圆的面积公式推导教案范文合集

时间:2019-05-12 17:44:33下载本文作者:会员上传
简介:写写帮文库小编为你整理了多篇相关的《圆的面积公式推导教案》,但愿对你工作学习有帮助,当然你在写写帮文库还可以找到更多《圆的面积公式推导教案》。

第一篇:圆的面积公式推导教案

圆的面积公式推导教案

教学目标;

1、通过操作,使学生理解圆的面积公式推导过程,掌握圆的面积 的方法并能正确计算。

2、激发学生参与整个课堂教学活动的学习兴趣,培养学生的分析、观察和概括能力,发展学生的空间观念。

3、渗透转化的数学思想和极限思想

教学重点:

1、理解圆的面积公式的推导过程。

2、掌握圆的面积的计算公式,能够正确地计算圆的面积。

教学难点:理解圆的面积公式的推导过程。

教具准备:多媒体课件,圆片,剪刀。学具准备:分成十六等分的圆硬片,剪教学过程:

一、故事导入

【设计意图】引起学生学习兴趣,同时也让学生明白这个故事与所要学习的内容有联系。【出示课件1、2】

二、出示学习目标 【出示课件3】

【设计意图】让学生清楚学习的重点,难点是什么?也提醒老师要有的放矢。

三、学习新知

(一)、定义:

1、摸一摸哪里是圆的面积?圆所占平面的大小就是圆的面积。【出示课件4】

(二)、小组交流【出示课件5】

圆与以前我们研究的平面图形有什么不同?

不同之处:圆是由一条封闭曲线围成的平面图形,而以前学过的平面图形都是由几条线段围成的封闭图形。

如何化曲为直呢,推导出它的面积公式呢?

(三)复习旧知,渗透极限思想【出示课件6】

1、还记得这些平面图形的面积计算公式吗?

2、平行四边形的面积公式推导过程还记得吗?(我们是通过剪拼的方法把它转化成长方形的。)【出示课件7、8】

小结:把圆转化成哪一个我们学过的平面图形,从而得到它的面积公式。

(四)小组合作学习【出示课件9、10、11、12、13、14】

(1)老师引导学生将圆化曲为直,先将圆沿直径剪开,然后沿半径再把圆平均分成偶等份。然后把剪成多份并用拼的方法将其转化成学过的规则图形。(2)请学生观察四组图。随着份数的不断增加,有何发现?【出示课件15】

(3)转化后的图形面积与圆的面积有什么关系?【出示课件16】(4)长方形各部分相当于圆的什么?【出示课件17】(5)试着推导出圆的面积公式。【出示课件18】

(五)风采展示

1、学生汇报推导过程。

2、学生齐读圆面积公式。并说一说圆的面积大小与什么有关系?

【设计意图】 这两个环节是在教师的引导和启发中,每个学生都动口,动 手,动脑,培养学生学习的主动性和积极性。

(六)当堂测试与应用

1、做课件图示,求半径为2分米的圆的面积【出示课件19】

2、做课前出示的圆形花坛的面积。【出示课件20】

3、根据下面所给的条件,求圆的面积。【出示课件21】

(1)、半径2分米(2)、直径10厘米

4、一个雷达屏幕的直径是40厘米,它的面积是多少平方厘米?

5、判断对错:

(1)圆的半径越大,圆所占的面积也越大。

()

(2)圆的半径扩大3倍,它的面积扩大6倍。

()

【设计意图】在当堂测试与应用中设计了基本练习与综合练习。基本练习主要是加强学生对圆面积的认识,并能计算圆的面积。综合练习是培养学生的综合应用能力。让学生根据不同的条件求出圆的面积,这样既能培养学生的解题能力,又发展了学生的思维。(七)总结【出示课件22】

今天我们推导出的圆的面积公式,是利用剪拼方式,把圆转化成长方形的。可见数学知识之间并不是孤立存在的,知识间的联系就是我们学好数学的钥匙。圆面积公式的推导过程就是一个很好的例子。

第二篇:三角形面积公式的推导教案

三角形面积公式的推导

三角形面积的计算

教学目标:1.理解三角形面积公式的推导过程,正确运用三角形面积公式进行计算.

2.培养学生观察能力、动手操作能力和类推迁移的能力.

3.培养学生勤于思考,积极探索的学习精神. 教学重点:理解三角形面积计算公式,正确计算三角形的面积. 教学难点:理解三角形面积公式的推导过程.

教学准备:准备三种类型三角形(2个完全一样的)和一个平行四边形。教学过程:

一、复习引入:

1.出示平行四边形,面积公式怎样?

2.面积公式是怎样推导出来的?

3.出示三角形。三角形按角可以分为哪几种? 4.既然平行四边形都可以利用公式计算的方法,求它们的面积,三角形面积可以怎样计算呢?(揭示课题:三角形面积的计算)

今天我们一起研究“三角形的面积”(板书)

二、指导探索:

(一)推导三角形面积计算公式.

