圆锥台侧面积公式

时间:2019-05-13 00:50:24下载本文作者:会员上传
简介:写写帮文库小编为你整理了多篇相关的《圆锥台侧面积公式》,但愿对你工作学习有帮助,当然你在写写帮文库还可以找到更多《圆锥台侧面积公式》。

第一篇:圆锥台侧面积公式

大弧长为:2πR,小弧长为:2πr,设小扇形的半径为a,则:R/r=(a+l)/a 所以,a=rL/(R-r)这是怎么推出来的?

这么做,大弧长为:2πR,小弧长为:2πr,设小扇形的半径为a,大扇形半径为l+a 两扇形圆心角相同(2πR)/(l+a)=(2πr)/a

R/(l+a)=r/a

Ra=lr+ar

a(R-r)=lr

a=lr/(R-r)

第二篇:直角梯形面积公式

直角梯形面积公式

S=(上底+下底)×高÷2

梯形是上下两条边平行的四边形状,你按照一个对角线可以把它分成两个高相同的三角形,三角形面积公式是“底乘以高除以2”,所以梯形就是:“上底乘以高除以2”+“下底乘以高除以2”=“上底加下底乘以高除以2”

另一个公式:“中位线×高”

第三篇:高中数学三角形面积公式

高中数学三角形面积公式

由不在同一直线上的三条线段首尾顺次连接所组成的封闭图形叫做三角形。平面上三条直线或球面上三条弧线所围成的图形。三条直线所围成的图形叫平面三角形;三条弧线所围成的图形叫球面三角形,也叫三边形。面积公式:

(1)S=ah/2

(2).已知三角形三边a,b,c,则(海伦公式)(p=(a+b+c)/2)S=√[p(p-a)(p-b)(p-c)]

=(1/4)√[(a+b+c)(a+b-c)(a+c-b)(b+c-a)]

(3).已知三角形两边a,b,这两边夹角C,则S=1/2 * absinC

(4).设三角形三边分别为a、b、c,内切圆半径为r

S=(a+b+c)r/2

(5).设三角形三边分别为a、b、c,外接圆半径为R

S=abc/4R

(6).根据三角函数求面积:

S= absinC/2a/sinA=b/sinB=c/sinC=2R

第四篇:三角形面积公式教案

课题: §1.2解三角形应用举例

教学目标:

知识与技能:能够运用正弦定理、余弦定理等知识和方法进一步解决有关三角形的问题, 掌握三角形的面积公式的简单推导和应用

过程与方法:本节课补充了三角形新的面积公式,引导学生证明,同时总结出该公式的特点,循序渐进地具体运用于相关的题型。

情感态度与价值观:让学生进一步巩固所学的知识,加深对所学定理的理解,进一步培养学生研究和发现能力,让学生在探究中体验愉悦的成功体验

教学重点:

推导三角形的面积公式并解决简单的相关题目。

教学难点:

三角形面积公式与正弦余弦定理的综合应用。

教学过程: Ⅰ.课题导入

师:以前我们就已经接触过了三角形的面积公式,今天我们来学习它的另一个表达公式。

121推导出下面的三角形面积公式,S=absinC,大家能推出其它的几个公式吗?

211生:同理可得,S=bcsinA, S=acsinB 22根据以前学过的三角形面积公式S=ah,应用以上求出的高的公式如ha=bsinC代入,可以Ⅱ.讲授新课

[范例讲解] 例

1、在ABC中,根据下列条件,求三角形的面积S(1)已知a=5cm,c=7cm,B=60;(2)已知B=30,C=45,b=2cm;(3)已知三边的长分别为a=3cm,b=5cm,c=7cm

分析:这是一道在不同已知条件下求三角形的面积的问题,与解三角形问题有密切的关系,我们可以应用解三角形面积的知识,观察已知什么,尚缺什么?求出需要的元素,就可以求出三角形的面积。

2、(1)锐角ABC中,S=33,BC=4,CA=3,求角C 与c边。

变式:ABC中,S=33,BC=4,CA=3,求角C与c边。(2)ABC中a=2,B=练习:课本P18练习2

3,S=,解三角形。

例3.如图,在某市进行城市环境建设中,要把一个三角形的区域改造成室内公园,经过测量得到这个三角形区域的三条边长分别为60m,100m,140m,这个区域的面积是多少?

