,充实直观内容,丰富感知材料,能够较彻底地分解知识技能信息的复杂度,减少信息在大脑中从形象到抽象。再由抽象到形象的加工转换过程,充分传达教学意图,并可以通过计算机的丰富表现手段突出教学重点。

针对力学课程,建议采用多媒体与板书相结合的方式进行教学。针对重要的公式,用板书进行相应的公司推导,带领学生进行同步思考。即使学生以前相关的内容忘记了,也能进行相应的补充。针对具体概念,相关工程实例,可以采用多媒体的方式进行播放,向学生提供声、像、图、文等综合性刺激信息。这样学生不会感觉太抽象。相反会在大脑中针对具体的力学概念留下深刻的印象。

(2)贯彻力学大师的典故。

力学史的书籍已经给我们提供了大量的素材。然后我们要在课程适当的地方将这些素材插进去。这些例子会让学生认识到这些大科学家的伟大,同时也感受到学科交叉的必要性,从而受到人文气息与科学精神的双重熏陶。例如,讲材料的最大剪应力破坏准则时,可以讲述整个历史的来龙去脉:最早对材料的强度破坏问题产生兴趣的是文艺复兴时期的巨人达·芬奇,虽然他对材料的破坏做了一些实验,但是并未提出合理的强度准则。随后,意大利文艺复兴后期伟大的天文学家、力学家、哲学家、物理学家、数学家,也是近代实验物理学的开拓者,被誉为“近代科学之父”的伽利略进行了进一步研究。他对于材料进行了弯曲试验,但是得到的破坏准则是错误的。直到1864年,由法国的工程师屈雷斯加(Tresca)提出了“最大剪应力”准则。才与实验结果一致。这个理论也称为“Tresca准则”,也就是材料力学上讲到的第三强度理论。

在讲述破坏准则的发展历史时,也可适当增加一些历史学者的简介,比如达·芬奇。他是世界上最伟大的艺术家之一,他的两幅画《蒙纳利莎》和《最后的晚餐》是人类文化的瑰宝;是世界上最早设计飞机的人。要强调我国学者在强度理论方面做出的大量工作,例如,西安交通大学的俞茂宏教授提出了“双剪切理论”,已经被写进教科书。总之,听了这些力学史料,学生将会被故事所吸引,既增加了力学的学习兴趣,又增强了民族自豪感。

虽然理论力学偏重于基础,注重于推导公式,但是可以补充史料。例如在讲动量、动能时,可以讲述笛卡儿与莱布尼兹学派之争。顺便简介一下莱布尼兹:他比牛顿小四岁,是那个时代最博学的人;精通法律、外交、数学、物理、哲学、化学、冶金以及曾经设计过计算机;最早区分了动量与动能,认为用“活力”mv2来表征动能更加合适。在讲流体动量的时候,也可以聊聊欧拉:欧拉是有史以来四大数学家之一,晚年双目失明。但还是非常刻苦地工作,一共写了1000多篇论文。有人称赞他做计算,“就像鸟在空中飞翔,像鱼在水里游泳,像人的呼吸一样自然。”而与欧拉同时代的拉格朗日则将理论力学的研究推上了高峰。他的《分析力学》一书没有一个图形,全部是公式的推导。鉴于拉格朗日的学术贡献,他被拿破仑称赞为“一座耸立的高峰”。

(3)增加课堂的互动性。

互动式教学不是单向灌输,而是对话、理解的过程、创新能力形成的过程,在力学教学中,教师应多采用问题导人、案例讨论、自学习题课等方式能有效的实践互动式教学方法,比如讲到材料力学均匀性假设时,可以这样类比:体检抽血5 ml化验,化验的结果能代表全身血液的性状。引导学生思考,加深对均匀性假设的理解。讲到泊松比,引导学生思考;材料的泊松比能否取负数?这样会出现什么样的反常现象?然后举例子;碳纳米管类“负泊松比材料,在拉伸过程中出现体积膨胀的反常现象。总之。才用互动式教学,可以激发学生认识自然的能力,培养力学的学习兴趣,引导学生创新性思考问题。结语

力学的学习既重要,又枯燥。如何激发学生的力学学习兴趣,提高学生的学习能力,将成为力学教学的一个挑战。结合自身多年的教学经验,建议性地给出了三种方案。以此期望能够更好地完成力学教学。

第五篇:高中物理力学综合

力学综合

教学目标

通过力学总复习,加深同学们对力学知识的纵向和横向联系的理解;使同学们熟悉和掌握力学部分的典型物理情景;并通过对典型物理情景的剖析,掌握力学问题的思维方法和掌握解决物理问题的基本方法.

教学重点、难点分析

力学知识的横向联系和纵向联系;力与运动的关系;在物体运动过程中,以及物体间相互作用的过程中,能量变化和动量变化的分析.