1.拿出手里的平行四边形,想办法剪成两个三角形,并比较它们的大小. 2.启发提问:你能否依照平行四边形面积的方法把三角形转化成已学过的图形,再计算面积呢?

3.用两个完全一样的直角三角形拼.

(1)教师参与学生拼摆,个别加以指导

(2)演示课件:拼摆图形

(3)讨论

①两个完全一样的直角三角形拼成一个大三角形能帮助我们推导出三角形面积公式吗?为什么?

②观察拼成的长方形和平行四边形,每个直角三角形的面积与拼成的平行 四边形的面积有什么关系?

4.用两个完全一样的锐角三角形拼.

(1)组织学生利用手里的学具试拼.(指名演示)

(2)演示课件:拼摆图形(突出旋转、平移)

教师提问:每个三角形的面积与拼成的平行四边形的面积有什么关系?

5.用两个完全一样的钝角三角形来拼.

(1)由学生独立完成.

(2)演示课件:拼摆图形

6.讨论:

(1)两个完全相同的三角形都可以转化成什么图形?

(2)每个三角形的面积与拼成的平行四边形的面积有什么关系?

(3)三角形面积的计算公式是什么?

7、引导学生明确:

①两个完全一样的三角形都可以拼成一个平行四边形。

②每个三角形的面积等于拼成的平行四边形面积的一半。(同时板书)

③这个平行四边形的底等于三角形的底。(同时板书)

④这个平行四边形的高等于三角形的高。(同时板书)

(3)三角形面积的计算公式是怎样推导出来的?为什么要加上“除以2”?(强化理解推导过程)

板书:三角形面积=底×高÷2

(4)如果用S表示三角形面积,用a和h表示三角形的底和高,那么三角形面积的计算公式可以写成什么?

(二)教学例1

红领巾的底是100cm,高33cm,它的面积是多少平方厘米?

1.由学生独立解答.

2.订正答案(教师板书)

三、质疑调节

1、总结这一节课的收获,并提出自己的问题.

2、教师提问:

(1)要求三角形面积需要知道哪两个已知条件?

(2)求三角形面积为什么要除以2?

四、布置作业。

第三篇:圆面积教案

一、教学内容

国标苏教版五年级数学下册P103-105例

7、例8和例9,“练一练”、练习十九的第1题。

二、教材分析

圆的面积是在学生已经掌握了圆的基本特征和圆的周长计算公式的基础上安排的,圆是曲线图形,推导它的面积公式比直线图形困难得多。本节课教学内容是引导学生探索并掌握圆的面积公式,初步学习应用圆周的面积公式解决有关的实际问题。

教材中安排了三道例题,例7用数方格的方法求圆面积。在求图形的面积时,经常使用数方格的方法,虽然有时不能得到精确的结果,仍然是一种有效的方法。尤其对这里的图形,数方格不仅能知道面积大约是多少,而且对探索面积公式有启发作用,这些都是例题的编排意图。分别以边长4厘米、3厘米、5厘米的正方形的边为半径画一个圆,数方格求圆的面积,这样设计有两个好处:一是圆的1/4在正方形里面,3/4在正方形外面,只要数出1/4个圆的面积,再乘4就得到整个圆的面积。既省时省力,又能避免数错。二是正方形的边长与圆的半径相等,正方形的面积与半径的平方相等。因此,圆面积与正方形面积的倍数关系就是圆面积与它的半径平方的倍数关系。后者正是圆面积公式的内涵所在。为了引起学生对圆面积与半径平方的关系的注意,教材设计的表格里,把半径这一栏放在正方形面积和圆面积的中间。通过填写半径的长度,体会它与正方形的边长相等,从而联想边长乘边长相当于半径的平方。在计算圆面积大约是正方形面积的

几倍之后,由“大象”卡通提出“圆面积与它的半径有什么关系”的问题,体会圆面积与它半径的平方可能存在确定的倍数关系,并带着这个悬念教学下一道例题。

例8把圆等积变形成长方形,探索圆面积的计算公式。教材在编写上有三个特点:一是让学生联系已有的空间经验和图形知识,通过形象思维体会圆平均分的份数越多,拼成的图形越接近长方形,隐含了极限思想;二是组织学生比较拼成的长方形和原来的圆有什么联系,在交流中充分理解长方形的面积与圆的面积相等,长方形的长是圆周长的一半,长方形的宽是圆的半径;三是展开了从长方形面积公式推导圆面积公式的思维全过程,突出了用πr替代长方形的长,r替代长方形的宽,以及把πr×r改写成这三个关键点。

例9应用面积公式计算圆的面积,怎样写算式和怎样运算是教学重点。算式314×是依据面积公式列出的,读作三点一四乘五的平方。算式里的平方应该先算,这里没有把它作为一条运算顺序教学,仅指导学生先算3.14×里的是多少。“练一练”里已知圆的直径是8厘米,求圆的面积。可以分步列式,先用8÷2=4(厘米)求得半径,再用3.14×求圆的面积。也可以列成综合算式3.14×,教学时要提醒学生为8÷2添上括号,保证先算圆的半径,不可以列成3.14×8÷。

