第一篇:利用菱形的面积公式学习三角函数
利用菱形的面积公式学习三角函数
三角函数的公式繁多,难以理解和记忆,为此数学教师们常常也会费尽心思,编一些顺口溜、找一些规律来帮助学生学习和记忆三角函数及其变换公式,例如利用正六边形记忆同角三角函数的关系就是普遍被数学教师们所采用的例子.尽管如此,还是难以使学生体会到学习三角函数的乐趣和意义,那么,如何从学生的卖际出发,积极开发能引发学生兴趣、加强学生的直观理解的课堂教学内容,并且能使学生在平面三角函数的学习中有一个良好的开端呢?纵观历史,我们会发现,三角函数与平面几何有着非常深厚的渊源,伴随着15-16世纪三角学的复兴而被陆续发现的三角恒等式正是与平面几何密切相联系的,利用几何直观来加强学生对三角函数的直观理解是提高三角函数的教学有效性的策略之一
一、角的正弦的几何意义
我们可以计算出边长为1,其中有一个内角为A的菱形的面积为sin A,由此我们可以将边长为1,其中有一个角为A的菱形的面积看做是sin A的几何图形,也就是给sin A赋予几何意义.由这个意义出发,学生们会发现sin(1800一A)也是这个边长为1的菱形的面积,这样就直观地理解了sin(1800一A).进一步还会从中发现sin 00=sin 1800=0, sin 900=1.有T这些几何解释,学生就不必死记硬背这些公式,而且会留下深刻的印象.二、任意三角形的面积公式
常常会有学生忘记或记错任意三角形的面积公式,用以下方法教学便可有效地避免这种情况.学生在小学就学习了矩形面积的求法,基于此,先让学生思考矩形面积公式是怎么来的?将用木条和钉子做的一个以1为单位边长的简单的教具展示给学生(如图1),学生一看就知道这个矩形的面积就是8个边长为1的正方形的面积之和.接下来将教具变成一个有一组夹角为a的平行四边形(如图2),学生很快就指出,这个平行四边形的面积就是8个边长为1的菱形的面积之和,再结合上述角的正弦的几何意义,就得到了这个平行四边形的面积:S=2x4xsina,接着便可得出任意平行四边形ABCD的面积公式: SABCD=AB x AD x sin A..再将三角形当作平行四边形的一半就得到任意三角形的面积公式:S三角形ABC=1/2 x AB x sin A.其实,由三角形的面积公式也可以得出直角三角形中锐角正弦的比值公式(如图3),在直角三角形ABC中,由面积公式有:ab =2S三角形ABC=bc sin A,所以sin A=a/c, 同样可得sin B=b/c,可见,角的正弦的几何意又与三角函数的定义是一致的。
三、正弦的和角公式
关于正弦的和角公式的几何证明方法很多,在此,从构造三角形的角度给出一种证明方法.当a和a都是锐角时,我们总能构造出(如图4)所示的三角形ABC,显然有S三角形ABC=S三角形1+S三角形2
由面积公式得1/2absin(阿尔法+β)=1/2bhsinβ两端同除1/2ab得: sin(阿尔法+β)=h/asin阿尔法+h/bsinβ
=sinB·sin阿尔法+sinA·sinβ =sin(900-β)·sin阿尔法+sin(900-阿尔法)·sinβ =sin阿尔法·cosβ+cos阿尔法·sinβ
以上仅给出平面三角函数中有关正弦的一些探究实例,其中,给角的正弦赋予的几何意义,虽然不属于教材中的内容,但它具有非常强的直观性,学生很容易接受,尤其是可以帮助刚开始学习习近平面三角函数的学生更好的建立直观理解.另外,利用它可直接推出平常必须死记硬背的平行四边形的面积公式以及任意三角形的面积公式这一方法。
第二篇:锐角三角函数公式和面积公式
锐角三角函数公式
正弦:sin α=∠α的对边/∠α的斜边
余弦:cos α=∠α的邻边/∠α的斜边
正切:tan α=∠α的对边/∠α的邻边
余切:cot α=∠α的邻边/∠α的对边
面积公式
长方形,正方形以及圆的面积公式
面积公式包括 扇形面积共式,圆形面积公式,弓形面积公式,菱形面积公式,三角形面积公式,梯形面积公式等多种图形的面积公式。
扇形面积公式
在半径为R的圆中,因为360°的圆心角所对的扇形的面积就是圆面积S=πR^2,所以圆心角为n°的扇形面积:
S=nπR^2÷360