教学过程设计

一、力学知识概况

二、知识概述

(一)牛顿运动定律

第1页(共25页)

动力学部分的研究对象,就物体而言分为单体、连接体;就力而言,分为瞬时力与恒力,要通过典型题掌握各自的要领.其中对物体的受力分析,特别是受力分析中的隔离法与整体法的运用是至关重要的,要结合相关题型加以深化.特别是斜面体上放一个物块,物块静止或运动,再对斜面体做受力分析.近年来的试题更趋向于考查连接体与力的瞬时作用相结合的问题.复习中不妨把两个叠加的物体在斜面上运动,分析某个叠加体的受力这类问题当做一个难点予以突破,其中特别注意运用整体法与隔离法在加速度上效果一致的特点.可谓举一反三,触类旁通.

质点做圆周运动时,其向心力与向心加速度满足牛顿第二定律.

万有引力提供向心力,天体的匀速圆周运动问题,是牛顿第二定律的重要应用.

从历年高考试题看,其命题趋势是逐渐把力的瞬时效应与连接体的合分处理结合起来,使考生具有灵活运用这方面知识的能力,其要求有逐年提高倾向.因此对本章的知识的复习必须注意到这一点.

从能力上讲,受力分析的能力、运动分析的能力依然是考查的重点.对研究对象进行正确的受力分析、运动分析,是解决动力学问题的关键.

1.力和运动的关系

物体受合外力为零时,物体处于静止或匀速直线运动状态;物体所受合外力不为零时,产生加速度,物体做变速运动.若合外力恒定,则加速度大小、方向都保持不变,物体做匀变速运动,匀变速运动的轨迹可以是直线,也可以是曲线.物体所受恒力与速度方向处于同一直线时,物体做匀变速直线运动.根据力与速度同向或反向,可以进一步判定物体是做匀加速直线运动或匀减速直线运动;若物体所受恒力与速度方向成角度,物体做匀变速曲线运动.

物体受到一个大小不变,方向始终与速度方向垂直的外力作用时,物体做匀速圆周运动.此时,外力仅改变速度的方向,不改变速度的大小.

物体受到一个与位移方向相反的周期性外力作用时,物体做机械振动. 表1给出了几种典型的运动形式的力学和运动学特征.

第2页(共25页)

综上所述:判断一个物体做什么运动,一看受什么样的力,二看初速度与合外力方向的关系.

在高中阶段所解决的力与运动的关系问题,无外乎已知物体运动情况,求物体的受力情况;已知物体受力情况,求物体的运动情况.

力与运动的关系是基础,在此基础上,我们还要陆续从功和能、冲量和动量的角度,进一步讨论运动规律.

2.力的独立作用原理

物体同时受几个外力时,每个力各自独立地产生一个加速度,就像别的力不存在一样,这个性质叫做力的独立作用原理.物体的实际加速度就是这几个分加速度的矢量和.根据力的独立作用原理解题时,有时采用牛顿第二定律的分量形式

Fx=max Fy=may 分力、合力及加速度的关系是

在实际应用中,适当选择坐标系,让加速度的某一个分量为零,可以使计算较为简捷,通常沿实际加速度方向来选取坐标,这种解题方法称为正交分解法.

第3页(共25页)

如图1-9-1,质量为m的物体,置于倾角为θ的固定斜面上,物体与斜面间的动摩擦因数为μ,若要求物体的加速度,可先作出物体的受力图.沿加速度方向建立坐标并写出牛顿第二定律的分量形式

mgsinθ-f=ma,f=μN mgcosθ-N=0 物体的加速度

对于物体受三个力或三个以上力的问题,采用正交分解法可以减少错误,做受力分析时要避免“丢三落四”.

(二)力的积累

从力在空间上的积累效果与力在时间上的积累效果两个角度,来研究物质运动状态变化的规律,是高中物理重点内容.深入理解“功是能量转化的量度”,以及理解在动量守恒过程中能量的变化,是这部分的核心,应着重做好以下几项工作:

1.深入理解几个重要概念

本讲研究的概念较多,有功、功率、动能、重力势能、弹性势能、机械能、冲量、动量等重要概念,这是本讲知识的基础,对于它们的物理意义必须进一步深入理解.

(1)打破思维惯性,正确认识功的计算公式.

功的计算公式W=Fscosθ应用比较广泛,不仅机械功计算经常要应用它,电场力做功和磁场力做功有时也要应用它进行计算.

(2)运用对比方法,区分几个不同的功率概念. ①正确区别P=W/t和P=Fvcosθ的应用范围.

前者为功率的普适定义式,后者是前者导出的机械功的计算公式;前者求出的是t时间内的平均功率,当然t趋近零时,其结果也为瞬时功率,后者公式中的v为瞬时速度大小,求出的功率为瞬时功率;若v为平均速度大小,F且为恒力,求出的即为平均功率.

第4页(共25页)

在运用P=Fvcosθ进行计算时,要注意θ的大小,也可能求出负值,那是表示阻力的功率,要注意P和F及v是对应的,通常讲汽车的功率是指汽车牵引力的功率.