三、设计意图

1.从学生的认知发展水平和已有的知识经验出发。首先呈现一个圆,让学生说出对圆的特征的认识,以此过渡到对圆面积初步的感知,唤起学生的求知欲望。然后呈现大小不同的圆,让学生进行比较,这样

使学生初步感知到圆面积的大小与圆的半径或直径有关。再通过猜想、演示、观察、小组合作验证(数一数、算一算)、讨论、交流让学生逐步发现圆的面积与正方形的关系并用不同的方式进行表达,为进一步探索圆面积的计算方法打下基础。

2.向学生提供充分从事数学活动的机会。在推导圆面积计算公式时,让学生充分经历操作、观察、想象、推理、反思等数学活动与数学思考过程,使学生明确圆的面积与圆的半径之间的关系,发现圆的面积计算方法。教学中通过运用电脑演示、动手剪拼、多次想象、讨论交流等活动让学生经历获得知识的过程,使学生的学习活动变得更加丰富。

3.给予学生尝试运用知识解决问题的机会。在学生掌握了圆面积的计算公式后,放手让学生尝试完成“练一练”,再通过“生活问题”的解决,培养学生灵活运用所学知识解决实际问题的能力。将新知的学习与生活进行联系并适度拓展,更能激发学生探究学习的兴趣,让学生感受到运用所学知识解决实际问题的价值,有助于增强学生学好数学的意识与能力。

四、教学目标

1.使学生经历操作、观察、验证和讨论归纳等数学活动的过程,探索并掌握圆面积的计算公式,能正确计算圆的面积,并能应用公式解决相关的简单问题。

2.使学生进一步体会“转化”方法的价值,培养运用已有知识解决新问题的能力,发展空间观念和初步推理的能力。

3.让学生进一步体验数学与生活的联系,感受用数学的方式解决实际问题的过程,提高数学学习的兴趣。

五、教学过程

(一)回顾旧知

导入新课 1.课件出示一个圆。师:这是什么图形?(圆)

关于圆的知识你已经了解了多少?(圆心、半径、直径、圆的周长)2.在出示的圆内填充颜色。

师:你能求出圆中涂色部分的面积吗?

师:我们把圆的曲线所围成的平面部分的大小叫做圆的面积。(课件出示圆面积的概念)

师:你知道怎样求圆的面积吗?今天我们就一起来学习圆的面积。(揭示课题:圆的面积)

设计意图:从学生已有的知识出发,引导学生对圆面积进行形象认识,唤起学生的求知欲望,同时培养学生的“问题”意识,为学生开展想象提供了广阔的空间。

(二)合理猜想

初步探索 教学例7 1.引发猜想。

①谈话:你认为圆的面积大小可能和什么有关?学生猜想。②课件展示:分别以3厘米、4厘米、5厘米长线段画出三个圆并涂色,让学生比较它们的面积大小,并说说圆的面积与什么有关。

设计意图:学生已经知道圆的大小由圆的半径决定,所以这里让学生展开有根有据的猜想,既为下面的教学作了铺垫,又可以培养他们合理猜想的意识。2.引导探索

①师:圆的面积和半径之间的关系究竟是怎样的呢?现在老师来想个方法帮助大家发现它们之间的关系。②课件出示图片:

A:出示一个边长为4厘米的正方形。师:这个正方形的面积是多少?。

B:以正方形的边长为半径画出一个圆并涂色。

提问:图中正方形的面积与圆的半径有什么关系?(学生讨论,得出圆的半径等于正方形的边长,小正方形的边长用r来表示。所以小正方形的面积就是s=)

猜一猜:圆的面积大约是正方形的面积的几倍?有什么关系? C:出示正方形内的方格。③引导验证

谈话:那正方形的面积大约是圆的面积的几倍,我们可以通过数方格的方法来验证我们的猜想。师先数出一整格的,1、2„„一直数到10。非常接近一个整格的,按一整格计算。余下的这二小格分别补给其他几格,是二格半,也就是12.5。

小组合作:请同学们运用数方格的方法数一数、算一算,把结果记录到下来。(学生小组内用数方格的方法合作完成)教师巡视。

交流:哪个小组来展示一下你们小组的研究成果?(学生汇报)师:只用一个圆,还不足以验证猜想,我们再找两个圆,并用上面的方法算一算。

让学生观察例题中的下面两幅图,数一数、算一算并填写图下的表格。(学生用同样的方法合作完成,并汇报结论)

讨论交流:从上面的过程中,你能发现圆的面积和小正方形面积之间有什么关系吗?

设计意图:通过直观比较几个圆面积的大小,让学生具体感知圆的面积与半径或直径的长短有关。通过猜想、小组合作验证等活动,激发学生探索兴趣,培养学生自主探究的能力。组织讨论、交流让学生逐步发现圆的面积与正方形的关系并用不同的方式进行表达,为进一步探索圆面积的计算方法打下基础。

(三)操作想象 探究方法 教学例8 1.圆的面积究竟是的多少倍呢?圆的面积应该怎样计算呢?对于这个问题你有些什么思考?