比如:半径为1cm的圆,那么所对圆心角为135°的扇形的周长:
C=2R+nπR÷180
=2×1+135×3.14×1÷180
=2+2.355
=4.355(cm)=43.55(mm)
扇形的面积:
S=nπR^2÷360
=135×3.14×1×1÷360
=1.1775(cm^2)=117.75(mm^2)
扇形还有另一个面积公式
S=1/2lR
其中l为弧长,R为半径 三角形面积公式
任意三角形的面积公式(海伦公式):S=√p(p-a)(p-b)(p-c), p=(a+b+c)/2,a.b.c,为三角形三边。
证明: 证一 勾股定理
分析:先从三角形最基本的计算公式S△ABC = aha入手,运用勾股定理推导出海伦公式。
证明:如图ha⊥BC,根据勾股定理,得: x = y = ha = = = ∴ S△ABC = aha= a× = 此时S△ABC为变形④,故得证。
证二:斯氏定理
分析:在证一的基础上运用斯氏定理直接求出ha。
斯氏定理:△ABC边BC上任取一点D,若BD=u,DC=v,AD=t.则 t 2 = 证明:由证一可知,u = v = ∴ ha 2 = t 2 = - ∴ S△ABC = aha = a × = 此时为S△ABC的变形⑤,故得证。
证三:余弦定理
分析:由变形② S = 可知,运用余弦定理 c2 = a2 + b2 -2abcosC 对其进行证明。
证明:要证明S = 则要证S = = = ab×sinC 此时S = ab×sinC为三角形计算公式,故得证。
证四:恒等式 分析:考虑运用S△ABC =r p,因为有三角形内接圆半径出现,可考虑应用三角函数的恒等式。恒等式:若∠A+∠B+∠C =180○那么 tg · tg + tg · tg + tg · tg = 1 证明:如图,tg = ① tg = ② tg = ③ 根据恒等式,得: + + = ①②③代入,得: ∴r2(x+y+z)= xyz ④ 如图可知:a+b-c =(x+z)+(x+y)-(z+y)= 2x ∴x = 同理:y = z = 代入 ④,得: r 2 · = 两边同乘以,得: r 2 · = 两边开方,得: r · = 左边r · = r·p= S△ABC 右边为海伦公式变形①,故得证。
证五:半角定理 半角定理:tg = tg = tg = 证明:根据tg = = ∴r = × y ① 同理r = × z ② r = × x ③ ①×②×③,得: r3 = ×xyz
圆面积公式
设圆半径为 :r 面积为 :S
则 面积 S= π·r ² π 表示圆周率
既 圆面积 等于 圆周率 乘 圆半径的平方
弓形面积公式
设弓形AB所对的弧为弧AB,那么:
当弧AB是劣弧时,那么S弓形=S扇形-S△AOB(A、B是弧的端点,O是圆心)。
当弧AB是半圆时,那么S弓形=S扇形=1/2S圆=1/2×πr^2。
当弧AB是优弧时,那么S弓形=S扇形+S△AOB(A、B是弧的端点,O是圆心)
计算公式分别是:
S=nπR^2÷360-ah÷2
S=πR^2/2
S=nπR^2÷360+ah÷2
椭圆面积计算公式
椭圆面积公式: S=πab 椭圆面积定理:椭圆的面积等于圆周率(π)乘该椭圆长半轴长(a)与短半轴长(b)的乘积。
菱形面积公式
定理简述及证明
菱形面积=对角线乘积的一半,即S=(a×b)÷2
菱形的面积也可=底乘高
抛物线弓形面积公式
抛物线弦长公式及应用
本文介绍一个公式,可以简捷准确地求出直线被抛物线截得的弦长,还可以利用它来判断直线与抛物线位置关系及解决一些与弦长有关的题目.方法简单明了,以供参考.抛物线弓形面积公式等于:以割线为底,以平行于底的切线的切点为顶点的内接三角形的3/4,即:
抛物线弓形面积=S+1/4*S+1/16*S+1/64*S+……=4/3*S
定理 直线y=kx+b(k≠0)被抛物线y2=2Px截得的弦AB的长度为
∣AB∣= ①
证明 由y=kx+b得x=代入y2=2Px得y2-+=0
∴ y1+y2=,y1y2=.∣y1-y2∣==2,∴∣AB∣=∣y1-y2|=
当直线y=kx+b(k≠0)过焦点时,b=-,代入①得∣AB∣=P(1+k2),于是得出下面推论:
