第一篇:如何提高初中生几何证明题的解题能力
如何提高初中生几何证明题的解题能力
【摘要】平面几何在初中数学中一直占据着很重要的位置。学习几何内容是他们从代数思维向几何思维转变的一个过渡时期,学生在学习的过程中是否会解题,能否对一定的解题技巧与方法进行掌握对学生学习上的效果有直接的影响。
【关键词】几何解题平面几何在初中数学中一直占据着很重要的位置。学习几何内容是他们从代数思维向几何思维转变的一个过渡时期,学生在学习的过程中是否会解题,能否对一定的解题技巧与方法进行掌握对学生学习上的效果有直接的影响。那么,如何提高初中生几何证明题的解题能力呢?针对这一情况,笔者认为应从以下几方面入手,提高学生的几何证明能力:1 夯实基础,灵活应用知识是提高学生几何证明的关键证明的每一步都是具体运用定理、定义进行推理。每一个复杂的证明过程都是由这样一些证明步骤组成的。光会背定义、定理的词句,不明白它的含义,不会用它去推理是不会证明的。有些同学在证明过程中逻辑混乱,证明过程总是欠缺条件或“自创”条件,这些情况是学生对定义、定理没有透彻理解,只知一、二的体现。在教学中,教师应特别注意对学生进行结合图形写出推理的训练,让学生明确在什么样的条件下能得到怎样的结果。这样才能较好的体现逻辑思维过程。认真读题2.1 读题要细心。有些学生一看到某一题前面部分有似曾相识的感觉,就直接写答案,这种还没有弄清楚题目讲的是什么意思,题目让你求证的是什么都不知道,这非常不可取,我们应该逐个条件的读,给的条件有什么用,在脑海中打个问号,再对应图形来对号入座,结论从什么地方入手去寻找,也在图中找到位置。
2.2 要记。这里的记有两层意思.第一层意思是要标记,在读题的时候每个条件,你要在所给的图形中标记出来。如给出对边相等,就用边相等的符号来表示;第二层意思是要牢记,题目给出的条件不仅要标记,还要记在脑海中,做到不看题,就可以把题目复述出来。
2.3 要引申。
期刊文章分类查询,尽在期刊图书馆难度大一点的题目往往把一些条件隐藏起来,所以我们要会引申,那么这里的引申就需要平时的积累,平时在课堂上学的基本知识点掌握牢固,平时训练的一些特殊图形要熟记,在审题与记的时候要想到由这些条件你还可以得到哪些结论,然后在图形旁边标注,虽然有些条件在证明时可能用不上,但是这样长期的积累,便于以后难题的学习。指导学生解题的方法3.1 分析逆推法。所谓分析逆推法应该就是“由果索因”地对所要证明的结论进行周密分析,逆向逐步找出结论成立需要具备的充分条件。在平面几何证明题中,这一解题思路是用得最多也是最常用的思路的。
3.2 综合顺推法。综合顺推法是指从已知条件出发,借助其性质和有关定理,经过逐步的逻辑推理,最后达到待证结论或需求问题,其特点和思路是“由因导果”,即从“已知”看“可知”,逐步推向“要证明的结果”。这一方法适用于比较简单的证明题目。
3.3 分综结合法。对于从结论很难分析出思路的题目,同学们可以结合结论和已知条件认真的分析。初中数学中,一般所给的已知条件都是解题过程中要用到的,所以可以从已知条件中寻找思路。
3.4 添加辅助元素。在几何学中用来帮助解答疑难几何图形问题是在原图基础之上另外所作的具有极大价值的直线或者线段。我们作辅助线的目的你要明确,就是将我们不常见的图形转化成我们学过的知识来解答和证明。这种方法需要一定的解题经验和掌握牢固的基础知识作支撑。注重证明过程的书写证明过程的书写,其实就是把证明的思路从脑袋中搬到纸张上。这个过程,对数学符号与数学语言的应用要求较高,在讲解时,要提醒学生任何的“因为、所以”在书写时都要符合公理、定理、推论或与已知条件相吻合,不能无中生有、胡说八道,要有根有据!证明过程书写完毕后,对证明过程的每一步进行检查,是非常重要的,是防止证明过程出现遗漏的关键。
培养学生的解题技巧,提高学生的解题速度让学生习惯用简单的图形来分析,它往往给人一种意想不到的效果。也就是说,解题最好用最简便的方法。当然对那些基础较好、学有余力的学生,应当增加一些一题多解、或者竞赛性质的练习。如:有哪些凸多边形可以铺满平面?讨论最短线的问题时,如何用几何方法证明光线通过最短路程反射等难度较高的思考题。学会反思,学会总结教会学生在解题结束后应经常进行反思、总结,对自己的解题方法、存在问题进行反思,多问些为什么,查找问题症结,并在今后的学习中加以克服;对于同类型的题目应加以归纳、对比,找出它们的联系,积累了经验,更好地服务于今后解题。
第二篇:几何证明题解题口诀
几何证明题解题口诀
(作者:河南省唐河县刘军义)
几何做题很容易,证明过程写详细。数学原理巧运用,前后贯通有条理!题目信息不放过,必与结果有联系。学科符号用恰当,统一规范又适宜: 因为所以单点对,大小符号尖相抵; 图形符号缩字同,角线名称字母替。证理恰切书规范,美观整洁又得体!解释:
1、题目信息:指题目中给的证明条件。
2、结果:指要证明的内容。
3、因为所以单点对:指“∵”和“∴”竖写时情况。
4、尖相抵:指“>”和“<”横写时的情况。
5、图形符号缩字同:指“□”“◇”“△”等代替图形名称时占一个汉字的位置。
——作于2014年8月17日
第三篇:数学几何证明题(提高篇)
1.已知:如图,P是正方形ABCD内点,∠PAD=∠PDA=15°.求证:△PBC是正三角
形.
