第一篇:考研数学复习:三重积分的计算方法总结(数一)
凯程考研,为学员服务,为学生引路!
考研数学复习:三重积分的计算方法总
结(数一)
三重积分是考研数一单独要求的考点,其中三重积分的计算在计算曲面、曲线积分中有重要应用,而且三重积分、曲线曲面积分每年必考一个大题一个小题,是考试的重点之一。下面凯程教育数学老师帮大家总结一下三重积分的计算方法。
凯程考研,为学员服务,为学生引路!
考研复习数学练习题二
考研复习已经开始了,在掌握基础定理、公式的基础上,还要通过做题不断检验复习成功和查漏补缺。凯程教育分享考研数学备考练习题。希望大家爱边复习边做题,不断提升。
凯程考研,为学员服务,为学生引路!
考研复习数学练习题四
考研复习已经开始了,在掌握基础定理、公式的基础上,还要通过做题不断检验复习成功和查漏补缺。凯程教育分享考研数学备考练习题。希望大家爱边复习边做题,不断提升。
凯程考研,为学员服务,为学生引路!
凯程教育:
凯程考研成立于2005年,国内首家全日制集训机构考研,一直从事高端全日制辅导,由李海洋教授、张鑫教授、卢营教授、王洋教授、杨武金教授、张释然教授、索玉柱教授、方浩教授等一批高级考研教研队伍组成,为学员全程高质量授课、答疑、测试、督导、报考指导、方法指导、联系导师、复试等全方位的考研服务。凯程考研的宗旨:让学习成为一种习惯;
凯程考研的价值观口号:凯旋归来,前程万里; 信念:让每个学员都有好最好的归宿;
使命:完善全新的教育模式,做中国最专业的考研辅导机构; 激情:永不言弃,乐观向上;
敬业:以专业的态度做非凡的事业;
服务:以学员的前途为已任,为学员提供高效、专业的服务,团队合作,为学员服务,为学员引路。
如何选择考研辅导班:
在考研准备的过程中,会遇到不少困难,尤其对于跨专业考生的专业课来说,通过报辅导班来弥补自己复习的不足,可以大大提高复习效率,节省复习时间,大家可以通过以下几个方面来考察辅导班,或许能帮你找到适合你的辅导班。
凯程考研,为学员服务,为学生引路!
师资力量:师资力量是考察辅导班的首要因素,考生可以针对辅导名师的辅导年限、辅导经验、历年辅导效果、学员评价等因素进行综合评价,询问往届学长然后选择。判断师资力量关键在于综合实力,因为任何一门课程,都不是由
一、两个教师包到底的,是一批教师配合的结果。还要深入了解教师的学术背景、资料著述成就、辅导成就等。凯程考研名师云集,李海洋、张鑫教授、方浩教授、卢营教授、孙浩教授等一大批名师在凯程授课。而有的机构只是很普通的老师授课,对知识点把握和命题方向,欠缺火候。
对该专业有辅导历史:必须对该专业深刻理解,才能深入辅导学员考取该校。在考研辅导班中,从来见过如此辉煌的成绩:凯程教育拿下2015五道口金融学院状元,考取五道口15人,清华经管金融硕士10人,人大金融硕士15个,中财和贸大金融硕士合计20人,北师大教育学7人,会计硕士保录班考取30人,翻译硕士接近20人,中传状元王园璐、郑家威都是来自凯程,法学方面,凯程在人大、北大、贸大、政法、武汉大学、公安大学等院校斩获多个法学和法硕状元,更多专业成绩请查看凯程网站。在凯程官方网站的光荣榜,成功学员经验谈视频特别多,都是凯程战绩的最好证明。对于如此高的成绩,凯程集训营班主任邢老师说,凯程如此优异的成绩,是与我们凯程严格的管理,全方位的辅导是分不开的,很多学生本科都不是名校,某些学生来自二本三本甚至不知名的院校,还有很多是工作了多年才回来考的,大多数是跨专业考研,他们的难度大,竞争激烈,没有严格的训练和同学们的刻苦学习,是很难达到优异的成绩。最好的办法是直接和凯程老师详细沟通一下就清楚了。
建校历史:机构成立的历史也是一个参考因素,历史越久,积累的人脉资源更多。例如,凯程教育已经成立10年(2005年),一直以来专注于考研,成功率一直遥遥领先,同学们有兴趣可以联系一下他们在线老师或者电话。
有没有实体学校校区:有些机构比较小,就是一个在写字楼里上课,自习,这种环境是不太好的,一个优秀的机构必须是在教学环境,大学校园这样环境。凯程有自己的学习校区,有吃住学一体化教学环境,独立卫浴、空调、暖气齐全,这也是一个考研机构实力的体现。此外,最好还要看一下他们的营业执照。
第二篇:高等数学三重积分计算方法总结
高等数学三重积分计算方法总结
1、利用直角坐标计算三重积分:(1)投影法(先一后二):
1)外层(二重积分):区域Ω在xoy面上的投影区域Dxy 2)内层(定积分):
从区域Ω的底面上的z值,到区域Ω的顶面上的z值。
(2)截面法(先二后一):
1)外层(定积分): 区域Ω在z 轴上的投影区间。2)内层(二重积分):Ω垂直于z 轴的截面区域。
2、利用柱坐标计算三重积分 f(x,y,z)dvf(cos,sin,z)dddz3、利用球面坐标计算三重积分
f(x,y,z)dxdydzf(rsincos,rsinsin,rcos)rsindrdd2定限方法:(1)转面定θ(2)转线定φ(3)线段定r