2.你还记得我们在研究平行四边形、三角形和梯形面积公式时的推导过程吗?(请学生介绍一下,课件同时演示)

小结:我们是运用了转化的方法,从而解决新的问题。(板书:转化)师:我们也可以尝试将圆转化成已学过的图形,从而推导出它的面积计算公式。

设计意图:创设问题情境,启发学生回忆平行四边形、三角形和梯形

面积计算公式的推导过程。并利用电脑课件的演示,达到通过对旧知的回忆,激起学生从旧知识探索新知识的兴趣,并明确思想方向,有利于学生想象能力的培养。

3.操作体验:教师演示把圆平均分成8份,(想象一下,可以拼成什么图形)让学生动手剪一剪,拼一拼,再进行展示、演示,说说拼成了怎样的图形。

追问:为什么说它是一个近似的平行四边形?(组成的图形上下的边不够直。)

4.初步想象:如果把圆平均分成16份,也用类似的方法拼一拼,想一想,拼成的图形与前面的图形相比会有怎样的变化? 电脑演示,验证或修正学生的想象。

5.再次想象:如果把圆平均分成32份呢?电脑演示。

6.进一步想象:闭上眼睛想一想,如果将圆平均分成64份、128„„份?也用类似的方法拼一拼。随着份数的增加,拼成的图形会越来越接近一个什么图形?(学生通过观察、比较、想象。得出:如果等分的份数越多,每一份就会越细,拼成的图形就会越接近于长方形。)7.推导公式。

(1)师:我们在剪拼转化的过程中可以知道这个长方形是圆分割的小块转化而成的,拼成的长方形与原来的圆有什么联系呢?请在小组中讨论交流。

(2)汇报讨论结果:这个用圆分割成的小块拼成的长方形,拼成的长方形的面积等于圆的面积,宽就是圆的半径r,长就是圆的周长的

一半,也就是2πr÷2=πr。

(3)师:你能根据长方形与圆的关系,推想出圆的面积计算方法吗? 板书:因为长方形面积=长×宽 所以圆的面积=

《圆的面积》课堂教学实录

整理:海安县白甸镇中心小学 李秀红

课 题:苏教版小学数学五年级下册第十单元《圆的面积》 教学过程:

一、课前谈话,拉开序幕

师:同学们,知道我今年多大了?猜猜看 . 生:38岁。生:34岁。生:三十几岁。

师:你怎么没有认为我今年是六十几岁,或者更大呢? 生:六十几岁的人头发都白了,你头发没有白。

师:盒子里有同样大小的球,8个红球,5个白球,从中任意摸出一个球,可能是什么颜色的球?

生:可能是红球,也有可能是白球。

师:可能摸出一个黑色或黄色的球吗?为什么? 生:不可能,因为盒子里没有黑色或黄色的球。

师:从刚才同学们的猜想可以看出,我们在进行猜想时不能凭空想象,而应靠直觉、经验、推理来进行.科学家牛顿,因为猜想苹果为什么会从树上掉下来而发现“万有引力”定律。牛顿说:“没有大胆的猜想,就没有伟大的发现。”

二、复习旧知,导入新课

师:同学们,前面我们已经认识了圆,并且探索出了圆的周长公式.圆的半径用r表示,圆的周长怎样表示? 生:c=2πr(教师板书)师:圆周长的一半怎样表示? 生:圆周长的一半=πr(教师板书)师课件出示一块圆形的桌布.

师:如果给这块桌布的边缘缝上花边,是求什么? 生:圆的周长。

师课件出示一幅“拴在树下的马在草地上吃草”的情景画面。师:马吃到草的最大范围是什么形状? 生:圆形。

师课件演示马吃到草的形状。

师:“如果绳长2米,这个范围到底有多大?”

师:这个范围到底有多大,就是求半径为2米的圆的面积,你会吗?

生:不会,还没有学。

师:今天这节课我们就一起来探究怎样计算圆的面积.(板书课题:圆的面积)

三、合理想象,初步探索

师:圆的面积可能与什么有关?(课件演示大小不同的圆.)生:圆的半径. 师:为什么呢? 生:半径决定圆的大小.

师:圆的面积和半径究竟有着怎样的关系呢?

(课件出示正方形,以正方形的边长为半径画一个圆.)师:图中正方形的面积和圆的半径有什么关系? 生:正方形的边长是圆的半径。

生:正方形的面积是圆的半径乘以圆的半径。师:也就是说正方形的面积=r×r=r2 师:猜一猜,圆的面积是正方形面积,也就是r2的几倍到几倍之间?(引导学生观察课件演示)

生:圆的面积小于正方形面积的4倍. 生:圆的面积大于正方形面积的2倍. 师:圆的面积大约是正方形面积的几倍? 生:有可能是3倍多一些.

师:刚才我们通过观察,初步猜想圆的面积大于2r2,小于4r2,可能是r2的3倍多一些.