推论1 过焦点的直线y=kx-(k ≠0)被抛物线y2=2Px截得的弦
AB的长度为
∣AB∣=P(1+k2)②
在①中,由容易得出下面推论:
推论2 己知直线l: y=kx+b(k≠0)及抛物线C:y2=2Px
Ⅰ)当P>2bk时,l与C交于两点(相交);
Ⅱ)当P=2bk时,l与C交于一点(相切);
Ⅲ)当P<2bk时,l与C无交点(相离).定理应用
下面介绍定理及推论的一些应用:
例1(课本P.57例1)求直线y=x+被抛物线y=x2截得的线段的长?
分析:题中所给方程与定理中的方程形式不一致,可把x看成y用①即可.解 曲线方程可变形为x2=2y则P=1,直线方程可变形为x=y-,即k=1,b=-.由①得∣AB∣=4.例2 求直线2x+y+1=0到曲线y2-2x-2y+3=0的最短距离.分析:可求与已知直线平行并和曲
线相切的直线,二直线间距离即为要求的最短距离.解 曲线可变形为(y-1)2=2(x-1)则P=1,由2x+y+1=0知k=-2.由推论2,令2bk=P,解得b=-.∴所求直线方
程为y-1=-2(x-1)-,即2x+y-=0.∴.故所求最短距离为.例3 当直线y=kx+1与曲线y=-1有交点时,求k的范围.解 曲线可变形为(y+1)2=x+1
(x≥-1,y≥-1),则P=1/2.直线相应地可变为 y+1=k(x+1)-k+2,∴b=2-k.由推论2,令2bk≤P,即2k(2-k)≤,解得k≤1-或k≥1+.故k≤1-或k≥1+时直线与曲线有交点.注:曲线作怎样变形,直线也必须作相应平移变形,否则会出现错误.例4 抛物线y2=2Px内接直角三角形,一直角边所在直线为y=2x,斜边长为5.求抛物线的方程.解 设直角三角形为AOB.由题设知kOA=2,kOB=-.由①, |OA|=,|OB|=4P.由|OA|2+|OB|2=|AB|2,得P=.∴抛物线方程为y2=x.例5设O为抛物线的顶点,F为焦点,PQ为过的弦,己知∣OF∣=a,∣PQ∣=b,.求SΔOPQ
解 以O为原点,OF为x轴建立直角坐标系(见图),依题设条件,抛物线方程为y2=4ax(P=2a),设PQ的斜率为k,由②|PQ|=,已知|PQ|=b,k2=.∵k2=tg2θ∴sin2θ=.即sinθ=,∴SΔOPQ=SΔOPF+SΔOQF =a|PF|sinθ+a|FQ|sin(π-θ)=ab sinθ=.常见的面积定理
1. 一个图形的面积等于它的各部分面积的和;
2. 两个全等图形的面积相等;
3. 等底等高的三角形、平行四边形、梯形(梯形等底应理解为两底的和相等)的面积相等;
4. 等底(或等高)的三角形、平行四边形、梯形的面积比等于其所对应的高(或底)的比;
5. 相似三角形的面积比等于相似比的平方;
6. 等角或补角的三角形面积的比,等于夹等角或补角的两边的乘积的比;等角的平行四边形面积比等于夹等角的两边乘积的比;
第三篇:三角函数变换公式
两角和公式
cos(α+β)=cosαcosβ-sinαsinβ cos(α-β)=cosαcosβ+sinαsinβ sin(α+β)=sinαcosβ+cosαsinβ sin(α-β)=sinαcosβ –cosαsinβ
tan(α+β)=(tanα+tanβ)/(1-tanαtanβ)tan(α-β)=(tanα-tanβ)/(1+tanαtanβ)cot(α+β)=(cotαcotβ-1)/(cotβ+cotα)cot(α-β)=(cotαcotβ+1)/(cotβ-cotα)和差化积
sinα+sinβ= 2sin[(α+β)/2] cos[(α-β)/2]sinα-sinβ= 2cos[(α+β)/2] sin[(α-β)/2]cosα+cosβ= 2cos[(α+β)/2] cos[(α-β)/2]cosα-cosβ=-2sin[(α+β)/2] sin[(α-β)/2]tanα+tanβ=sin(α+β)/cosαcosβ
=tan(α+β)(1-tanαtanβ)
tanα-tanβ=sin(α-β)/cosαcosβ
=tan(α-β)/(1+tanαtanβ)
积化和差