4、利用对称性化简三重积分计算 设积分区域Ω关于xoy平面对称,(1)若被积函数 f(x,y,z)是关于z 的奇函数,则三重积分为零。(2)若被积函数 f(x,y,z)是关于z 的偶函数,则三重积分等于:在xoy平面上方的半个Ω,区域上的三重积分的两倍.使用对称性时应注意:
1)积分区域关于坐标面的对称性; 2)被积函数关于变量的奇偶性。
2例 计算
x(x
y
z)
dxdydz,其中Ω是由曲面z = x2 + y2和x2 + y2 + z2 =2所围成的空间闭区域.解: x(xyz)2 x(x2y2z2)2x2y2xyz2zx2 x(x2y2z2)2xyz
是关于x 的奇函数,且关于 yoz 面对称 故其积分为零。
2x2 y是关于y 的奇函数,且关于 zox 面对称
2x2ydv0,Ix(xyz)2dxdydz
202x2zdxdydz,222coszdddz0 d d 2coszdz222322dcos(2)d013224 245
第三篇:三重积分的计算方法小结与例题
三重积分的计算方法介绍:
三重积分的计算是化为三次积分进行的。其实质是计算一个定积分(一重积分)和一个二重积分。从顺序看:
如果先做定积分f(x,y,z)dz,再做二重积分F(x,y)d,就是“投
z1z2D影法”,也即“先一后二”。步骤为:找及在xoy面投影域D。多D上一点(x,y)“穿线”确定z的积分限,完成了“先一”这一步(定积分);进而按二重积分的计算步骤计算投影域D上的二重积分,完成“后二”这一步。f(x,y,z)dv[f(x,y,z)dz]d
Dz1z2如果先做二重积分f(x,y,z)d再做定积分F(z)dz,就是“截面
Dzc2c1法”,也即“先二后一”。步骤为:确定位于平面zc1与zc2之间,即z[c1,c2],过z作平行于xoy面的平面截,截面Dz。区域Dz的边界曲面都是z的函数。计算区域Dz上的二重积分f(x,y,z)d,完成Dz了“先二”这一步(二重积分);进而计算定积分F(z)dz,完成“后
c1c2一”这一步。f(x,y,z)dv[f(x,y,z)d]dz
c1Dzc2当被积函数f(z)仅为z的函数(与x,y无关),且Dz的面积(z)容易求出时,“截面法”尤为方便。
为了简化积分的计算,还有如何选择适当的坐标系计算的问题。可以按以下几点考虑:将积分区域投影到xoy面,得投影区域D(平面)(1)D是X型或Y型,可选择直角坐标系计算(当的边界曲面中有较多的平面时,常用直角坐标系计算)
(2)D是圆域(或其部分),且被积函数形如f(x2y2),f()时,可选择柱面坐标系计算(当为圆柱体或圆锥体时,常用柱面坐标计算)
(3)是球体或球顶锥体,且被积函数形如f(x2y2z2)时,可选择球面坐标系计算
以上是一般常见的三重积分的计算方法。对向其它坐标面投影或不易作出的情形不赘述。
yx三重积分的计算方法小结:
1.对三重积分,采用“投影法”还是“截面法”,要视积分域及被积函数f(x,y,z)的情况选取。
一般地,投影法(先一后二):较直观易掌握;
截面法(先二后一): Dz是在z处的截面,其边界曲线方
程易写错,故较难一些。
特殊地,对Dz积分时,f(x,y,z)与x,y无关,可直接计算SDz。因而中只要z[a,b], 且f(x,y,z)仅含z时,选取“截面法”更佳。
2.对坐标系的选取,当为柱体,锥体,或由柱面,锥面,旋转抛物面与其它曲面所围成的形体;被积函数为仅含z或zf(x2y2)时,可考虑用柱面坐标计算。
三重积分的计算方法例题:
补例1:计算三重积分Izdxdydz,其中为平面xyz1与三个坐标面
x0,y0,z0围成的闭区域。
解1“投影法” 1.画出及在xoy面投影域D.2.“穿线”0z1xy
X型
D:
0x10y1x
0x1∴:0y1x
0z1xy
3.计算
11x1xy11xIzdxdydzdxdy0010zdzdx00111x(1xy)2dy[(1x)2y(1x)y2y3]10dx2203111311 (1x)3dx[xx2x3x4]1
06062424
解2“截面法”1.画出。2.z[0,1] 过点z作垂直于z轴的平面截得Dz。
Dz是两直角边为x,y的直角三角形,x1z,y1z 3.计算
111Izdxdydz[zdxdy]dzz[dxdy]dzzSDzdz
0Dz0Dz0
1111z(xy)dzz(1z)(1z)dz(z2z2z3)dz22202400
补例2:计算x2y2dv,其中是x2y2z2和z=1围成的闭区域。解1“投影法”
zx22y21.画出及在xoy面投影域D.由z1消去z,111得x2y21即D:x2y21
2.“穿线”x2y2z1,1x1
X型
D:
221xy1x1x1∴ :1x2y1x2
22xyz13.计算11x111x2x2y2dvdx1dy21xxy22x2y2dzdx11x2x2y2(1x2y2)dy6
注:可用柱坐标计算。
解2“截面法”
1.画出。
2.z[0,1] 过点z作垂直于z轴的平面截得Dz:x2y2z2
02 Dz: 0rz02
用柱坐标计算
:0rz0z1