师:下面我们用数方格的方法验证我们的猜想.(课件出示方格图)

师:数方格时注意不满整格的数法,非常接近满格的可以看作满格,其余不是满格的可以互相之间大约凑成满格. 师:我们一起来数数算算. 师:正方形的面积是? 生:16平方厘米. 师: 个圆的面积大约是? 生:12.5平方厘米. 师:圆的面积大约是? 生:50平方厘米.师:圆的面积大约是正方形面积的几倍?得数精确到十分位.生:3.1倍.

师:只用一个圆,还不足验证猜想,我们再找两个圆,并用上面的方法算一算。

师:请同学们观察下面两幅图,同桌的两位同学一起计算并填写老师发给你们的表格。(生数格子,填表并计算)交流归纳

师:从上面的过程中,你能发现圆的面积和它的半径之间有什么关系吗?

生:圆的面积是它的半径平方的3倍多一些。

生:圆的面积可能是半径平方的π倍。

四、验证猜想,深入探索

1、回顾旧知

师:同学们,还记得我们以前研究一个图形的面积时,用的是什么方法?你能举例说明吗?

生:在研究平行四边形面积的时候,是沿着一条高把它剪开,把左边的图形平移到右边,转化成长方形。

生:在研究三角形面积的时候是用两个一样的三角形,拼成一个平行四边形。

生:在研究梯形面积的时候是用两个一样的梯形拼成一个平行四边形。

(师课件演示三种图形的面积推导过程。)

师:也就是说我们以前在研究一个图形面积的时候都是将新图形转化成已学过的图形。

师:那同学们,我们能否将圆也转化成我们学过的图形呢?

2、教学例8 师:看看老师是怎样把圆转化成我们学过的图形的.

(课件演示把圆分成4等份,8等份,16等份,剪开,拼成一个近似的平行四边形.)

师:请同学们把已等分成16份的并剪开的图形拼一拼.(指导学生把已等分成16份的并剪开的图形拼一拼.)师:请同学们观察,拼成的图形像什么图形?

生:像平行四边形。

师:为什么说像一个平行四边形? 生:因为拼成的图形上下的边不够直。

师:请同学们想像,如果接着分下去,把圆平均分成32份,也用类似的方法拼一拼,想一想,拼成的图形与前面的图形相比,有什么变化?(课件演示.)

生:比刚才更像平行四边形了。

师:如果将圆平均分成64等份,128等份,也用类似的方法拼一拼.闭着眼睛想一想,随着份儿数的增加,拼成的图形会越来越接近一个什么图形? 生:长方形。

师:拼成的图形越来越接近于长方形,如果平均分的份儿数足够多,那么拼成的图形就是一个长方形了.(课件出示推导图.)

师:请同学们观察转化后的长方形与圆,你发现了什么? 生:圆的面积与长方形的面积相等。生:长方形的长是圆周长的一半。生:长方形的宽是圆的半径。

师:圆的半径是r,长方形的长和宽各应怎样表示? 生:长方形的长就是πr,长方形的宽就是r。

师:根据长方形面积的计算方法,怎样来计算圆的面积?

(根据学生的回答,完成形如教科书第105页上的板书,并得出公式:

S=πr2)

师:请同学们看着公式再回忆一下刚才我们从猜想到初步探索,再到深入探索,知道了圆的面积是半径平方的多少倍? 生:π倍。

师:有了这样一个公式,知道圆的什么条件,就可以计算圆的面积了? 生:圆的半径。

3、做练一练

师:请同学们看这两道题。

师:谁来说一说怎样求这两个圆的面积。生:第一个圆的面积是3.14×32 师:在计算圆面积的时候我们先算r的平方,在这道题里就是先算32,请你接着说。

生:3.14×32=3.14×9=28.26(平方厘米)生:第二个圆的面积是先用8÷2=4(米)3.14×42=50.24(平方米)师:这两题有什么不同之处?

生:第一题知道了半径,第二小题知道了直径。师:第二题知道了直径,是怎样求面积的? 生:先求圆的半径,再求圆的面积。

师:看来如果已知圆的半径,我们可以根据圆的面积公式直接求出圆的面积;如果已知圆的直径,我们应先求出圆的半径,再根据圆的面积公式求出圆的面积。

五、实践运用,解决问题

1、出示例9。

师:请同学们先自己读一读这道题。师:有没有在生活中见过自动旋转喷水器?

师:请同学们看自动喷水器旋转喷灌图,想象自动喷水器旋转一周后喷灌的地方是什么图形? 生:圆形。

师:那这个圆形的半径是多少呢? 生:5米。

师:谁来说一说这个自动旋转喷水器旋转一周后喷灌的面积? 生:3.14×52=3.14×25=78.5(平方米)

答:这个自动旋转喷水器旋转一周后喷灌的面积是78.5平方米。

六、练习巩固,加深理解

1、填空

师:请同学们看这道题。

把圆平均分成若干等份,可以拼成一个近似的()形,这个图形的()相当于圆()的一半,它的()就是(),所以圆的面积公式是()。

师:谁来说一说,怎样填?