Ⅲ.课时小结

(1)三角形面积公式正用和逆用。

(2)三角形面积公式在实际问题中的应用。Ⅳ.课后作业:(1):已知在ABC中,C=120,b=6,c=63,求a及ABC的面积S(2): 已知在ABC中,a,b,c是角A,B,C的对边,ABC的面积为S,若a=4,b=5,S=53,求c的长。

第五篇:圆柱侧面积教学设计

教学目标:

1、在观察、交流、操作等活动中,经历圆柱侧面展开图的过程。

2、通过小组合作学习、自主探索,能够推导出圆柱侧面积的计算方法。

3、能运用所学知识解决生活中的实际问题,体验生活中处处有数学,培养学生学习数学的兴趣。

教学重点:圆柱侧面积的认识及计算

教学难点:

1、圆柱的侧面与其展开长方形的各部分之间的关系。

2、推导圆柱侧面积的计算方法。

教、学具准备:教师准备长方体、正方体、圆柱体等几种不同的实物模型;学生每人准备一个手工制作的空心圆柱。教学过程:

一、创设情境,复习导入

师:同学们,咱们上一节课学习了一种新的立体图形,是什么呢?我找个同学配合我做的小游戏,某某同学请闭上双眼,从老师给你准备的物品当中摸出咱们上节课学习的物体(出示课前准备的几种不同的实物模型)生:摸出来了,圆柱。

师:请你说一说你是怎么判断出这是圆柱的?(同时板书课题“圆柱”)生:根据圆柱的特点判断。

师:那么圆柱到底有那些特点呢?

生:圆柱的上下两个面是圆形的,侧面是一个曲面。

师:非常好,那么谁又能说出圆柱的各部分名称呢?(找学生到前面来指出)两位同学对上节课的内容掌握非常好,此处应该有掌声。

二、新课教授

(1)让学生谈谈自己的梦想,可能有同学将来愿意当设计师。

(2)师:现在大家看到老师这里有两个圆柱,一个很漂亮,另一个却很逊色,现在请咱们的设计师同学帮我给他设计一个漂亮的包装纸,你怎么设计? 生:包装纸的大小其实就是圆柱体的侧面积。师:一语中的(板书“侧面积“将课题补充完整)

生: 把原来的商标纸剪开再展开,然后测量它的大小就行。师:说说具体怎么剪开? 生:沿高剪开。

师:好,我们来亲自验证一下,你们猜展开之后会是什么形状呢? 生1:正方形 生2:长方形

师:大家注意,我们见证奇迹的时刻到了(展开包装纸),什么形状呢? 生:长方形。

师:还会有其他情况吗?(让学生把自己准备的圆柱按照此方法剪开)

有的学生会得到正方形,然后让学生小组讨论思考课本23页的两个问题,找出展开图与圆柱之间的关系。找学生回答,教师给予表扬。

师:我们现在知道了他们之间的关系,那到底该如何计算圆柱的侧面积呢?(小组讨论,推导计算方法)

生:圆柱的侧面积等于底面周长乘以高。(师板书)师:咱们同学们都会自己推导计算方法了,真了不起。

三、课堂练习师:现在请你们发扬一下小组合作精神,拿出各小组准备的实物体圆柱,测量数据,计算侧面积,看看哪个小组合作的最好,计算的既快又准确 ?

四、课堂总结

回头看看我们今天的收获,你们记住了吗?我认为通过自己的智慧和劳动获得知识是人生最大的乐趣,你们同意吗? 教学反思

本课是在认识圆柱的基础上进行教学的,主要让学生通过自己动手操作去理解圆柱侧面积与长方形的关系,为下面的推导作好铺垫。

在推导方法时,放手让学生操作,符合学生的认知规律,也体现了新课标的精神,从而使学生顺利的掌握了本节课的内容。本节课的不足之处在于:教师的引导不到位,有些学生还不敢大胆去尝试,还需要平时多加锻炼。

第一部分:教学设计

教学内容:冀教版《数学》六年级下册第22~24页。

教材分析:

本课时有两个方面的学习内容,一是认识圆柱,二是探索圆柱侧面积的计算方法。

圆柱是一种比较常见的立体图形。在实际生活中,圆柱形的物体很多,学生对圆柱在一年级时就有初步的感性认识,加之第一学段对圆柱的简单认识,所以通过列举生活中的圆柱形实物,让学生根据已有的知识经验判断哪些物体的形状是圆柱。然后通过观察、触摸从实物中直观感受圆柱面的特点,在学生交流的基础上,认识圆柱的“底面”、“侧面”和“高”。这些都是与形状特征有关的概念,还是继续教学侧面积、表面积、体积必需的基础知识。圆柱的认识学生经历了由形象——表象——抽象的知识建构过程。

在认识了圆柱后,接着探索圆柱侧面积计算方法。教材中设计了“把罐头盒的商标纸沿着它的一条高剪开,再展开,看看商标纸是什么形状”的活动,并呈现了剪商标纸的过程示意图,这样通过把圆柱侧面展开成平面的实验,再联系长方形的面积计算公式,指导学生利用已有的知识和经验,自主总结出侧面积的计算方法。教学时,我根据学生所带的实物,设计了让学生给圆柱侧面包装的环节,激发解决实际问题的欲望,让学生从内心感觉到学习侧面积的计算方法的必要性。

教学思路:

1.教学圆柱的认识

(1)教学圆柱的认识,应加强直观演示和操作。教师可以做一些圆柱模型,也可让学生课前收集一些圆柱形的物体(如药盒、药瓶、纸筒、罐头盒等)。有条件还可以将教材第22页中的圆柱形物体的图片做成课件或挂图,让学生找一找:“哪些物体的形状是圆柱?”并说明理由,帮助学生建立圆柱的表象。接着请学生交流生活中还见过哪些圆柱形的物体,加深对圆柱认识。

(2)探究圆柱特征时,要让学生通过观察和操作,发现和总结出圆柱特征。引导学生探究时要注意以下几点:第一,从整体上把握“圆柱是由哪几部分组成的?” 在学生观察、交流的基础上,指出圆柱的两个圆面叫做圆柱的底面,周围的面叫做侧面。一般学生不太容易发现并指出圆柱的高。教师可出示高、矮不同的两个圆柱,提问:“哪个圆柱高,哪个矮?想一想,圆柱的高矮与圆柱的两个底面之间有什么关系?”引导学生思考得出:圆柱的高矮与圆柱两个底面之间的距离有关,从而揭示圆柱高的含义。教师可通过教具(如透明圆柱模型、圆柱的纵切模型)或多媒体课件演示,使学生知道圆柱的高既可以在圆柱的内部表示出来,也可以在圆柱的侧面上表示出来。学生掌握圆柱各部分的名称后,应让学生结合立体图形认识圆柱图形的底面、侧面和高。第二,深入对各个部分的探究。如“圆柱的底面、侧面和高各有什么特征?”让学生动手操作,看看有什么发现。学生的一些发现可能停留在直观判断的层面,如,学生感觉圆柱上、下底面是大小一样的两个圆,教师可引导学生进一步验证“你怎么证明上、下底面是两个大小一样的圆?”鼓励学生用自己的方法进行探索,学生可能会把两个圆剪下来比较;也可能把圆柱的一个底面画下来,再把另一个底面放在画好的圆上,看是否重合;还可能量出它们的直径或半径进行比较。侧面是什么面?引导学生用手摸一摸,感觉侧面是一个曲面。高可用多媒体演示,使学生理解高既可以在圆柱的内部,也可以在圆柱的侧面表示出来,有无数条。

2.自主探索圆柱的侧面积公式。可分以下几个步骤进行:一是让学生看着实物先猜想圆柱的侧面展开是什么形状;二是沿高(或其他方法)剪下并展开圆柱的侧面加以认识;三是探索圆柱的侧面展开图与长方形之间的联系。让学生观察思考“长方形纸的长和宽分别与罐头盒的什么有关系?”让学生经过分析、比较,概括出长方形纸的长等于罐头盒底面的周长,长方形纸的宽等于罐头盒的高。从而探索推导出圆柱侧面积公式。此时顺势提出“议一议”的问题:“怎样计算罐头盒的侧面积?”学生就能迎刃而解。最后让学生思考:“什么情况下圆柱侧面展开图是正方形?”这样学生通过在亲历立体图形与其展开图之间的转化,逐步建立立体图形与平面图形的联系,进一步发展空间观念。