sinαsinβ =-[cos(α+β)-cos(α-β)] /2cosαcosβ = [cos(α+β)+cos(α-β)]/2sinαcosβ = [sin(α+β)+sin(α-β)]/2cosαsinβ = [sin(α+β)-sin(α-β)]/2 锐角三角函数公式
正弦:sin α=∠α的对边/∠α 的斜边余弦:cos α=∠α的邻边/∠α的斜边正切:tan α=∠α的对边/∠α的邻边余切:cot α=∠α的邻边/∠α的对边 同角三角函数的基本关系
tanα= sinα/ cosα ;cotα= cosα/ sinα;secα=1 /cosα ;cscα=1/ sinα; 倒数关系:
tanα ·cotα=1sinα ·cscα=1cosα ·secα=1商的关系:
sinα/cosα=tanα=secα/cscαcosα/sinα=cotα=cscα/secα平方关系:
sin2(α)+cos2(α)=11+tan2(α)=sec2(α)1+cot2(α)=csc2(α)二倍角公式:
正弦sin2α=2sinαcosα
余弦cos2a=cos2(a)-sin2(a)=2Cos2(a)-1
=1-2Sin2(a)
正切tan2α=(2tanα)/(1-tan2(α))
半角公式
tan(α/2)=(1-cosα)/sinα=sinα/(1+cosα)cot(α/2)=sinα/(1-cosα)=(1+cosα)/sinα.sin2(α/2)=(1-cos(α))/2cos2(α/2)=(1+cos(α))/2诱导公式
sin(-α)=-sinαcos(-α)= cosαtan(-α)=-tanαsin(π/2-α)= cosαcos(π/2-α)= sinαsin(π/2+α)= cosαcos(π/2+α)=-sinαsin(π-α)= sinαcos(π-α)=-cosαsin(π+α)=-sinαcos(π+α)=-cosαtan(π/2+α)=-cotαtan(π/2-α)=cotα tan(π-α)=-tanαtan(π+α)=tanα 诱导公式记背诀窍:奇变偶不变,符号看象限 万能公式
sinα=2tan(α/2)/[1+(tan(α/2))²]
cosα=[1-(tan(α/2))²]/[1+(tan(α/2))²]tanα=2tan(α/2)/[1-(tan(α/2))²]三倍角公式
sin3θ= 3sinθ-4sin3θ cos3θ=4cos3θ-3cosθ sin3θ=(3sinθ-sin3θ)/4 cos3θ=(3cosθ+cos3θ)/4 一个特殊公式(sinα+sinβ)*(sinα-sinβ)=sin(α+β)*sin(α-β)证明:(sinα+sinβ)*(sinα-sinβ)=2 sin[(α+β)/2] cos[(α-β)/2] *2 cos[(α+β)/2] sin[(α-β)/2]=sin(α+β)*sin(α-β)其它公式
(1)(sinα)²+(cosα)²=1(2)1+(tanα)²=(secα)²(3)1+(cotα)²=(cscα)²
(4)对于任意非直角三角形,总有tanA+tanB+tanC=tanAtanBtanC
证:A+B=π-Ctan(A+B)=tan(π-C)(tanA+tanB)/(1-tanAtanB)=(tanπ-tanC)/(1+tanπtanC)整理可得
tanA+tanB+tanC=tanAtanBtanC得证同样可以得证,当x+y+z=nπ(n∈Z)时,该关系式也成立由tanA+tanB+tanC=tanAtanBtanC可得出以下结论
(5)cotAcotB+cotAcotC+cotBcotC=1(6)cot(A/2)+cot(B/2)+cot(C/2)=cot(A/2)cot(B/2)cot(C/2)(7)cos²A+cos²B+cos²C=1-2cosAcosBcosC(8)sin²A+sin²B+sin²C=2+2cosAcosBcosC
第四篇:高中数学--三角函数公式doc
高中数学—三角函数公式大全
锐角三角函数公式
sin α=∠α的对边 / 斜边
cos α=∠α的邻边 / 斜边