3.计算1xydv[0Dz2212zxydxdy]dz[drdr]dz2[r3]0dzz3dz3306000022212z11
补例3:化三重积分If(x,y,z)dxdydz为三次积分,其中:
zx22y2及z2x2所围成的闭区域。
解:1.画出及在xoy面上的投影域D.22zx2y2由 消去z,得x2y21 z2x即D: x2y21
2.“穿线” x22y2z2x2
1x1
X型 D: 221xy1x1x1:1x2y1x2
x22y2z2x211x22x23.计算 If(x,y,z)dxdydzdx11x2dyx22y2f(x,y,z)dz
注:当f(x,y,z)为已知的解析式时可用柱坐标计算。
补例4:计算zdv,其中为z6x2y2及zx2y2所围成的闭区域。
解1“投影法”
1.画出及在xoy面投影域D,用柱坐标计算
xrcos
由yrsin
化的边界曲面方程为:z=6-r2,z=r
zzz6r202得r2 ∴D:r2 即2.解
0r2zr“穿线”
02rz6r2
∴:0r2rz6r2226r22
6r23.计算
2zdv[Drzdz]rdrddrdr00r1r2zdz2r[z2]6dr r202222
r[(6r)r]dr(36r13r2r5)dr0092。3解2“截面法”
1.画出。如图:由z6r2及zr围成。
2.z[0,6][0,2][2,6] 12 1由z=r与z=2围成; z[0,2],Dz:rz
02
1:0rz
0z22由z=2与z=6r2围成; z[2,6],Dz:r6z
022:0r6z
2z6263.计算 =zdvzdvz[rdrd]dzz[rdrd]dz zdv120Dz12Dz2
262262236zSDz1dzzSDz2dzz[(z)]dzz[(6z)]dzzdz(6zz2)dz020202923注:被积函数z是柱坐标中的第三个变量,不能用第二个坐标r代换。
补例5:计算(x2y2)dv,其中由不等式0ax2y2z2A,z0所确定。
xcossin解:用球坐标计算。由ysinsin得的边界曲面的球坐标方程:aA
zcosP,连结OP=,其与z轴正向的夹角为,OP=。P在xoy面的投影为P,连结OP,其与x轴正向的 夹角为。
∴:aA,0,02
2222A222215A3(xy)dvdd(sin)sind2sin[]ad =500a0225252455(Aa)sin3d(Aa5)1(Aa5)
=553150三重积分的计算方法练习
(x2y2)dv,1.计算其中是旋转面x2y22z与平面z=2,z=8所围成的闭区域。
2.计算(xz)dv,其中是锥面zx2y2与球面z1x2y2所围成的闭区域。
为了检测三重积分计算的掌握情况,请同学们按照例题的格式,独立完成以上的练习,答案后续。
第四篇:考研数学:高数重要公式总结(基本积分表)
凯程考研
历史悠久,专注考研,科学应试,严格管理,成就学员!
考研数学:高数重要公式总结(基本积
分表)
考研数学中公式的理解、记忆是最基础的,其次才能针对具体题型进行基础知识运用、正确解答。凯程小编总结了高数中的重要公式,希望能帮助考研生更好的复习。
其实,考研数学大多题目考查的还是基础知识的运用,难题异题并不多,只要大家都细心、耐心,都能取得不错的成绩。考研生加油哦!凯程考研,考研机构,10年高质量辅导,值得信赖!以学员的前途为已任,为学员提供高效、专业的服务,团队合作,为学员服务,为学员引路。
凯程考研
历史悠久,专注考研,科学应试,严格管理,成就学员!
凯程考研:
凯程考研成立于2005年,具有悠久的考研辅导历史,国内首家全日制集训机构考研,一直从事高端全日制辅导,由李海洋教授、张鑫教授、卢营教授、王洋教授、杨武金教授、张释然教授、索玉柱教授、方浩教授等一批高级考研教研队伍组成,为学员全程高质量授课、答疑、测试、督导、报考指导、方法指导、联系导师、复试等全方位的考研服务。凯程考研的宗旨:让学习成为一种习惯; 凯程考研的价值观:凯旋归来,前程万里; 信念:让每个学员都有好最好的归宿;
使命:完善全新的教育模式,做中国最专业的考研辅导机构; 激情:永不言弃,乐观向上;
敬业:以专业的态度做非凡的事业;
服务:以学员的前途为已任,为学员提供高效、专业的服务,团队合作,为学员服务,为学员引路。
特别说明:凯程学员经验谈视频在凯程官方网站有公布,同学们和家长可以查看。扎扎实实的辅导,真真实实的案例,凯程考研的价值观:凯旋归来,前程万里。
如何选择考研辅导班:
在考研准备的过程中,会遇到不少困难,尤其对于跨专业考生的专业课来说,通过报辅导班来弥补自己复习的不足,可以大大提高复习效率,节省复习时间,大家可以通过以下几个方面来考察辅导班,或许能帮你找到适合你的辅导班。
师资力量:师资力量是考察辅导班的首要因素,考生可以针对辅导名师的辅导年限、辅导经
凯程考研,考研机构,10年高质量辅导,值得信赖!以学员的前途为已任,为学员提供高效、专业的服务,团队合作,为学员服务,为学员引路。
凯程考研
历史悠久,专注考研,科学应试,严格管理,成就学员!