生:把圆平均分成若干等份,可以拼成一个近似的长方形形,这个图形的长相当于圆周长的一半,它的宽就是圆的半径,所以圆的面积公式是S=πr2。

2、判断

师:请同学们看这几道题,判断对错,并说明理由。(1)直径是2厘米的圆,它的面积是12.56平方厘米。()生:错,直径是2厘米,半径就是1厘米,它的面积是3.14×12=3.14×1=3.14平方厘米。(2)圆的半径越大,面积也越大。()生:对的,半径越大,面积也越大。因为圆的面积公式是S=πr2,半径决定圆的大小。

(3)圆的半径扩大3倍,它的面积扩大6倍。()生:对。生:错。

师:究竟是对还是错呢?我们可以举个例子看看。假设圆的半径是1厘米,它的面积就是3.14×12=3.14×1,半径扩大3倍,它的面积就是3.14×32=3.14×9,现在你知道圆的半径扩大3倍,它的面积扩大几倍了吗? 生:9倍。

(4)两个圆的周长相等,面积也一定相等。()生:对的,圆的周长相等,半径就相等,半径相等了,面积也一定相等。

3、马吃到草的最大范围到底有多大?

师:同学们还记得我们开始上课时看到的马吃到草的最大范围吗?现在你能告诉我这匹马吃到草的最大范围吗?

生:马吃到草的最大范围是3.14×22=3.14×4=12.56(平方米)

七、回顾总结,加深认识

师:同学们,今天这节课,你有什么收获? 生:我知道了怎样求圆的面积。师:怎样计算呢? 生:根据S=πr2来求。

生:我知道了推导圆的面积也是把它转化成学过的图形。师:什么图形? 生:长方形。

生:我知道了已知圆的直径,先求圆的半径,再根据圆的面积公式去求。

师:看来这节课同学们的收获还真不少,大家表现得都非常好。这节课就上到这儿,下课。生:老师再见!师:同学们再见!

教学反思:

圆的面积是苏教版五年级下册第十单元的内容,本单元是在学生掌握了直线图形的周长和面积,并且对圆已有初步认识的基础上进行教学的。从认识圆入手,到圆的周长和面积,与直线图形的学习顺序是一致的。但是,学习圆是从学习直线图形到学习曲线图形,无论是内容本身,还是研究问题的方法都有所变化。如何帮助学生利用“化曲为

直”、“化圆为方” 的方法初步认识研究曲线图形圆的面积,以及帮助学生感受极限思想呢?我认为教学中我们最好的办法应该是让学生亲身经历圆面积的推导过程。下面结合教学过程具体谈谈我是怎样让学生经历圆面积的推导过程的。

一、创设情境,激发欲望。

课始,我提出了“马吃到草的最大范围是什么形状?”以及“这个范围到底有多大?”的问题让学生展开想象,激发学生探究圆面积的欲望。

二、问题指引、合理猜想。

“圆的面积和什么有关?”“圆的面积和半径有怎样的关系?”“圆的面积是半径平方的几倍?”这些问题,层层推进,打开了学生的思路。在这些问题的指引下,学生经历猜想、推理的过程,为进一步探索圆的面积提供准备,激发学生的探索需求。

三、回忆旧知、顺利迁移。

“圆的面积”是学生在已经掌握长方形、平行四边形、三角形、梯形的面积计算的基础上学习的。圆的面积计算公式的推导与平行四边形、三角形、梯形的面积计算公式的推导都是运用了转化的数学方法。因此,在引导学生将圆转化成长方形时,先让学生回忆以前研究一个图形的面积时,用的是什么方法,并举例说明.教师课件演示平行四边形、三角形、梯形的面积计算的推导过程,让学生温习旧知识,明确各种图形的面积公式推导和面积计算方法的相互联系。以生动、形象、直观的视觉效果,有效强化图形转化的数学方法,为下面的新知学习的顺利实现,知识的正迁移做好充分的铺垫,有利于学生对新知的探

究。

四、重视操作,主动参与。

由于圆与以前学习的直线图形性质有很大不同,对“曲线图形”转化为直线图形学生是第一次接触,对学生已有知识和经验都是一种挑战,为了让学生真正理解“转化”的方法,教学中我巧妙地引导、示范、演示,一步步深入挖掘学生的创造性。荷兰数学教育家费赖登塔尔认为:数学学习是一种活动,这种活动与游泳骑自行车一样不经过亲身体验,仅仅看书本听讲解观察他人的演示是学不会的,因此在关键的“化圆为方”环节中,让学生动手操作亲身体验,促使学生的思维由量变到质变,同时课件演示活动中又巧妙地利用学生的想象把分割过程无限细化,渗透极限思想。

五、源于生活,用于生活。

缝花边、马吃到草的最大范围、自动旋转喷水器都是学生常见的生活情境,通过把生活中的问题数学化,学生既体验到活用数学知识,解决问题的快乐,也感受到数学的实际应用价值。马吃草问题,自动旋转喷水器旋转一周后喷灌的面积,引发了学生对视而不见的生活现象的“数学思考”。同时马吃草范围的圆,看不见摸不着,需要学生想象力的参与,在思维层次上加深了一步,有利于学生基本技能的形成。