2. 已知:如图,在四边形ABCD中,AD=BC,M、N分别是AB、CD的中点,AD、BC的延长线交MN于E、F.求证:∠DEN=∠F.
3.如图,分别以△ABC的边AC、BC为一边,在△ABC外作正方形ACDE和CBFG,点P是
EF的中点,求
证:点P到AB的距离是AB的一半.
4.设P是平行四边形ABCD内部的一点,且∠PBA=∠PDA.
求证:∠PAB=∠PCB
5.P为正方形ABCD内的一点,并且PA=a,PB=2a,PC=3a,求正方形的边长.
6.如图1,一等腰直角三角尺GEF的两条直角边与正方形ABCD的两条边分别重合在一起.现
正方形ABCD保持不动,将三角尺GEF绕斜边EF的中点O(点O也是BD中点)按顺时针方向旋转.
(1)如图2,当EF与AB相交于点M,GF与BD相交于点N时,通过观察或测量BM,FN的长度,猜想BM,FN满足的数量关系,并证明你的猜想;
(2)若三角尺GEF旋转到如图3所示的位置时,线段FE的延长线与AB的延长线相交于点M,线段BD的延长线与GF的延长线相交于点N,此时,(1)中的猜想还成立吗?若成立,请证明;若不成立,请说明理由.
7..已知:如图,在△ABC中,AB=AC,∠BAC=α,且60°<α<120°,P为△ABC内部一点,且PC=AC,∠PCA=120°-α.
①用含α的代数式表示∠APC;
②求证:∠BAP=∠PCB;
③求∠PBC的度数
8.等边三角形ABC中,D、E分别为AB、BC边上的两动点,且总使AD=BE,AE与CD交于点F,AG⊥CD于点G则
FG/AF=
已知:如图,在△ABC中,AB=AC,D是△ABC外一点,且∠ABD=60°,∠ACD=60° 求证:BD+DC=AB.
已知:如图,AD平分∠BAC,AD=AB,CM⊥AD于M.请你通过观察和测量,猜想线段AB、AC之和与线段AM有怎样的数量关系,并证明你的结论.
直角三角形纸片ABC中,∠ACB=90°,AC≤BC,如图,将纸片沿某条直线折叠,使点A落在直角边BC上,记落点为D,设折痕与AB、AC边分别交于点E、点F.探究:如果折叠后的△CDF与△BDE均为等腰三角形,那么纸片中∠B的度数是多少?写出你的计算过程,并画出符合条件的折叠后的图形.
已知:△ABC中,AC⊥BC,CE⊥AB于E,AF平分∠CAB交CE于F,过F作FD∥BC交AB于D.
求证:
AC=AD
如图,在△ABC中,AD是中线,分别过点B、C作AD延长线及AD的垂线BE、CF,垂足分别为点E、F.求证:
BE=CF
第四篇:几何证明题
几何证明题
1.在三角形ABC中,BD,CE是边AC,AB上的中点,BD与CE相交于点O,BO与OD的长度有什么关系?BC边上的中线是否一定过点O?为什么?