②正确区别额定功率和实际功率的不同.

额定功率是指机器正常工作时输出的最大功率.实际功率是指机器实际工作时的功率,一般不能超过额定功率.

③正确区分汽车两种启动方法的物理过程的不同.(3)正确理解势能概念.

中学教材研究了重力势能、弹性势能、分子势能、电势能等概念,还要求能够直接运用公式计算重力势能和电势能的大小.

不管哪种形式的势能,其对应的作用力均为保守力,它们做功与路径无关,只与物体的始末位置有关,并且W=-△Ep.势能是个相对量,它的大小与所取的零势能位置有关,但势能的变化与零势能位置的选取无关.因此,为了处理问题方便,要巧妙选取零势能的参考位置.

势能是个标量,它的正负是相对于零势能而言的.比较势能的大小,要注意它们的正负号. 势能属于系统所共有,平时讲物体的重力势能,实际上是物体与地球组成的系统所共有.又如,氢原子核外电子所具有的电势能,实际上应为氢原子所具有.

(4)深入理解动量和冲量的物理意义. ①弄清动量和动能的区别和联系.

动量和动能都是描述物体机械运动状态量的物理量,它们的大小存在下述关系:

它们都是相对量,均与参照物的选取有关,通常都取地球为参照物. 动量是矢量,动能是标量.

物体质量一定,若动能发生变化,动量一定发生变化;若动量发生变化,动能不一定发生变化.例如物体做匀速圆周运动,动能不变,而动量时刻在变.

②正确理解冲量I=Ft.

第5页(共25页)

I=Ft适用于恒力冲量的计算,是个矢量式,I和F是对应的,方向相同.某一恒力有冲量,该力不一定做功;某一恒力做功,该力一定有冲量.

③弄清冲量和动量的关系.

合外力冲量是物体动量变化的原因,而非动量的原因. 2.熟练掌握动能定理和机械能守恒定律的应用(1)运用动能定理要善于分析物理过程.

例如,总质量为M的列车,沿水平直线轨道匀速前进,其末节车厢质量为m,中途脱节.司机发觉时,机车已行驶L的距离,于是立即关闭发动机滑行.设运动的阻力与质量成正比,比例系数为k,机车的牵引力恒定.当列车的两部分都停止时,它们的距离是多少?

解本题时应注意,前面的列车从脱钩以后到停止,整个运动过程有两个阶段:第一阶段牵引力没撤去时,列车做匀加速直线运动;第二阶段为关闭发动机滑行阶段.运用动能定理时不必分阶段分别列式去研究,应该从整个过程考虑列以下方程式:

再对末节列车应用动能定理,有:

再从整体考虑,有F=kMg

本问题求解时也可假设中途脱节时,司机立即发觉并关闭发动机,则整个列车两部分将停在同一地点.然而实际上是行驶了距离L后才关闭发动机,此过程中牵引力做的功可看作用来补偿前面列车多行驶s克服阻力所做的功,即

kMgL=k(M-m)g△s

(2)运用动能定理解连接体问题时,要注意各物体的位移及速度的关系.

第6页(共25页)

如图1-9-2所示,在光滑的水平面上有一平板小车M正以速度v向右运动.现将一质量为m的木块无初速地放上小车,由于木块和小车间的摩擦力的作用,小车的速度将发生变化.为使小车保持原来的运动速度不变,必须及时对小车施加一向右的水平恒力F.当F作用一段时间后把它撤去时,木块恰能随小车一起以速度v共同向右运动.设木块和小车间的动摩擦因数为μ.求在上述过程中,水平恒力F对小车做多少功?

本题中的m和M是通过摩擦相互联系的.题中已经给出最后两者速度均为v,解题的关键是要找出s车和s木的关系.

由于s车=vt,s木=vt/2,所以

s车/s木=2/1

根据动能定理,对于木块有

对于车有

WF-μmgs车=0

③ 将①式、②式和③式联系起来,可得 W=mv2.

3.强化动量守恒定律及其与功能关系的综合应用的训练(1)重视动量守恒定律应用的思维训练. 例如下面这道试题.

如图1-9-3所示,一排人站在沿x轴的水平轨道旁,原点O两侧的人的序号都记为n(n=1,2,3,„).每人手拿一个沙袋,x>0一侧的每个沙袋质量m=14kg;x<0一侧的每个沙袋质量为m′=10kg.一质量为M=48kg的小车以某初速度从原点出发向x正方向滑行,不计轨道阻力.当车每经过一人身旁时,此人就把沙袋以水平速度u朝与车相反的方向沿车面扔到车上,u的大小等于扔此袋之前的瞬间车速大小的2n倍(n是此人的序号数).(1)空车出发后,当车上堆积了几个沙袋时车就反向滑行?(2)车上最终有大小沙袋共多少个?