学生分析:

初步认识圆柱和长方形、正方形面积的基础上学习的。学生能够辨认,并从日常生活中搜集到圆柱形物体或类似(近似)于圆柱的物体,但是对圆柱还缺乏更深的认识。

教学目标:

1.在观察、交流、操作等活动中,经历认识圆柱和圆柱侧面展开图的过程。

2.认识圆柱和圆柱侧面展开图,会计算圆柱的侧面积。

3.积极参与学习活动,愿意与他人交流自己的想法,获得学习的愉快体验。

教学重点:

理解圆柱有无数条高,侧面展开后是一个长方形或正方形。

教学难点:

理解圆柱的侧面积的计算公式推导过程。

数学经验:

获得解决生活实际的活动经验,体验过程的快乐。

课前准备:教师准备课件。学生准备一个圆柱体实物、纸及小剪刀等。

教学过程:

一、创设情境

1、让学生交流自己带来的物品,说出它的名字和形状。

2、生活中还有哪些物体的形状是圆柱的。

二、认识圆柱

1、让学生先观察圆柱体物品,再闭着眼睛摸一摸表面。然后交流摸的感受。

2、在学生交流的基础上,教师介绍圆柱的各部分名称。

3、让学生拿一个圆柱形实物,指出它的底面、侧面和高。

预设:根据学生的回答,看学生指出的高的位置,进一步强调圆柱的高有无数条(圆柱里面和表面)。

4、认识两个底

重点在引导学生如何知道两个底的关系。

学生可能说到以下方法:

(1)测量底面直径(或半径)来验证,两个底面直径(或半径)相等,两个圆大小就一样。

(2)可以用卷尺或线绳测量周长来验证。

(3)把两个底剪下来(4)可以用圆柱体物体的一个底面描一个圆,用另一个底面比一比,如果重合,就说明两个圆大小一样。

三、圆柱侧面积

1、创设情境

如果让你给一个圆柱的侧面包装,你怎么做?

设计意图:给学生创设一个真实的环境,想办法去解决生活中的实际问题,激发学习兴趣。

2、动手操作,探究侧面积的计算公式。

让学生根据手里的圆柱,实际包装一下试试。

预设:学生能够根据实物和纸,包一包,得出侧面是一个长方形或正方形。

设计意图:让学生在动手操作的过程中,经历、体验知识获得的过程。

3、说一说:(1)长方形纸的长和宽分别与圆柱的什么有关系?

(2)长方形的面积和圆柱的侧面积有什么关系?

4、议一议:该怎样计算圆柱的侧面积呢?

四、尝试应用

1.同组共同测量出组内一个圆柱的周长和高。

2.让同组学生根据测量的数据尝试计算出它的侧面积,并组内交流计算方法和结果。

设计意图:用自己获得的知识再去解决实际问题。

五、课堂练习

1、练一练第1题。先让学生读题,并判断用哪张纸比较合适。交流时,重点说一说是怎样判断的。

2、练一练第2题。让学生自己计算罐头盒包装纸的面积,然后交流学生的计算方法和结果。

六、课堂小结

你知道了什么?谈一谈感受。

七、课堂作业

练一练第3题。求下面各圆柱的侧面积。

(1)d=8cm

(2)r=3m

h=6cm

h=1.5m

教学目标:

1、通过观察认识圆柱的特征,知道圆柱体在生活中有哪些应用,培养学生比较、判断等思维能力。

2、通过合作学习、自主探索、理解并掌握圆柱侧面积的计算方法,发展学生的空间观念。

3、能运用所学知识解决生活中简单的实际问题,体验生活中处处有数学,培养学生学习数学的兴趣。

教学重点:圆柱的侧面积的认识及计算

教学难点:圆柱的侧面与其展开后长方形的各部分之间的关系。

教、学具准备:教师准备不同的圆柱模型及实物若干,学生每人准备一个圆柱模型。

教学过程:

一、创设情境,引出课题

1、多媒体展示一些立体图形,你认识其中的圆柱体吗?请指出来。

2、播放压路机工作的场面录像,学生观察。

提问:你能找到画面中的圆柱体吗?(可能有学生会发现压路机的滚筒是圆柱体)

老师:你能帮这位师傅算出压路机滚筒滚动一周的面积吗?(学生不能)

揭示课题:这就是今天我们要学习的内容(板书课题)

二、学生观察,认识圆柱

1、学生拿出准备好的圆柱模型、观察、比较。

师:谁来说说圆柱有哪些特征?