验、历年辅导效果、学员评价等因素进行综合评价,询问往届学长然后选择。判断师资力量关键在于综合实力,因为任何一门课程,都不是由
一、两个教师包到底的,是一批教师配合的结果。还要深入了解教师的学术背景、资料著述成就、辅导成就等。凯程考研名师云集,李海洋、张鑫教授、方浩教授、卢营教授、孙浩教授等一大批名师在凯程授课。而有的机构只是很普通的老师授课,对知识点把握和命题方向,欠缺火候。
对该专业有辅导历史:必须对该专业深刻理解,才能深入辅导学员考取该校。在考研辅导班中,从来见过如此辉煌的成绩:凯程教育拿下2015五道口金融学院状元,考取五道口15人,清华经管金融硕士10人,人大金融硕士15个,中财和贸大金融硕士合计20人,北师大教育学7人,会计硕士保录班考取30人,翻译硕士接近20人,中传状元王园璐、郑家威都是来自凯程,法学方面,凯程在人大、北大、贸大、政法、武汉大学、公安大学等院校斩获多个法学和法硕状元,更多专业成绩请查看凯程网站。在凯程官方网站的光荣榜,成功学员经验谈视频特别多,都是凯程战绩的最好证明。对于如此高的成绩,凯程集训营班主任邢老师说,凯程如此优异的成绩,是与我们凯程严格的管理,全方位的辅导是分不开的,很多学生本科都不是名校,某些学生来自二本三本甚至不知名的院校,还有很多是工作了多年才回来考的,大多数是跨专业考研,他们的难度大,竞争激烈,没有严格的训练和同学们的刻苦学习,是很难达到优异的成绩。最好的办法是直接和凯程老师详细沟通一下就清楚了。
凯程考研历年战绩辉煌,成就显著!
在考研辅导班中,从来见过如此辉煌的成绩:凯程教育拿下国内最高学府清华大学五道口金融学院金融硕士29人,占五道口金融学院录取总人数的约50%,五道口金融学院历年状元均出自凯程.例如,2014年状元武玄宇,2013年状元李少华,2012年状元马佳伟,2011年状元陈玉倩;考入北大经院、人大、中财、外经贸、复旦、上财、上交、社科院、中科院金融硕士的同学更是喜报连连,总计达到150人以上,此外,还有考入北大清华人大法硕的张博等10人,北大法学考研王少棠,北大法学经济法状元王yuheng等5人成功考入北大法学院,另外有数10人考入人大贸大政法公安大学等名校法学院。北师大教育学和全日制教育硕士辅导班学员考入15人,创造了历年最高成绩。会计硕士保录班考取30多人,中传郑家威勇夺中传新闻传播硕士状元,王园璐勇夺中传全日制艺术硕士状元,(他们的经验谈视频在凯程官方网站有公布,随时可以查看播放。)对于如此优异的成绩,凯程辅导班班主任邢老师说,凯程如此优异的成绩,是与我们凯程严格的管理,全方位的辅导是分不开的,很多学生本科都不是名校,某些学生来自二本三本甚至不知名的院校,还有很多是工作了多年才回来考的,大多数是跨专业考研,他们的难度大,竞争激烈,没有严格的训练和同学们的刻苦学习,是很难达到优异的成绩。
考研路上,拼搏和坚持,是我们成功的必备要素。
凯程考研,考研机构,10年高质量辅导,值得信赖!以学员的前途为已任,为学员提供高效、专业的服务,团队合作,为学员服务,为学员引路。
凯程考研
历史悠久,专注考研,科学应试,严格管理,成就学员!