第7页(共25页)

先确定车上已有(n-1)个沙袋时,车与沙袋的动量大小p1,和第n个人扔出的沙袋动量大小p2.如果p2>p1,则车反向滑行;若p1=p2就停止.要能运用不等式讨论,得出结果.题目中第(2)问,车沿x负方向运动时,也应能用上述思维方法进行分析讨论.

(2)强化动量守恒定律与能量转化的综合计算.

动量守恒定律与机械能守恒定律是两个重要的守恒定律,一些物理过程常常需要运用这两个守恒定律进行处理,这就构造了一类动量和能量的综合题.详见后面例题.

(三)典型物理情景

[例1]一光滑球夹在竖直墙与放在水平面上的楔形木块间,处于静止.若对光滑球施一个方向竖直向下的力F,如图1-9-4所示,整个装置仍处于静止,则与施力F前相比较

[

] A.水平面对楔形木块的弹力增大 B.水平面对楔形木块的摩擦力不变 C.墙对球的弹力不变 D.楔形木块对球的弹力增大 分析与解答:

施加力F,相当于球“重”增加,这样按球“重”G增加来分析各个力的变化,就使问题简化了一层,从整体分析受力,不难得出水平面对楔形木块的弹力增加.

确定选项A正确.

但是,若简单地认为竖直方向的力增加,不会影响水平方向的力的变化,就认定选项B(甚至于选项C)也正确,就犯了片面分析的错误.

如果从另一角度稍加分析,不难看出球与墙之间是有相互作用力的,若没有墙,球就不可能静止.

第8页(共25页)

以球为研究对象,其受力如图1-9-5所示,墙对球的弹力T和斜面对球的弹力N1分别为

T=Gtanθ,N1=G/cosθ

G增加,当然T、N1都增加.T增加,从整体看水平面对楔形木块的摩擦力f=T.因此四个选项中所涉及到的力都应是增大的.

本题选项A、D正确.

[例2]在图1-9-6所示的装置中,AO、BO是两根等长的轻绳,一端分别固定在竖直墙上的同一高度的A、B两点,∠AOB=120°,用轻杆CO使OA、OB两绳位于同一水平面内,OD垂直于AB,轻杆OC与OD在同一竖直平面内,C端固定在墙上,∠COD=60°.在结点O用轻绳悬挂重为G的物体,则绳OA受到的拉力大小为____;杆OC受到的压力大小为____.

分析与解答:

本题的“难”在于涉及三维空间,但是题目也明确给出了两个平面:△AOB所在的水平面及△COD所在的竖直平面.本题应从我们熟悉的平面问题入手来解.

第9页(共25页)

位于水平面内的AO、BO两绳等长,且整个装置左右对称,可见两绳的拉力相等,设为T,又已知∠AOB=120°,因此,不但能确定两绳拉力的合力的方向是沿OD的,而且合力的大小也等于T.于是若OD为一绳,就可以取代(等效)AO、BO两绳的作用,题目就转化为如图1-9-7所示装置的问题,且求出OD绳的拉力就等于求出OA绳的拉力.

不难得出:

OC杆受压力:N=G/sin60°=2G [例3]物体静止在光滑水平面上,先对物体施一水平向右的恒力F1,经t秒后物体的速率为v1时撤去F1,立即再对它施一水平向左的恒力F2,又经t秒后物体回到出发点时,速率为v2,则v1、v2间的关系是 [

] A.v1=v B.2v1=v2

C.3v1=v2 D.5v1=v2 分析与解答:

设物体在F1作用下,在时间t内发生的位移为s;则物体在F2作用下,在时间t内发生的位移为-s;根据平均速度的定义,以及在匀加速直线运动中平均速度与即时速度的关系,可得物体在F1作用下的平均速度

说明:

包括匀加速直线运动和匀加速曲线运动.对于匀加速直线运动,无论物体是否做往返运动,上式都成立;对于匀加速直线运动,注意上式的矢量性.

第10页(共25页)

[例4]从倾角为30°的斜面上的A点以水平速度v0平抛出的小球,最后落在斜面上B点,如图1-9-8所示.求(1)物体从A到B所需时间;(2)若物体抛出时的动能为6J,那么物体落在B点时的动能为多少?

分析与解答:

物体水平抛出后,做平抛运动,假设经过时间t落在斜面上的B点,则: 物体在水平方向上的位移为x=v0t 物体在竖直方向上的位移为y=gt2/2

如果物体落在B点的速度大小为v,则

第11页(共25页)

[例5]如图1-9-9所示,置于光滑水平面上的斜劈上,用固定在斜面上的竖直挡板,挡住一个光滑球.这时斜面和挡板对球的弹力分别是N和T.若用力F水平向左推斜劈,使整个装置一起向左加速运动,则N与T的变化情况是N____,T____.