tan α=∠α的对边 / ∠α的邻边
cot α=∠α的邻边 / ∠α的对边
倍角公式
Sin2A=2SinA?CosA
Cos2A=CosA^2-SinA^2=1-2SinA^2=2CosA^2-1tan2A=(2tanA)/(1-tanA^2)
(注:SinA^2 是sinA的平方 sin2(A))三倍角公式
sin3α=4sinα·sin(π/3+α)sin(π/3-α)
cos3α=4cosα·cos(π/3+α)cos(π/3-α)
tan3a = tan a · tan(π/3+a)· tan(π/3-a)三倍角公式推导
sin3a
=sin(2a+a)
=sin2acosa+cos2asina
辅助角公式
Asinα+Bcosα=(A^2+B^2)^(1/2)sin(α+t),其中sint=B/(A^2+B^2)^(1/2)
cost=A/(A^2+B^2)^(1/2)
tant=B/A
Asinα+Bcosα=(A^2+B^2)^(1/2)cos(α-t),tant=A/B降幂公式
sin^2(α)=(1-cos(2α))/2=versin(2α)/2
cos^2(α)=(1+cos(2α))/2=covers(2α)/2tan^2(α)=(1-cos(2α))/(1+cos(2α))
推导公式
tanα+cotα=2/sin2α
tanα-cotα=-2cot2α
1+cos2α=2cos^2α
1-cos2α=2sin^2α
1+sinα=(sinα/2+cosα/2)^2
=2sina(1-sin²a)+(1-2sin²a)sina
成都家教济南家教
=3sina-4sin³a
cos3a
=cos(2a+a)
=cos2acosa-sin2asina
=(2cos²a-1)cosa-2(1-sin²a)cosa
=4cos³a-3cosa
sin3a=3sina-4sin³a
=4sina(3/4-sin²a)
=4sina[(√3/2)²-sin²a]
=4sina(sin²60°-sin²a)
=4sina(sin60°+sina)(sin60°-sina)
=4sina*2sin[(60+a)/2]cos[(60°-a)/2]*2sin[(60°-a)/2]cos[(60°-a)/2]=4sinasin(60°+a)sin(60°-a)
cos3a=4cos³a-3cosa
=4cosa(cos²a-3/4)
=4cosa[cos²a-(√3/2)²]
=4cosa(cos²a-cos²30°)
=4cosa(cosa+cos30°)(cosa-cos30°)
=4cosa*2cos[(a+30°)/2]cos[(a-30°)/2]*{-2sin[(a+30°)/2]sin[(a-30°)/2]}=-4cosasin(a+30°)sin(a-30°)
=-4cosasin[90°-(60°-a)]sin[-90°+(60°+a)]
=-4cosacos(60°-a)[-cos(60°+a)]
=4cosacos(60°-a)cos(60°+a)
上述两式相比可得
tan3a=tanatan(60°-a)tan(60°+a)
半角公式
tan(A/2)=(1-cosA)/sinA=sinA/(1+cosA);
cot(A/2)=sinA/(1-cosA)=(1+cosA)/sinA.sin^2(a/2)=(1-cos(a))/2
cos^2(a/2)=(1+cos(a))/2
tan(a/2)=(1-cos(a))/sin(a)=sin(a)/(1+cos(a))
三角和
sin(α+β+γ)=sinα·cosβ·cosγ+cosα·sinβ·cosγ+cosα·cosβ·sinγ-sinα·sinβ·sinγcos(α+β+γ)=cosα·cosβ·cosγ-cosα·sinβ·sinγ-sinα·cosβ·sinγ-sinα·sinβ·cosγ
tan(α+β+γ)=(tanα+tanβ+tanγ-tanα·tanβ·tanγ)/(1-tanα·tanβ-tanβ·tanγ-tanγ·tanα)
两角和差
cos(α+β)=cosα·cosβ-sinα·sinβ