王少棠
本科学校:南开大学法学
录取学校:北大法学国际经济法方向第一名 总分:380+ 在来到凯程辅导之前,王少棠已经决定了要拼搏北大法学院,他有自己的理想,对法学的痴迷的追求,决定到最高学府北大进行深造,他的北大的梦想一直激励着他前进,在凯程辅导班的每一刻,他都认真听课、与老师沟通,每一个重点知识点都不放过,对于少棠来说,无疑是无比高兴的是,圆梦北大法学院。在复试之后,王少棠与凯程老师进行了深入沟通,讲解了自己的考研经验,与广大考北大法学,人大法学、贸大法学等同学们进行了交流,录制为经验谈,在凯程官方网站能够看到。
王少棠参加的是凯程考研辅导班,回忆自己的辅导班的经历,他说:“这是我一辈子也许学习最投入、最踏实的地方,我有明确的复习目标,有老师制定的学习计划、有生活老师、班主任、授课老师的管理,每天6点半就起床了,然后是吃早餐,进教室里早读,8点开始单词与长难句测试,9点开始上课,中午半小时吃饭,然后又回到教室里学习了,夏天比较困了就在桌子上睡一会,下午接着上课,晚上自习、测试、答疑之类,晚上11点30熄灯睡觉。”
这样的生活,贯穿了我在辅导班的整个过程,王少棠对他的北大梦想是如此的坚持,无疑,让他忘记了在考研路上的辛苦,只有坚持的信念,只有对梦想的勇敢追求。
龚辉堂
本科西北工业大学物理
考入:五道口金融学院金融硕士(原中国人民银行研究生部)作为跨地区跨校跨专业的三凯程生,在凯程辅导班里经常遇到的,五道口金融学院本身公平的的传统,让他对五道口充满了向往,所以他来到了凯程辅导班,在这里严格的训练,近乎严苛的要求,使他一个跨专业的学生,成功考入金融界的黄埔军校,成为五道口金融学院一名优秀的学生,实现了人生的重大转折。
在凯程考研辅导班,虽然学习很辛苦,但是每天他都能感觉到自己在进步,改变了自己以往在大学期间散漫的学习状态,进入了高强度学习状态。在这里很多课程让他收获巨大,例如公司理财老师,推理演算,非常纯熟到位,也是每个学生学习的榜样,公司理财老师带过很多学生,考的非常好。在学习过程中,拿下了这块知识,去食堂午餐时候加一块鸡翅,经常用小小的奖励激励自己,寻找学习的乐趣。在辅导班里,学习成绩显著上升。
在暑期,辅导班的课程排得非常满,公共课、专业课、晚自习、答疑、测试,一天至少12个小时及以上。但是他们仍然特别认真,在这个没有任何干扰的考研氛围里,充实地学习。
在经过暑期严格的训练之后,龚对自己考入五道口更有信心了。在与老师沟通之后,最终确定了五道口金融学院作为自己最后的抉择,决定之后,让他更加发奋努力。
五道口成绩公布,龚辉堂成功了。这个封闭的考研集训,优秀的学习氛围,让他感觉有
凯程考研,考研机构,10年高质量辅导,值得信赖!以学员的前途为已任,为学员提供高效、专业的服务,团队合作,为学员服务,为学员引路。
凯程考研
历史悠久,专注考研,科学应试,严格管理,成就学员!
质的飞跃,成功的喜悦四处飞扬。
另外,在去年,石继华,本科安徽大学,成功考入五道口金融学院,也就是说,我们只要努力,方向正确,就能取得优异的成绩。师弟师妹们加油,五道口、人大、中财、贸大这些名校等着你来。
黄同学(女生)本科院校:中国青年政治学院 报考院校:中国人民大学金融硕士 总分:跨专业380+ 初试成绩非常理想,离不开老师的辛勤辅导,离不开班主任的鼓励,离不开她的努力,离不开所有关心她的人,圆梦人大金融硕士,实现了跨专业跨校的金融梦。
黄同学是一个非常腼腆的女孩子,英语基础算是中等,专业课是0基础开始复习,刚刚开始有点吃力,但是随着课程的展开,完全能够跟上了节奏。
初试成绩公布下来,虽然考的不错,班主任老师没有放松对复试的辅导,确保万无一失,拿到录取通知书才是最终的尘埃落地,开始了紧张的复试指导,反复的模拟训练,常见问题、礼仪训练,专业知识训练,每一个细节都训练好之后,班主任终于放心地让她去复试,果然,她以高分顺利通过复试,拿到了录取通知书。这是所有凯程辅导班班主任、授课老师、生活老师的成功。
张博,从山东理工大学考入北京大学法律硕士,我复习的比较晚,很庆幸选择了凯程,法硕老师讲的很到位,我复习起来减轻了不少负担。愿大家在考研中马到成功,也祝愿凯程越办越好。
张亚婷,海南师范大学小学数学专业,考入了北京师范大学教育学部课程与教学论方向,成功实现了自己的北师大梦想。特别感谢凯程的徐影老师全方面的指导。
孙川川,西南大学考入中国传媒大学艺术硕士,播音主持专业。在考研辅导班,进步飞快,不受其他打扰,能够全心全意投入到学习中。凯程老师也很负责,真的很感谢他们。
在凯程考研辅导班,他们在一起创造了一个又一个奇迹。从河南理工大学考入人大会计硕士的李梦说:考取人大,是我的梦想,我一直努力,肯定能够成功的,只要我们不放弃,不抛弃,并且一直在努力前进创造成功的条件,每个人都能够成功。正确的方法+不懈的努力+良好的环境+严格的管理=成功。我相信,每个人都能够成功。
凯程考研,考研机构,10年高质量辅导,值得信赖!以学员的前途为已任,为学员提供高效、专业的服务,团队合作,为学员服务,为学员引路。
第五篇:2012年考研数学大纲(数一)
2012考研数学一大纲
所谓“了解”和“理解”是指对于“基本概念”的理解程度,“会求”和“掌握”则是指对于“基本解题方法”的把握程度。当然“了解”低于“理解”,“会求”低于“掌握”。因此“了解”和“会求”一般限于出选择和填空题,“理解”和“掌握”则有可能出计算题和证明题。
数学一
考试科目:高等数学、线性代数、概率论与数理统计
试卷结构:
(一)题分及考试时间:
试卷满分为150分,考试时间为180分钟。
(二)内容比例: 高等教学--约60% 线性代数--约20% 概率论与数理统计--20%
(三)题型比例:
填空题与选择题--约40%
解答题(包括证明题)--约60% 高等数学
一、函数、极限、连续
考试内容: 函数的概念及表示法 函数的有界性、单调性、周期性和奇偶性 复合函数、反函数、分段函数和隐函数 基本初等函数的性质及其图形 初等函数 函数关系的建立.--------(调整知识点:将“简单应用问题函数关系的建立”调整为“函数关系的建立”)----数列极限与函数极限的定义及其性质 函数的左极限与右极限 无穷小和无穷大的概念及其关系 无穷小的性质及无穷小的比较 极限的四则运算 极限存在的两个准则:单调有界准则和夹逼准则 两个重要极限 :
1sinxlimlim11exx0xx,函数连续的概念 函数间断点的类型 初等函数的连续性 闭区间上连续函数的性质
考试要求
1.理解函数的概念,掌握函数的表示法,并会建立简单应用问题中的函数关系式。
2.了解函数的有界性、单调性、周期性和奇偶性.