指名说:相互补充,师:归纳整理出圆柱的特证

上下两个面是

圆柱

上下粗细相等

2、认识圆柱的各部分名称

⑴认识底面

学生观察上下面两个面,说明:圆柱的上下两个面叫做圆柱的底面,取下两个底面比较,得出圆柱的底面是两个完全相同的圆。

⑵认识侧面

让学生摸一摸圆柱四周的面,感知与正方体、长方体的不同。

说明:围成圆柱除上下两个底面外,还有一个曲面,你能帮它取个名字吗?

根据学生的回答,整理板书:圆柱的侧面

再次感知:观察圆柱的两个底面和侧面,同桌相互说一说圆柱的各部分名称。

⑶认识高

师:长方体有高吗?那么圆柱有没有高呢?(学生肯定会回答

有)你认为圆柱的高在哪儿呢?

请学生指一指圆柱的高,肯定指对的学生,纠正指错的。说明:两个底面之间的距离叫做高(多媒体演示)你能量出你手中圆柱的高吗?(学生说一说)

师:你能把圆柱的高都指出来吗?(不能)为什么?

学生思考后回答,师整理板书:圆柱有无数条高且都相等)

3、巩固认识

⑴你能说说生活中有哪些物体是圆柱形吗?

⑵做练习一第1题(学生判断,不是圆柱的说明理由)

三、合作学习,自主探索

1、拿出两个高相等但粗细不同的圆柱

师:你认为哪个圆柱的侧面积大些?

学生会指出是粗些的圆柱侧面积大些。这时让学生猜测:你认为圆柱的侧面可能与什么有关?(学生可能想到半径、直径或周长)师帮助完整概念:底面半径、底面直径或底面周长。还可能会有学生说出可能会与高有关,因为当粗细相同时,越高的圆柱侧面积会越大。)

师肯定这些答案,同时提问:想知道圆柱的侧面展开是什么形状吗?

学生把圆柱模型的侧面沿高剪开,观察、思考:

⑴圆柱的侧面展开是一个什么图形?

⑵这个长方形与原来圆柱的各部分之间有什么关系?

小组讨论得出结论,并填在课本上:圆柱的侧面展开是一个长方形(有的学生可能得到一个正方形),这个长方形的长是圆柱的底面周长,宽就是圆柱的高。

根据结论,你认为圆柱的侧面积应该怎样计算?

学生讨论、交流得出:圆柱的侧面积=底面周长×高

[设计意图:通过让学生小组合作讨论、交流、自主探索出圆柱的侧面展开图是一个长方形,观察得出长方形的长、宽与圆柱之间的关系,既培养了学生间的合作的精神,也培养了学生自身的探索能力,同时因为是学生自己探索得到的结论,所以印象更深刻。]

2、练习

⑴要计算圆柱的侧面积,必须要知道圆柱的()或()或()和()两个条件

⑵刚才压路机的滚筒底面直径是1.5米,长2米,现在能算出这台压路机滚动一周的面积吗?

四、拓展延伸,解决问题

1、思考:在什么情况下把圆柱的侧面展开得到一个正方形?

2、做一个圆柱形铁皮烟囱,底面直径30厘米、高150厘米,至少需要多少铁皮?

3、拿出圆柱形实物,让学生量出需要的数据,计算出它的侧面积?

五、课堂小结

通过本节课的学习,你有什么收获?还有问题吗?

该教学设计的总体思路是让学生通过分组交流操作,合作操作实践,把比较抽象的立体几何知识通过分解认知,分散重点,降低难度,利用已有的几何知识转换,掌握新的知识,便于从学生已有的认知规律出发,高效提高学习效率,达到知识过度整合的目的。

教学内容:五年制教材第十册P74-76内容。教学目标:

1、了解圆柱的各部分名称,掌握圆柱的特征。

2、认识圆柱的侧面,会计算圆柱的侧面积。

3、发展学生的空间观念,培养学生的空间想象能力。教学重点:圆柱的特征和侧面积的计算。教学难点:圆柱侧面积公式的推导。

教法说明:这节课主要采用演示法,辅之谈话法、讲解法、尝试法、练习法等。充分运用直观教具、学具和现代化教学手段,启发学生观察、思维,让学生动口、动手。

教学准备:师备:各种实物,圆柱模型,侧面积演示教具,多媒体课件,每生发一份制作圆柱的纸片。生备:圆柱形物体。教学过程:

一、导入新课

教师揭开遮盖布,讲台上出现长方体,正方体、圆柱体等许多不同形状的实物。问:谁能从这些物体中拿出已经学过的形体,并说出它的名称(请一生到前拿去长方体、正方体,讲台上剩下圆柱形铅笔、小钢管、圆柱形烟盒等)。师说明:我们学过的长方体、正方体都是由平面围成的立体图形,现在我们再来研究一种立体图形—圆柱。讲台上剩下的这些物体的形状都是圆柱体,简称圆柱(板书课题“圆柱”)。

二、进行新课

1、说一说,你见到过哪些物体是圆柱形的?(要让学生多举实例,使学生对圆柱有初步的表象认识。)

2、圆柱的特征

教师拿起一个圆柱模型说:请同学们仔细地观察这个圆柱,看看有什么特征?学生回答……,然后教师归纳:圆柱的上、下两个面叫做底面。它们是完全相同的两个圆。两个底面之间从上到下一样粗细,中间的距离叫做高(教师在多媒体上演示并在立体图上标上“底面”、“高”)。师又问:圆柱的高有几条?(使生明白:同一个圆柱两底面之间的距离处处相等,所以圆柱的高有无数条。)

3、教师出示硬币、粉笔、茶叶盒、瓶塞等实物。问:这些物体的形状,哪些是圆柱体?哪些不是圆柱体?为什么?(学生判断并说明理由,可以加强对圆柱概念的认识。)

4、师问:圆柱除了上底面、下底面,还有一个面(手势示意),这个面叫做什么?(圆柱的侧面。)请拿出你准备的圆柱形物体,看一看、摸一摸、想一想圆柱的侧面是一个什么样的面?(圆柱的侧面是一个曲面)。那么圆柱的侧面积怎样计算呢?能不能象计算圆的面积那样,把圆柱的侧面转化成已学过的图形呢?下面我们一起来研究圆柱侧面积的计算(把课题补充完整:圆柱的侧面积)。

5、教具演示,推导公式

师出示制作好的圆柱教具,先让学生说出底面周长和高。启发:如果把圆柱的侧面沿着这条高剪开,再展开(手势配合),将会得到一个什么样的图形呢?教师把圆柱侧面打开让学生看,的确是长方形。教师边把这个长方形卷成圆柱形边问:这个长方形的长与圆柱有什么关系?长方形的宽与圆柱有什么关系?(让学生经过分析、比较、概括出:长方形的长等于圆柱底面的周长,长方形的宽等于圆柱的高)。长方形的面积怎样计算?谁能根据长方形的面积公式推导出圆柱侧面积的计算方法?学生口述,教师在多媒体上演示推导过程。

长方形的面积= 长 × 宽 ↓ ↓

圆柱的侧面积=底面的周长× 高

教师又拿出另一个圆柱体,问:有的圆柱侧面展开,还可能得到一个什么图形?(学生答出正方形后,师演示。)这样的圆柱体有什么特征呢?(底面周长和高相等。)

师又问:圆柱的侧面展开能得到长方形或者正方形,还有可能得到一种什么图形?(平行四边形)。你是怎样想的?(斜切)教师将圆柱的侧面按斜切的做法展开,得到一个平行四边形。这个平行四边形的底和圆柱有什么关系?高和圆柱有什么关系?谁能根据平行四边形的面积公式推导出圆柱侧面积的计算方法? 师小结:通过以上的演示、推导,可见圆柱的侧面积确实等于底面的周长乘以高。(板书: 圆柱侧面积=底面的周长×高。)

6、圆柱侧面积的计算

(1)多媒体出示尝试题1:一个圆柱,底面周长是9.42分米,高是10分米。求它的侧面积。全班齐练,教师巡视辅导,选一生的作业拿到实物展示台上展示,评讲时注意强调计量单位。(2)变换题目中的条件,将“底面周长9.42分米”改为“底面直径3分米”(用多媒体演示)。学生口头列式计算,师板书:3.14×3×10=9.42×10=94.2(平方分米)(3)教师将题目中的“底面直径3分米”改变为“底面半径1.5分米”(用多媒体演示)。学生口头列式计算,师板书:2×3.14×1.5×10=94.2(平方分米)(4)小结:通过以上的练习,同学们想一想,求圆柱的侧面积必须具备哪些条件?