分析与解答:

首先弄清静止时的情况,这是变化的基础.设球重G,斜面倾角θ,这是两个不变化的物理量.受力图已在原图上画出,静止时有

Ncosθ=G,Nsinθ=T 于是可得

N=G/cosθ,T=Gtanθ 当整个装置一起向左加速运动时,N′cosθ=G,N′sinθ-T′=ma 于是可得

N′=G/cosθ,T′=Gtanθ-ma 因此,N′=N,T′<T 其实,这一问题,也可以这样思考:整个装置一起向左加速运动时,在竖直方向上,系统依然处于平衡状态,所以球在竖直方向受合力仍然为零.即仍要满足N=G/cosθ,正是这一约束条件,使得斜面对球的弹力N不可能发生变化,于是使得重球向左加速运动,获得向左的合外力的唯一可能就是T减小了.

本题答案是N不变,T减小.

本题给我们的直接启示,是要树立“正交思维的意识”,即在两个互相垂直的方向上分析问题. 对比和联想,特别是解题之后的再“想一想”,是提高解题能力的“事半功倍”之法.譬如: 其一,本题若改为整个装置竖直向上加速运动,讨论各个力的变化情况时,绝不能简单地套用本题的结论,得出“N增大,T不变”的错误结论.同样应由竖直与水平两个方向的约束条件分析,由竖直方向向上加速,可得N增大;由水平方向平衡,注意到N增大,其水平方向的分量也增大,T=Nsinθ,也会随之增大,“正交思维的意识”是一种思维方法,而不是某一简单的结论.

第12页(共25页)

其二,本题还应从T减小联想下去——这也应形成习惯.挡板对球的弹力T的最小值是零.若T=0,可得出球以及整个装置的加速度a=gtanθ,这是整个装置一起向左加速运动所允许的最大加速度,加速度再大,球就相对斜面滑动了.

若a=gtanθ,既然T=0,那么挡板如同虚设,可以去掉,这样对斜劈的水平推力F的大小,在知道斜劈和重球的质量(M和m)的前提下,也可得F=(M+m)gtanθ.

[例6]质量分别为m1和m2的1和2两长方体物块并排放在水平面上,在水平向右的力F作用下,沿水平面加速运动,如图1-9-10所示,试就下面两种情况,求出物体1对物体2的作用力T.

(1)水平面光滑.

(2)两物块与水平面间的动摩擦因数μ相同. 分析与解答.

(1)以整个装置为研究对象,它们的加速度为a,则

再以物块2为研究对象,物块1对2的作用力T,有

(2)与上述过程相同.以整个装置为研究对象,它们的加速度为a′,则

再以物块2为研究对象,物块1对2的作用力T′,有

T′-μm2g=m2a′

第13页(共25页)

两种情况的结论相同,这是因为与“光滑”情况相比较,两物块在运动方向上都各增加了一个力,而这个力是与两物块的质量成正比出现的,两物块的加速度为此改变了相同的值,并非它们之间相互作用力改变造成的;反之,若两物块之间的相互作用力发生了变化,两物块在相反方向上改变了相同的值,为此它们的加速度将一个增加,一个减小,不可能再一起运动了.这与事实不符.

另外,1998年高考有一道类似的试题:

题中给出物块1的质量为2m,与水平面间的摩擦不计,物块2的质量为m,与水平面间的动摩擦因数为μ,同样在水平力F作用下加速运动,求物块1对物块2的作用力.

解的步骤依然是:

(3)以整个装置为研究对象,它们的加速度为a,则

再以物块2为研究对象,物块1对2的作用力T,有

T′-μm2g=m2a′

所以

F=(M+m)g(tanθ+μ)[例7]一平板车质量M=100kg,停在水平路面上,车身的平板离地面的高h=1.25m,一质量m=50kg的小物块置于车的平板上,它到车尾(左端)的距离b=1.00m,与车板间的动摩擦因数μ=0.20,如图1-9-11所示.今对平板车施一水平方向向右的恒力,使车向前行驶,结果物块从车板上滑落.物块刚离开车板的时刻,车向前行驶的距离s0=2.0m.求物块落地时,落地点到车尾的水平距离s.(不计路面与平板车以及轮轴之间的摩擦,取g=10m/s2)

分析与解答:

车启动后,物块受向右的摩擦力f=μmg,同时车也受同样大小向左的摩擦力.物块与车都向右加速运动,物块能从左侧离开车,表明车的加速度a2大于物块的加速度a1.图1-9-12所示为从启动到物块将离开车时,它们的位移关系.

第14页(共25页)

对物块:

初速度为零,加速度a1和位移s1大小分别为

a1=μg=2.0m/s2 s1=s0-b=1.0m 所用时间t1和末速度v1分别为

此间车的加速度a2和末速度v2分别为

由对车使用牛顿第二定律F-μmg=Ma2 作用于车向右的水平恒力F=500N 物块离开车板后,做平抛运动,到落地所用的时间

水平射程s′1=v1t2=1.0m 在物块做平抛运动这段时间内,车做匀速运动的加速度

a3=F/M=5m/s2

第15页(共25页)

所以s=s2-s′1=1.625m 说明:

这道题要求同学能根据题给条件,对整个运动要有一个清晰的分析.对涉及的车子、小物块在整个过程的各个阶段的运动特点都有明确的概念.这样就不难根据有关规律列出它们在各个阶段的有关方程.这道题列出的联立方程较多,因而要求同学具有一定的应用数学工具处理物理问题的能力,和把比较复杂的问题一步一步演算到底的心理素质.