3.理解复合函数及分段函数的概念,了解反函数及隐函数的概念.
4.掌握基本初等函数的性质及其图形,了解初等函数的概念.5.理解极限的概念,理解函数左极限与右极限的概念,以及函数极限存在与左、右极限之间的关系.
6.掌握极限的性质及四则运算法则
7.掌握极限存在的两个准则,并会利用它们求极限,掌握利用两个重要极限求极限的方法.
8.理解无穷小、无穷大的概念,掌握无穷小的比较方法,会用等价无穷小求极限.
9.理解函数连续性的概念(含左连续与右连续),会判别函数间断点的类型.
10.了解连续函数的性质和初等函数的连续性,理解闭区间上连续函数的性质(有界性、最大值和最小值定理、介值定理),并会应用这些性质.
x 二、一元函数微分学
考试内容:
导数和微分的概念 导数的几何意义和物理意义 函数的可导性与连续性之间的关系平面曲线的切线和法线 导数和微分的四则运算 基本初等函数的导数----(调整知识点:将“基本初等函数的导数 导数和微分的四则运算”调整为“导数和 微分的四则运算 基本初等函数的导数”)------复合函数、反函数、隐函数以及参数方程所确定的函数的微分法 高阶导数 一阶微分形式的不变性 微分中值定理 洛必达(L'Hospital)法则 函数单调性的判别 函数的极值 函数图形的凹凸性、拐点及渐近线 函数图形的描绘 函数最大值和最小值 弧微分 曲率的概念 曲率半径 考试要求
1.理解导数和微分的概念,理解导数与微分的关系,理解导数的几何意义,会求平面曲线的切线方程和法线方程,了解导数的物理意义,会用导数描述一些物理量,理解函数的可导性与连续性之间的关系.
2.掌握导数的四则运算法则和复合函数的求导法则,掌握基本初等函数的导数公式.了解微分的四则运算法则和一阶微分形式的不变性,会求函数的微分.
3.了解高阶导数的概念,会求简单函数的n阶导数.
4.会求分段函数的导数,会求隐函数和由参数方程所确定的函数以及反函数的导数---(考试要求中将2005年的“4.会求分段函数的一阶、二阶导数”以及“5.会求隐函数和由参数方程所确定的函数以及反函数的导数”调整并合并为“4.会求分段函数的导数,会求隐函数和由参数方程所确定的函数以及反函数的导数”。)----5.理解并会用罗尔定理、拉格朗日中值定理和泰勒定理,了解并会用柯西中值定理.
6.掌握用洛必达法则求未定式极限的方法.----(将原来的第9条提前至第6条,足见“洛必达法则求未定式极限”的重要性。)-----
7. 理解函数的极值概念,掌握用导数判断函数的单调性和求函数极值的方法,掌握函数最大值和最小值的求法及其简单应用.
8.会用导数判断函数图形的凹凸性(注:在区间(a,b)内,设函数f(x)具有二阶导数。当f(x)0时,f(x)的图形是凹的;当f(x)0时,f(x)的图形是凸的),会求函数图形的拐点以及水平、铅直和斜渐近线,会描绘函数的图形.
9.了解曲率和曲率半径的概念,会计算曲率和曲率半径. 三、一元函数积分学
考试内容: 原函数和不定积分的概念 不定积分的基本性质 基本积分公式 定积分的概念和基本性质 定积分中值定理 用定积分表达和计算质心----(新增知识点:增加了“用定积分表达和计算质心)----”积分上限的函数及其导数 牛顿一莱布尼茨(Newton-Leibniz)公式 不定积分和定积分的换元积分法与分部积分法 有理函数、三角函数的有理式和简单无理函数的积分 广义积分概定积分的应用 考试要求
1.理解原函数概念,理解不定积分和定积分的概念.