答题要求:请写出详细的证明过程,越详细越好.ED平行且等于1/2BC
取MN为BO,OC中点
则MN平行且等于1/2BC
得到ED平行且等于MN,则EDNM是平行四边形
则OD=OM,又M为BO中点,显然BO=2OD
一定过
假设BC中线不经过O点,而与BD交与O'
同理可证AO'=2O'G
再可由平行四边形定理得到O与O'重合所以必过O点
2.在直角梯形ABCD中,角B=角C=90度,AB=BC,M为BC边上一点。且角DMC=45度
求证:AD=AM
(1)几何证明题,首先画图
哎没图不好说啊
就空说吧你在纸上画图
先看已知条件,从已知条件得出直观的结论.因为M是BC边上一点,在三角形DMC中,角DMC=45度,角MCD=角C=90度,可以知道角MDC=45度,则三角形DMC是个等腰直角三角形,MC=CD.又AB=BC,M是BC边上一点,MC长度小于BC,所以知道这个直角梯形是以CD为上底,AB为下底,图形先画对
接下来求证
要证AD=AM,从已知条件中得知,MC=CD,则作一条辅助线就可得证
连接AC
∵AB=BC,角B=90度∴三角形ABC是个等腰直角三角形
∴角BCA=45度
∴角DCA=角BCD-角BCA=45度=角BCA
所以三角形AMC≌三角形ADC(MC=CD,角DCA=角BCA,AC=AC——边角边)
所以AD=AM得证
(2)
延长CD至F点~CF=AB连接AF~~因AB=BC~SO~ABCF是正方形~剩下的就容易了~只要证AFD~和ABM~是一样的3角形就OK了~~哎~快10年没碰几何了~那些专业点的词我都忘了~这题应该是这样吧~不知道有没错
回答者:fenixkingyu-试用期一级2007-8-719:23
上楼的有两处错误:
1.描述错误,ABCF不是四边形,ABFC才是.2.按照条件并不能证明ABFC是正方形.注意:要证明四边形是正方形,必须证明2个问题:
1.该四边形是矩形;2.该四边形是菱形。
(3)
把图画出来就好解了。我是按自己画的图解的,楼主画梯形下面是BA,上面是CD,然后在按我的文字添加辅助线就行了,度那个圆圈打不出来,我就没写了。
证明:连接MD,AM,连接AC并交MD于E
因为角DMC=45,角C=90
所以三角形MCD为等边直角三角形,既角CDM=45
又角B=90AB=BC
所以角CAB=45
由梯形上下两边平行,则内对角相加为180度
因角CAB角DMB=45+45=90
所以角EDA角DAE=90
既AC垂直于MD
在等腰直角三角形CDM中则有ME=ED,且AC垂直于MD
所以AE是三角形AMD的中垂线
既AD=AM(等腰三角形的法则)。
第五篇:几何证明题
几何证明题集(七年级下册)
姓名:_________班级:_______
一、互补”。
E
D
二、证明下列各题:
1、如图,已知∠1=∠2,∠3=∠D,求证:DB//EC.E D
3ACB2、如图,已知AD//BC,∠1=∠B,求证:AB//DE.AD BCE3、如图,已知∠1+∠2=1800,求证:∠3=∠4.EC
A1 O
4B
D F4、如图,已知DF//AC,∠C=∠D,求证:∠AMB=∠ENF.E DF
N
M
AC B5、如图,在三角形ABC中,D、E、F分别为AB、AC、BC上的点且DE//BC、EF//AB,求证:∠ADE=∠EFC.C
EF
AB D6、如图,已知EC、FD与直A线AB交于C、D两点且∠1=∠2,1求证:CE//DF.CE
FD
2B7、如图,已知∠ABC=∠ADC,BF和DE分别是∠ABC和∠ADC的平分线,AB//CD,求证:DE//BF.FDC
A E8、如图,已知AC//DE,DC//EF,CD平分∠BCA,求证:EF平分∠BED.B
F
ED
AC9、如图,AB⊥BF,CD⊥BF, ∠A=∠C,求证: ∠AEB=∠F.CFBDE10、如图,AD⊥BC,EF⊥BC,∠1=∠2,求证:DG//AB.A
EGBCDF11、在三角形ABC中,AD⊥BC于D,G是AC上任一点,GE⊥BC于E,GE的延长线与BA的延长线交于F,∠BAD=∠CAD,求证:∠AGF=∠F.F
A
G
BCDE12、如图,∠1=∠2,∠3=∠4,∠B=∠5,求证:CE//DF.F
E 4G1AD 5 2B13、如图,AB//CD,求证:∠BCD=∠B+∠D.A
CBED14、如上图,已知∠BCD=∠B+∠D,求证:AB//CD.15、如图,AB//CD,求证:∠BCD=∠B-∠D.BA
ED
C16、如上图,已知∠BCD=∠B-∠D,求证:AB//CD.17、如图,AB//CD,求证:∠B+∠D+∠BED=3600.BA
E
DC18、如上图,已知∠B+∠D+∠BED=3600,求证:AB//CD.