[例8]如图1-9-13所示,轻绳长L,一端固定在O点,另一端拴一个质量为m的小球,使小球在竖直平面内做圆周运动.欲使小球能通过最高点,试证明:

(2)小球通过最低点和最高点所受的绳拉力T1和T2之差有:T1-T2=6mg. 分析与解答: 由牛顿第二定律

由机械能守恒定律得

第16页(共25页)

由①、②、③式得 T1-T2=6mg [例9]质量m=4×103kg的汽车,发动机的额定功率为P0=40×103W.若汽车从静止开始,以a=0.5m/s2的加速度做匀加速直线运动,运动中受到大小恒定的阻力f=2×103N,求:

(1)汽车匀加速运动的时间.(2)汽车可达的最大速度Vm.(3)汽车速度v=2vm/3时的加速度a1. 分析与解答:

若对汽车发动机的额定功率缺乏正确的理解,那么,对本题所设两问就不可能理解,更不用谈正确的解.汽车发动机的额定功率是允许的最大输出功率,发动机的输出功率P等于汽车的牵引力F与速度v的乘积,即

P=Fv

就本题而言,应分两个阶段分析:

第一阶段,汽车从静止开始做匀加速直线运动,且阻力f恒定.因此,这一阶段汽车的牵引力恒定,由P=Fv可知,随汽车速度的增加,发动机的输出功率也将随之增加.

但是汽车发动机的功率不可能无限增加.在达到额定功率后,汽车速度再增加,只能导致牵引力F减小,从而加速度减小.但速度仍在增加,又会使牵引力减小,加速度减小,„这就是为什么会有匀加速运动的时间之说.直到汽车的加速度为零时,即牵引力减小到与阻力平衡,汽车的速度才达可能的最大值vm,以后在额定功率下,汽车做匀速运动.

具体解法如下:

(1)汽车做匀加速直线运动,由牛顿第二定律得F-f=ma,F=4×103N 汽车做匀加速运动的过程,发动机的输出功率随之增加,当达额定功率时,汽车匀加速运动可达的最大速度v′,有v′=P0/F 汽车匀加速运动所用的时间

t=v′/a=20s

第17页(共25页)

(2)这以后汽车保持恒定的额定功率,做加速度逐渐减小的加速运动,当加速度减为零时,速度达到最大值vm,此时有

vm=P0/f=20m/s(3)v=2vm/3时,由于v>10m/s,所以汽车正处于加速度减小过程中.汽车的加速度(即时加速度)

图1-9-14是本题所述过程的v-t图线,t=20s前,汽车牵引力恒定,做匀加速直线运动,在t=20s后,汽车的功率恒定,做加速度逐渐减小(图线的斜率逐渐减小)的加速运动.不难看出,这两种启动方法物理过程是有所不同的.

为了把功率知识和牛顿第二定律与动能定理有机结合起来,还可讨论下面的问题: ①在汽车保持P0不变的启动过程中,当速度达到最大速度vm的一半时,加速度为多大?

②若汽车先以恒力F启动,达到v′m后再保持P0不变的运动.如果知道从v′m到刚达到v通过的位移s,那么汽车从静止开始到速度刚达到vm的时间为多少?

[例10]质量为m的钢板与直立轻弹簧的上端连接,弹簧下端固定在地上.平衡时,弹簧的压缩量为x0,如图1-9-15所示.一物块从钢板正上方距离为3x0的A处自由落下,打在钢板上并立刻与钢板一起向下运动,但不粘连,它们到达最低点后又向上运动.已知物块质量也为m时,它们恰能回到O点.若物块质量为2m,仍从A处自由落下,则物块与钢板回到O点时,还具有向上的速度.求物块向上运动到达的最高点与O点的距离.

第18页(共25页)

分析与解答:

对于这类综合题,要善于分析物理过程中各个阶段的特点及其遵循的规律,要注意两个物体在运动过程中相关量的关系.