2.掌握不定积分的基本公式,掌握不定积分和定积分的性质及定积分中值定理,掌握换元积分法与分部积分法.
3.会求有理函数、三角函数有理式及简单无理函数的积分.
4.理解积分上限的函数,会求它的导数,掌握牛顿一莱布尼茨公式.
5.了解广义积分的概念,会计算广义积分.
6.掌握用定积分表达和计算一些几何量与物理量(平面图形的面积、平面曲线的弧长、旋转体的体积及侧面积、平行截面面积为已知的立体体积、功、引力、压力)及函数的平均值等.
四、向量代数和空间解析几何
考试内容:
向量的概念
向量的线性运算 向量的数量积和向量积 向量的混合积 两向量垂直、平行的条件 两向量的夹角 向量的坐标表达式及其运算 单位向量 方向数与方向余弦 曲面方程和空间曲线方程的概念平面方程、直线方程平面与平面、平面与直线、直线与直线的以及平行、垂直的条件 点到平面和点到直线的距离 球面 母线平行于坐标轴的柱面 旋转轴为坐标轴的旋转曲面的方程 常用的二次曲面方程及其图形 空间曲线的参数方程和一般方程 空间曲线在坐标面上的投影曲线方程
考试要求
1.理解空间直角坐标系,理解向量的概念及其表示。
2.掌握向量的运算(线性运算、数量积、向量积、混合积),了解两个向量垂直、平行的条件。
3.理解单位向量、方向数与方向余弦、向量的坐标表达式,掌握用坐标表达式进行向量运算的方法。
4.掌握平面方程和直线方程及其求法。
5.会求平面与平面、平面与直线、直线与直线之间的夹角,并会利用平面、直线的相互絭(平行、垂直、相交等)解决有关问题。
6.会求点到直线以及点到平面的距离。
7.了解曲面方程和空间曲线方程的概念。
8.了解常用二次曲面的方程及其图形,会求以坐标轴为旋转轴的旋转曲面及母线平行于坐标轴的柱面方程。
9.了解空间曲线的参数方程和一般方程.了解空间曲线在坐标平面上的投影,并会求其方程。
五、多元函数微分学
考试内容: 多元函数的概念 二元函数的几何意义 二元函数的极限和连续的概念 有界闭区域上多元连续函数的性质 多元函数偏导数和全微分 全微分存在的必要条件和充分条件 多元复合函数、隐函数的求导法 二阶偏导数 方向导数和梯度 空间曲线的切线和法平面 曲面的切平面和法线 二元函数的二阶泰勒公式 多元函数的极值和条件极值 多元函数的最大值、最小值及其简单应用
考试要求
1.理解多元函数的概念,理解二元函数的几何意义。
2.了解二元函数的极限与连续性的概念,以及有界闭区域上连续函数的性质。
3.理解多元函数偏导数和全微分的概念,会求全微分,了解全微分存在的必要条件和充分条件,了解全微分形式的不变性。
4.理解方向导数与梯度的概念并掌握其计算方法。
5.掌握多元复合函数一阶、二阶偏导数的求法。
6.了解隐函数存在定理,会求多元隐函数的偏导数。
7.了解空间曲线的切线和法平面及曲面的切平面和法线的概念,会求它们的方程。
8.了解二元函数的二阶泰勒公式。
9.理解多元函数极值和条件极值的概念,掌握多元函数极值存在的必要条件,了解二元函数极值存在的充分条件,会求二元函数的极值,会用拉格朗日乘数法求条件极值,会求简单多元函数的最大值和最小值,并会解决一些简单的应用问题。
六、多元函数积分学
考试内容:
二重积分与三重积分的概念、性质、计算和应用---(调整知识点:将“二重积分、三重积分的概念及性质 二重积分、三重积分的计算和应用”调整为“二重积分与三重积分的概念、性质、计算和应用”)----两类曲线积分的概念、性质及计算 两类曲线积分的关系 格林(Green)公式平面曲线积分与路径无关的条件 已知全微分求原函数 两类曲面积分的概念、性质及计算 两类曲面积分的关系 高斯(Gauss)公式 斯托克斯(STOKES)公式 散度、旋度的概念及计算 曲线积分和曲面积分的应用
考试要求
1.理解二重积分、三重积分的概念,了解重积分的性质,了解二重积分的中值定理。
2.掌握二重积分的计算方法(直角坐标、极坐标),会计算三重积分(直角坐标、柱面坐标、球面坐标)。
3.理解两类曲线积分的概念,了解两类曲线积分的性质及两类曲线积分的关系。
4.掌握计算两类曲线积分的方法。
5.掌握格林公式并会运用平面曲线积分与路径元关的条件,会求全微分的原函数。
6.了解两类曲面积分的概念、性质及两类曲面积分的关系,掌握计算两类曲面积分的方法,会用高斯公式、斯托克斯公式计算曲面、曲线积分。
7.了解散度与旋度的概念,并会计算。
8.会用重积分、曲线积分及曲面积分求一些几何量与物理量(平面图形的面积、体积、曲面面积、弧长、质量、重心、转动惯量、引力、功及流量等)。