三、巩固练习

以下各题皆用多媒体出示。

1、指出下图中哪个是圆柱。(P78 1)

2、指出下列圆柱的底面、侧面和高。(P75 2)

3、判断题。

(1)圆柱的高只有一条。

(2)两个底面都是圆形的物体,一定是圆柱体。

(3)圆柱的底面周长和高相等时,它的侧面展开图是正方形。

4、实际测量计算。先让学生讨论、思考:要计算圆柱的侧面积必须测量哪些数据?测量什么比较简便?然后让学生测量并计算一个圆柱形罐头盒的侧面积。

5、动手操作,配底制作圆柱。

用多媒体出示题目和图形,先让学生思考怎样制作?是“横卷”还是“竖卷”?每种制作方法各需要配什么样的圆?然后再让学生制作(题目和图形附后)。

四、全课总结

结合板书采用提问的形式进行总结。

五、课堂作业 P78 2

下载圆锥台侧面积公式word格式文档
下载圆锥台侧面积公式.doc
将本文档下载到自己电脑,方便修改和收藏,请勿使用迅雷等下载。
点此处下载文档

文档为doc格式


声明:本文内容由互联网用户自发贡献自行上传,本网站不拥有所有权,未作人工编辑处理,也不承担相关法律责任。如果您发现有涉嫌版权的内容,欢迎发送邮件至:645879355@qq.com 进行举报,并提供相关证据,工作人员会在5个工作日内联系你,一经查实,本站将立刻删除涉嫌侵权内容。

相关范文推荐

    《圆柱的侧面积》教案

    第一课时 圆柱的侧面积 教学内容 圆柱的面积 教学目标 1、知识与技能:使学生能认识圆柱,了解圆柱的特征,知道圆柱的各部分名称。理解侧面积的含义,掌握侧面积的计算方法,能正确......

    圆锥侧面积教学反思

    圆锥侧面积教学反思(一)今天上《圆锥的侧面积》习题课,第一节课下来虽然感觉重点突出够了,但还是担心灌得太多,效果并不好。第二节课临时改变了教学方法:一、花了不到五分钟复习了......

    平行四边形面积公式的推导

    《平行四边形面积公式的推导》的说课 一、说教材: 今天,我说课的内容是《多边形面积的计算》中的第一课时:平行四边形面积的计算,它是“空间与图形”这一部分中的重点内容。就......

    锐角三角函数公式和面积公式(全文5篇)

    锐角三角函数公式 正弦:sin α=∠α的对边/∠α的斜边 余弦:cos α=∠α的邻边/∠α的斜边 正切:tan α=∠α的对边/∠α的邻边 余切:cot α=∠α的邻边/∠α的对边 面积公式 长......

    海伦公式与四边形面积公式

    海伦公式与四边形面积公式 2007年08月01日 星期三 00:43 我们知道,已知三角形的三条边长度a,b,c(2p=a+b+c),就可以由海伦公式得到三角形的面积: 所以:已知圆内接三角形的三边长,其面......

    梯形面积公式的推导

    姓名:班别: 梯形面积公式的推导 1.小组合作操作讨论 (1)用两个的梯形可以拼成一个形。 (2)梯形的上底与下底的和等于平行四边形的;梯形的高等于平行四 边形的。 (3)每一个梯形的面积等......

    圆柱的侧面积教学反思

    圆柱的侧面积教学反思圆柱的侧面积教学反思 圆柱是人们在生产、生活中经常遇到的几何形体,学习这部分内容,有利于发展学生的空间观念。《圆柱的认识》这节内容包括认识圆柱、......

    圆柱的侧面积教学反思

    《圆柱的侧面积》教学反思及自评 如皋市港城实验小学长新分部 陈棋 《圆柱的侧面积》是学生在认识长方形、圆等平面图形及正方体、长方体的基础上进行教学的。学生初步掌......