质量为m的物块运动过程应分为三个阶段:第一阶段为自由落体运动;第二阶段为和钢板碰撞;第三阶段是和钢板一道向下压缩弹簧运动,再一道回到O点.质量为2m的物块运动过程除包含上述三个阶段以外还有第四阶段,即2m物块在O点与钢板分离后做竖直上抛运动.弹簧

对于m:

第二阶段,根据动量守恒有mv0=2mv1

对于2m物块:

第二阶段,根据动量守恒有2mv0=3mv2

第三阶段,根据系统的机械能守恒有

第19页(共25页)

又因

E′p=Ep

上几式联立起来可求出:l=x0/2 同步练习

一、选择题

1.A球的质量为2m,以速度v0沿正x轴方向运动,B球的质量为m,静止在x轴上某处.A、B球发生碰撞后均沿正x轴方向运动,则B球可能的速度为

[

] A.v0

B.2v0

C.3v0

D.4v0 2.一辆汽车刹车后做匀减速直线运动停下,已知汽车前一半时间的

[

]

3.物体在几个力作用下保持静止,现只有一个力逐渐减小到零又逐渐增大到原值,则在这个力变化的整个过程中,物体速度大小变化的情况是

[

] A.由零逐渐增大到某一数值后,又逐渐减小到零 B.由零逐渐增大到某一数值后,又逐渐减小到某一数值 C.由零逐渐增大到某一数值 D.以上说法都不对

4.一根水平绳子有相距L的a、b两点,有一列横波沿绳传播,在某时刻a、b均在通过平衡位置,且a、b之间没有波峰只有一个波谷,经过时间t,a处第一次出现波峰,b处第一次出现波谷,那么,这列波的传播速度是

[

]

第20页(共25页)

5.如图1-9-16所示,小车沿水平面做直线运动,小车内光滑底面上有一物块被压缩的弹簧压向左壁,小车向右加速运动.若小车向右加速度增大,则车左壁受物块的压力N1和车右壁受弹簧的压力N2的大小变化是

[

] A.N1不变,N2变大 B.N1变大,N2不变 C.N1、N2都变大 D.N1变大,N2减小

6.一个做变速运动的物体

[

] A.若改变物体速度的是重力,则物体的机械能不变 B.若改变物体速度的是摩擦力,则物体的机械能一定减小 C.若改变物体速度的是摩擦力,则物体的机械能可能增大 D.物体的速度增大时,物体的机械能可能减小

7.如图1-9-17所示,一只箱子放在粗糙的水平地面上,甲用与地面成θ1角的恒力F1斜向上拉箱子,乙用与地面成θ2角的恒力F2斜向下推箱子,箱子做匀加速运动,其加速度为a,若乙不推箱子,则箱子的加速度

[

]

第21页(共25页)

A.一定小于a

B.可能小于a C.可能大于a

D.可能等于a

8.如图1-9-18所示,物块放在粗糙斜面上保持静止,斜面体水平向左加速运动,当加速度减小时物块始终相对斜面静止,则物块所受斜面的摩擦力f和支持力N的大小变化情况可能是 [

] A.f增大,N减小

B.f减小,N不变

C.f不变,N减小

D.f减小,N减小

9.A球的质量为mA,以某一速度沿光滑水平面向静止的B球运动,B球的质量为mB.A与B发生正碰,碰撞过程中机械能不损失,当B球质量取不同值时,则碰撞后

[

] A.mB=mA时,B球速度最大 B.mB=mA时,B球动能最大 C.mB<mA时,mB越小B球速度越大 D.mB>mA时,mB越大B球动量越大

10.如图1-9-19所示,在倾角为θ的斜面上有A、B两个长方形物块,质量分别为mA、mB.在平行于斜面向上的恒力F的推动下,两物块一起向上做加速运动.A、B与斜

第22页(共25页)

面间的动摩擦因数为μ.设A、B之间的相互作用力为FAB,当它们一起向上加速运动过程中

[

]

C.斜面倾角θ如有增减,FAB值也将随之增减

D.不论倾角如何变化(0≤θ≤90°),FAB值都保持一定

11.如图1-9-20所示,传送皮带不动时,物块由皮带顶端A从静止开始滑下到皮带底端B用的时间是t,则

[

]

A.当皮带向上运动时,物块由A滑到B的时间一定大于t B.当皮带向上运动时,物块由A滑到B的时间一定等于t C.当皮带向下运动时,物块由A滑到B的时间可能等于t D.当皮带向下运动时,物块由A滑到B的时间可能小于t

二、非选择题

第23页(共25页)

12.如图1-9-21,竖直圆环的内侧为光滑的凹槽,aOb为其水平直径.两个相同的小球A和B,同时从a点以相等的初速率v0,A沿凹槽向上运动,B沿凹槽向下运动,运动中两球均未脱离圆环.在圆环上的b、c、d三点位置中,两球相遇的位置可能是在____点.

13.汽车拉一拖车沿平直公路匀速行驶,中途拖车与汽车脱钩,若汽车的牵引力不变,汽车和拖车受到的阻力也不变,则在拖车停止运动前,汽车、拖车系统的总动能____,总动量____.(填增加、减少或不变)

14.将一根长为L的细绳上端固定,下端挂一质量为0.5kg的重物(可视为质点).最初,重物及绳与固定端同处于一水平线上,重物被无初速释放后,将在竖直平面内做圆周运动,当其运动到最低点时绳受力为F,细绳刚好被拉断.若换一根长为1.5L,其在竖直平面内摆动时,摆角不能超过____度.