六、运用媒体,形象直观。

运用课件形象演示由圆到近似长方形的变换过程,有助于提高学生的思维能力,揭示出数学知识的内在规律的科学美,并体现了构图美和动态美。观看这样的动画,既能获取知识,又得到美的享受。

总之,从教学的实践过程来看,学生思维活跃,思考有序。整个学习过程是体验不断丰富、探究不断深入、知识不断建构。本节课取得了良好的教学效果。

第四篇:圆面积教案

如何在教学中强化学生的学习兴趣

郭兴源

著名的教育家苏霍姆林斯基曾说过:“如果教师不想方设法使学生进入情绪高昂和智力振奋的内心状态,就急于传授知识,那么,这种知识只能使人产生冷漠的态度,而不动感情的脑力劳动就会带来疲倦”。课堂教学是师生的双边活动,数学教学过程不但是知识传授的过程,也是师生情感交流的过程。课堂教学中可以从以下三方面发掘情感的积极因素,促使学生对数学知识和数学活动本身的追求。一.建立民主平等的情感氛围

良好的师生关系与和谐愉快的课堂教学气氛是学生敢于参与的先决条件。学生只有在不感到压力的情况下,在喜爱所教老师的前提下,才会乐于学习。教师首先要放下架子,与学生多沟通,跟他们交朋友,在生活上、学习上都关心他们,从而激起对老师的爱,对数学的爱;其次,教学要平等,要面向全体施教,不能偏爱一部分人,而对学习有困难的学生却漠不关心。二.正确评价学生

学生学习的态度、情绪、心境与教师对学生的评价有着密切的联系。在数学教学中,我们经常看到许多学生积极思考问题,争取发言,当他们的某个思路或计算方法被老师肯定后,从学生的眼神和表情就

可以看出,他们得到了极大的满足,在学习中遇到困难时他们会反复钻研、探讨,可见教师正确的评价也是促使学生积极主动学习的重要因素。美国电影《师生情》有这样一个片段:一位白人教师到黑人社区任教小学一年级,在第一节数学课中老师伸出五个手指问其中一名黑人孩子,"这是几个手指?”,小孩憋了半天才答道:“三个。”老师没有指责他说错了,而是高兴地大声赞道:“你真历害,还差两个你就数对了。”教师一句赞赏的话,就缓和了学生的心理压力,收到了意想不到的效果。可见,教师要善于用放大镜发现学生的闪光点,以表扬和鼓励为主,对每个问题、每个学生的评价不可轻易否定,不随便说“错”,否则就会挫伤学生的学习积极性。教学中教师还要承认学生数学学习的个体差异,积极地鼓励和肯定每个学生的每一进步。例如有的学生用课余时间完成了书上带*的习题或思考题,就及时在课堂上表扬鼓励,称赞他们爱学习,能自觉学习。学习较差的学生,往往对学习没有信心,没有动力,教师不要过多的指责他们不努力、不认真学,对他们既要晓之以理,更要注意发现他们的微小进步,予以鼓励,如告诉他们“你并不笨,只要你能不断努力,一定会学得很出色。”只有进行正确、科学的评价,才能使学生从评价中受到鼓舞,得到力量,勇于前进。三.成功是最好的激励

学习成功得到快乐的情绪体验是一种巨大的力量,它能使学生产生学好数学的强烈欲望。要使学生获得成功,教师必须设计好探索数 2

学知识的台阶,包括设计好课堂提问和动手操作的步骤等,使不同智力水平的同学都能拾级而上,“跳一跳摘果子”,都能获得经过自己艰苦探索,掌握数学知识后的愉快情绪体验,从而得到心理上的补偿和满足,激励他们获得更多的成功。当学生在探索学习的过程中遇到困难或出现问题时,要适时、有效的帮助和引导学生,使所有的学生都能在数学学习中获得成功感,树立自信心,增强克服困难的勇气和毅力。特别是后进学生容易自暴自弃、泄气自卑,教师要给予及时的点拨、诱导,如画出线段图帮助他们理解应用题、让他们换句话说理解题意、举个例试试等,半扶半放地让他们自己去走向成功。

第五篇:一元二次方程求根公式推导的教案

一元二次方程的解法(求根公式法)

教学目标

(一)使学生掌握一元二次方程求根公式的推导过程;

(二)要求学生熟练掌握用公式法解一元二次方程;

(三)培养计算能力。渗透“一般与特殊”的观点。

教学重点和难点

重点:一元二次方程的求根公式解法。难点:用配方法推导求根公式。

教学过程设计

(一)引入

1、复习配方法的步骤;

2、问题:一个一元二次方程如果不能用因式分解或者直接开平方法,那么一定就可以用先配方再开平方来求解。但是配方比较麻烦,而且总在重复相同的解题过程。那么能否推导一个一元二次方程的求根公式,从而可以直接代公式求解?