cos(α-β)=cosα·cosβ+sinα·sinβ
sin(α±β)=sinα·cosβ±cosα·sinβ
tan(α+β)=(tanα+tanβ)/(1-tanα·tanβ)
tan(α-β)=(tanα-tanβ)/(1+tanα·tanβ)
和差化积
sinθ+sinφ = 2 sin[(θ+φ)/2] cos[(θ-φ)/2]
sinθ-sinφ = 2 cos[(θ+φ)/2] sin[(θ-φ)/2]
cosθ+cosφ = 2 cos[(θ+φ)/2] cos[(θ-φ)/2]
cosθ-cosφ =-2 sin[(θ+φ)/2] sin[(θ-φ)/2]
tanA+tanB=sin(A+B)/cosAcosB=tan(A+B)(1-tanAtanB)
tanA-tanB=sin(A-B)/cosAcosB=tan(A-B)(1+tanAtanB)
积化和差
sinαsinβ = [cos(α-β)-cos(α+β)] /2
cosαcosβ = [cos(α+β)+cos(α-β)]/2
sinαcosβ = [sin(α+β)+sin(α-β)]/2
cosαsinβ = [sin(α+β)-sin(α-β)]/2
诱导公式
sin(-α)=-sinα
cos(-α)= cosα
tan(—a)=-tanα
sin(π/2-α)= cosα
cos(π/2-α)= sinα
sin(π/2+α)= cosα
cos(π/2+α)=-sinα
sin(π-α)= sinα
cos(π-α)=-cosα
sin(π+α)=-sinα
cos(π+α)=-cosα
tanA= sinA/cosA
tan(π/2+α)=-cotα
tan(π/2-α)=cotα
tan(π-α)=-tanα
tan(π+α)=tanα
诱导公式记背诀窍:奇变偶不变,符号看象限
万能公式
sinα=2tan(α/2)/[1+tan^(α/2)]
cosα=[1-tan^(α/2)]/1+tan^(α/2)]
tanα=2tan(α/2)/[1-tan^(α/2)]
其它公式
(1)(sinα)^2+(cosα)^2=1
(2)1+(tanα)^2=(secα)^2
(3)1+(cotα)^2=(cscα)^2
证明下面两式,只需将一式,左右同除(sinα)^2,第二个除(cosα)^2即可
(4)对于任意非直角三角形,总有
tanA+tanB+tanC=tanAtanBtanC
证:
A+B=π-C
tan(A+B)=tan(π-C)
(tanA+tanB)/(1-tanAtanB)=(tanπ-tanC)/(1+tanπtanC)
整理可得
tanA+tanB+tanC=tanAtanBtanC
得证
同样可以得证,当x+y+z=nπ(n∈Z)时,该关系式也成立
由tanA+tanB+tanC=tanAtanBtanC可得出以下结论
(5)cotAcotB+cotAcotC+cotBcotC=1
(6)cot(A/2)+cot(B/2)+cot(C/2)=cot(A/2)cot(B/2)cot(C/2)
(7)(cosA)^2+(cosB)^2+(cosC)^2=1-2cosAcosBcosC
(8)(sinA)^2+(sinB)^2+(sinC)^2=2+2cosAcosBcosC
(9)sinα+sin(α+2π/n)+sin(α+2π*2/n)+sin(α+2π*3/n)+……+sin[α+2π*(n-1)/n]=0
cosα+cos(α+2π/n)+cos(α+2π*2/n)+cos(α+2π*3/n)+……+cos[α+2π*(n-1)/n]=0 以及
sin^2(α)+sin^2(α-2π/3)+sin^2(α+2π/3)=3/2
tanAtanBtan(A+B)+tanA+tanB-tan(A+B)=0
第五篇:高中数学-三角函数公式
两角和公式
sin(A+B)= sinAcosB+cosAsinBsin(A-B)= sinAcosB-cosAsinBcos(A+B)= cosAcosB-sinAsinBcos(A-B)= cosAcosB+sinAsinB