15.如图1-9-22,一物体以40J的初动能从斜面顶端下滑,途经A点时,动能已减少10J,机械能已减少30J;到达底端时,速度刚好减为零.若使该物体从斜面底端沿斜面上滑,要能使其达到顶端,则上滑的初动能至少应为____J.

16.水平匀速飞行的轰炸机正向敌方阵地上空飞来,被水平地面上与飞机直线距离为l的敌方阵地雷达发现,设飞机速度矢量与雷达在同一竖直面内,这时雷达监测飞机的仰角(即雷达观察飞机的方向与水平面间的夹角)为θ,与此同时,飞机上自由释放一颗炸弹,试分析飞机应以多大水平速度飞行,才有可能使炸弹命中敌方雷达?

17.如图1-9-23所示,在光滑水平面上放置一长为L、质量为M的长方形木板A,木板的右端固定一竖直挡板,挡板上装有一水平轻弹簧,弹簧原长为l0;木板的左端上放有一质量为m的小滑块B,滑块与长木板间的动摩擦因数为μ.今给长木板A一短暂

第24页(共25页)

时间的冲量,使A获得某一向左的瞬时速度v0,此后滑块B将在长木板上相对长木板向右运动并把弹簧压缩至最短为l.如果最终滑块B能刚好停在木板A的左端而不掉下,试确定长木板A运动的初速度v0.

18.如图1-9-24所示,质量为9m的圆木板,中心系一根长为L的细绳,绳的另一端拴一质量为m的小球.最初将小球与圆木板靠在一起从固定钢板C正上方高h=0.2m处由静止释放.钢板C中心有一孔,孔径比小球直径大,但比圆木板直径小.小球与圆木板落下后,圆木板与钢板C发生无机械能损失的碰撞,小球穿过孔后继续下落,运动到细绳绷紧时,球与圆木板达到一共同速度v,若不计空气阻力,细绳绷紧时,绳的拉力远大于圆木板和球的重力,要使球与圆木板达到共同速度v时方向向下,试确定细绳的长度L应满足的条件.

参考答案

1.A 2.B 3.C 4.AB 5.B 6.ACD 7.BCD 8.AD 9.BCD

10.AD 11.BCD 12.C 13.增加 不变

第25页(共25页)

下载提高高中物理力学解题能力方法谈(小编整理)word格式文档
下载提高高中物理力学解题能力方法谈(小编整理).doc
将本文档下载到自己电脑,方便修改和收藏,请勿使用迅雷等下载。
点此处下载文档

文档为doc格式


声明:本文内容由互联网用户自发贡献自行上传,本网站不拥有所有权,未作人工编辑处理,也不承担相关法律责任。如果您发现有涉嫌版权的内容,欢迎发送邮件至:645879355@qq.com 进行举报,并提供相关证据,工作人员会在5个工作日内联系你,一经查实,本站将立刻删除涉嫌侵权内容。

相关范文推荐

    高中物理史 力学

    力学 1、1638年,意大利物理学家伽利略在《两种新科学的对话》中用科学推理论证重物体和轻物体下落一样快;并在比萨斜塔做了两个不同质量的小球下落的实验,证明了他的观点是正确......

    高中物理解题教学策略

    高中物理解题教学策略 摘要:新课程实施以来,随着新的教学理念的传播,新的教学方法和技术手段的使用,再加上广大教师的改革热情,我们的课堂发生了诸多喜人的变化。但课堂教学实践......

    如何提高小学生数学应用题解题能力

    如何提高小学生数学应用题解题能力(转载) 小学数学课程中,从开始解答应用题就跟四则运算的学习结合着进行。培养学生解答应用题的能力,是十分重要的。对于学生在应用题掌握较......

    加强语文逻辑思维,提高学生解题能力

    加强语文逻辑思维,提高学生解题能力 ——以高考复习训练为例 【内容提要】 表达是思维的结果,逻辑思维出现差错,表达就不可能正确。当前语文高考复习中,学生答题时的答非所问、......

    高中物理常考题型的总结和解题方法(★)

    高中物理常考题型的总结和解题方法 高中物理考试常见的类型无非包括以下16种,祥龙教育的老师们总结整理了这16种常见题型的解题方法和思维模板,还介绍了高考各类试题的解题方......

    高中物理解题重要突破口

    高中物理解题重要突破口大全1.“圆周运动”突破口关键是“找到向心力的来源”。2.“平抛运动”突破口关键是两个矢量三角形(位移三角形、速度三角形)。3.“类平抛运动”突破......

    力学是高中物理的基础

    力学是高中物理的基础、运动学是高中物理的框架、 能量是高中物理的精髓 一、 高一是学习物理知识的关键 高一我们主要是学习运动学、力学、能量这三个最重要的内容,为后面学......

    高中物理力学学习技巧总结

    高中物理力学学习技巧总结 摘要:目前素质教育得到快速发展,掌握一定的学习技巧对我们学生来说极其重要。它不仅能够让学生在答题以及解题的过程中事半功倍,还能让我们的逻辑思......