这就是本节课要解决的问题。

新课(在教师的引导下完成以下的推导)推导求根公式

2axbxc0

a0

(1)

解:因为a0,两边同时除以a,得

x2bcx0aa,把常数项移到方程的右边,并在两边加上一次项系数一半的平方,得

bbbcx2xa2a2aa 22即

bb24acx2a4a2, 2因为a0,4a2>0,得

bb24acx,2a2a

2当b4ac0时,所以

bb24acx,2a

2

bb24acbb24acx1,x2,2a2a即

公式(2)叫做一元二次方程的求根公式。

2、运用求根公式求一元二次方程的根。注意两点:

2(1)一元二次方程axbxc0

a0的根的值是由系数a,b,c确定的,所以在代入求根公式前,务必认准所求题目中a,b,c所取值是多少(特别容易在正、负号上出错).2(2)方程axbxc0

a0不一定有实数解,为此,在代公式之前,先

222bb4ac判断一下的值很有必要,4ac0,方程有实数解。若b4ac<0时,方程无实数解,就没有必要代入求根公式了。

解题举例

2例

1、解方程:2x4x30

解:(1)因为: a2,b4,c3

22b4ac(4)42

3所以

= 80

即原方程无实数解

例2

解方程:xx17(x1)2(x2).解:(1)先把方程化为一元二次方程的一般形式 x6x110.因为 a1,b6,c1所以

22b4ac6411180, 代入求根公式

bb24ac64

5即

x,2a2

所以

x1325, x2325.225x23x.2x43x2203、x22x30

1、练习:

1、2、三、小结

1、用公式解一元二次方程时要注意的条件;

22、b4ac的值与一元二次方程的根之间的联系:

22b4ac0axbxc0 a0有两个不相等的实数根;

(1)时一元二次方程2

2(2)b4ac0时一元二次方程axbxc0 a0有两个相等的实数根;

(3)b4ac0 时一元二次方程axbxc0 a0没有实数根;

四、作业

1.用求根公式法解下列方程:

122x3x028

(1)、x2x20;(2)、222x2axba;

(3)、

下载圆的面积公式推导教案范文合集word格式文档
下载圆的面积公式推导教案范文合集.doc
将本文档下载到自己电脑,方便修改和收藏,请勿使用迅雷等下载。
点此处下载文档

文档为doc格式


声明:本文内容由互联网用户自发贡献自行上传,本网站不拥有所有权,未作人工编辑处理,也不承担相关法律责任。如果您发现有涉嫌版权的内容,欢迎发送邮件至:645879355@qq.com 进行举报,并提供相关证据,工作人员会在5个工作日内联系你,一经查实,本站将立刻删除涉嫌侵权内容。

相关范文推荐

    圆锥体积公式的推导

    圆锥体积公式的推导 (定积分) 圆锥体积公式在小学的推导法是实验法,现在在这里介绍高等几何的定积分法。 首先,设圆锥的底面半径为r,高为h。如图1:图1 定义空间直角坐标系,以圆锥......

    平行四边形面积公式的推导

    《平行四边形面积公式的推导》的说课 一、说教材: 今天,我说课的内容是《多边形面积的计算》中的第一课时:平行四边形面积的计算,它是“空间与图形”这一部分中的重点内容。就......

    梯形面积公式的推导

    姓名:班别: 梯形面积公式的推导 1.小组合作操作讨论 (1)用两个的梯形可以拼成一个形。 (2)梯形的上底与下底的和等于平行四边形的;梯形的高等于平行四 边形的。 (3)每一个梯形的面积等......

    案例圆锥体积公式的推导

    在探索圆锥体积的计算公式时,教师直接告诉学生要比较等底等高的圆柱与圆锥,这是学生的内心需求和迫切需要吗,如果不是,学生难免会问:为什么要用圆柱与圆锥进行实验对比? 对策:课始,......

    圆柱体积公式的推导(5篇)

    圆柱体积公式的推导(教学设计) 三亚市第三小学 王明程 教学目标 1、 引导学生通过观察、猜想、验证等数学活动理解圆柱体积计算公式的形成过程并能运用其解决简单的问题。 2、......

    梯形面积推导公式教学反思

    梯形面积推导公式教学反思 英坪中心小学 向长兴 梯形面积的计算是在学生学会计算平行四边形、三角形面积计算的基础上教学的。本节课尚老师先复习梯形的有关知识,然后引导学......

    预付款起扣点推导公式(优秀范文5篇)

    预付款起扣点推导公式 根据定义:确定工程预付款起扣点的依据是:未完施工工程所需主要材料和构件的费用,等于工程预付款的数额,即 P未完 = M预付款。 P材料=P已完工程材料费+P未......

    梯形面积公式的不同推导方式

    梯形面积公式的不同推导方式 课本中介绍梯形面积公式推导的方法,通常只有一种方法,那就是用两个相同梯形拼成一个平行四边形,然后用这个平行四边形的面积推得其中梯形的面积。......