tan(A+B)=(tanA+tanB)/(1-tanAtanB)tan(A-B)=(tanA-tanB)/(1+tanAtanB)倍角公式
tan2A = 2tanA/(1-tan^2 A)Sin2A=2SinA•CosA
Cos2A = Cos^2 A--Sin^2 A=2Cos^2 A—1=1—2sin^2 A 三倍角公式
sin3A = 3sinA-4(sinA)^3;cos3A = 4(cosA)^3-3cosA
tan3a = tan a · tan(π/3+a)· tan(π/3-a)半角公式
sin(A/2)= √{(1--cosA)/2}cos(A/2)= √{(1+cosA)/2}
tan(A/2)= √{(1--cosA)/(1+cosA)}
tan(A/2)=(1--cosA)/sinA=sinA/(1+cosA)和差化积
sin(a)+sin(b)= 2sin[(a+b)/2]cos[(a-b)/2]sin(a)-sin(b)= 2cos[(a+b)/2]sin[(a-b)/2]cos(a)+cos(b)= 2cos[(a+b)/2]cos[(a-b)/2]cos(a)-cos(b)=-2sin[(a+b)/2]sin[(a-b)/2] tanA+tanB=sin(A+B)/cosAcosB 积化和差
sin(a)sin(b)=-1/2*[cos(a+b)-cos(a-b)]cos(a)cos(b)= 1/2*[cos(a+b)+cos(a-b)]sin(a)cos(b)= 1/2*[sin(a+b)+sin(a-b)] cos(a)sin(b)= 1/2*[sin(a+b)-sin(a-b)] 诱导公式
sin(-a)=-sin(a)cos(-a)= cos(a)sin(π/2-a)= cos(a)cos(π/2-a)= sin(a)sin(π/2+a)= cos(a)cos(π/2+a)=-sin(a)sin(π-a)= sin(a)cos(π-a)=-cos(a)sin(π+a)=-sin(a)cos(π+a)=-cos(a)tanA = sinA/cosA 万能公式
sin(a)= [2tan(a/2)] / {1+[tan(a/2)]^2}
cos(a)= {1-[tan(a/2)]^2} / {1+[tan(a/2)]^2} tan(a)= [2tan(a/2)]/{1-[tan(a/2)]^2}
其它公式
a·sin(a)+b·cos(a)= [√(a^2+b^2)]*sin(a+c)[其中,tan(c)=b/a]a·sin(a)-b·cos(a)= [√(a^2+b^2)]*cos(a-c)[其中,tan(c)=a/b]
1+sin(a)= [sin(a/2)+cos(a/2)]^2;1-sin(a)= [sin(a/2)-cos(a/2)]^2;;公式一:
设α为任意角,终边相同的角的同一三角函数的值相等:
sin(2kπ+α)= sinαcos(2kπ+α)= cosαtan(2kπ+α)= tanα公式二:
设α为任意角,π+α的三角函数值与α的三角函数值之间的关系:sin(π+α)=-sinαcos(π+α)=-cosαtan(π+α)= tanα公式三:
任意角α与-α的三角函数值之间的关系:sin(-α)=-sinαcos(-α)= cosαtan(-α)=-tanα公式四:
利用公式二和公式三可以得到π-α与α的三角函数值之间的关系:sin(π-α)= sinαcos(π-α)=-cosαtan(π-α)=-tanα公式五:
利用公式-和公式三可以得到2π-α与α的三角函数值之间的关系:sin(2π-α)=-sinαcos(2π-α)= cosαtan(2π-α)=-tanα公式六:
π/2±α及3π/2±α与α的三角函数值之间的关系: sin(π/2+α)= cosαcos(π/2+α)=-sinαsin(π/2-α)= cosαcos(π/2-α)= sinαsin(3π/2+α)=-cosαcos(3π/2+α)= sinαsin(3π/2-α)=-cosαcos(3π/2-α)=-sinα