七、无穷级数
考试内容:
常数项级数的收敛与发散的概念 收敛级数的和的概念 级数的基本性质与收敛的必要条件 几何级数与p级数以及它们的收敛性 正项级数收敛性的判别法 交错级数与莱布尼茨定理 任意项级数的绝对收敛与条件收敛 函数项级数的收敛域与和函数的概念 幂级数及其收敛半径、收敛区间(指开区间)和收敛域 幂级数的和函数 幂级数在其收敛区间内的基本性质 简单幂级数的和函数的求法 初等幂级数展开式函 函数的傅里叶(Fourier)系数与傅里叶级数 狄利克雷(Dlrichlei)定理 函数在[-l,l]上的傅里叶级数 函数在[0,l]上的正弦级数和余弦级数
考试要求
1.理解常数项级数收敛、发散以及收敛级数的和的概念,掌握级数的基本性质及收敛的必要条件。
2.掌握几何级数与p级数的收敛与发散的条件。
3.掌握正项级数收敛性的比较判别法和比值判别法,会用根值判别法。
4.掌握交错级数的莱布尼茨判别法。
5.了解任意项级数绝对收敛与条件收敛的概念,以及绝对收敛与条件收敛的关系。
6.了解函数项级数的收敛域及和函数的概念。
7.理解幂级数的收敛半径的概念、并掌握幂级数的收敛半径、收敛区间及收敛域的求法。
8.了解幂级数在其收敛区间内的一些基本性质(和函数的连续性、逐项微分和逐项积分),会求一些幂级数在收敛区间内的和函数,并会由此求出某些数项级数的和。
9.了解函数展开为泰勒级数的充分必要条件。
xln(1x)(1x)sinxecosx
10.掌握、、、及的麦克劳林(Maclaurin)展开式,会用它们将一些简单函数间接展开成幂级数.11.了解傅里叶级数的概念和狄利克雷收敛定理,会将定义在[-L,L]上的函数展开为傅里叶级数,会将定义在[0,L]上的函数展开为正弦级数与余弦级数,会写出傅里叶级数的和的表达式。
八、常微分方程
考试内容: 常微分方程的基本概念
变量可分离的方程 齐次微分方程 一阶线性微分方程 伯努利(Bernoulli)方程 全微分方程 可用简单的变量代换求解的某些微分方程 可降阶的高阶微分方程 线性微分方程解的性质及解的结构定理 二阶常系数齐次线性微分方程 高于二阶的某些常系数齐次线性微分方程 简单的二阶常系数非齐次线性微分方程 欧拉(Euler)方程 微分方程简单应用 考试要求
1.了解微分方程及其阶、解、通解、初始条件和特解等概念---(将“了解微分方程及其解、阶、通解、初始条件和特解等概念”调整为“了解微分方程及其阶、解、通解、初始条件和特解等概念”.)----
2.掌握变量可分离的方程及一阶线性方程的解法.
3.会解齐次方程、伯努利方程和全微分方程,会用简单的变量代换解某些微分方程
4.会用降阶法解下列方程:y(n)=f(x),y''= f(x,y')和y''=f(y,y').
5.理解线性微分方程解的性质及解的结构定理.
6.掌握二次常系数齐次线性微分方程的解法,并会解某些高于二阶的常系数齐次线性微分方程。
7.会解自由项为多项式、指数函数、正弦函数、余弦函数,以及它们的和与积的二阶常系数非齐次线性微分方程.
8.会解欧拉方程.
9.会用微分方程解决一些简单的应用问题.
线性代数
一、行列式
考试内容
行列式的概念和基本性质 行列式按行(列)展开定理 考试要求
1.了解行列式的概念,掌握行列式的性质.
2.会应用行列式的性质和行列式按行(列)展开定理计算行列式.
二、矩阵
考试内容
矩阵的概念 矩阵的线性运算 矩阵的乘法 方阵的幂 方阵乘积的行列式 矩阵的转臵 逆矩阵的概念和性质 矩阵可逆的充分必要条件 伴随矩阵 矩阵的初等变换 初等矩阵
矩阵的秩 矩阵等价 分块矩阵及其运算 考试要求
1.理解矩阵的概念,了解单位矩阵、数量矩阵、对角矩阵、三角矩阵、对称矩阵和反对称矩阵,以及它们的性质.
2.掌握矩阵的线性运算、乘法、转臵,以及它们的运算规律,了解方阵的幂与方阵乘积的行列式的性质
3.理解逆矩阵的概念,掌握逆矩阵的性质,以及矩阵可逆的充分必要条件,理解伴随矩阵的概念,会用伴随矩阵求逆矩阵.
4.掌握矩阵的初等变换,了解初等矩阵的性质和矩阵等价的概念,理解矩阵的秩的概念,掌握用初等变换求矩阵的秩和逆矩阵的方法.
5.了解分块矩阵及其运算.
三、向量
考试内容
向量的概念 向量的线性组合和线性表示 向量组的线性相关与线性无关 向量组的极大线性无关组 等价向量组 向量组的秩 向量组的秩与矩阵的秩之间的关系 向量空间以及相关概念 n维向量空间的基变换和坐标变换 过渡矩阵 向量的内积 线性无关向量组的正交规范化方法 规范正交基 正交矩阵及其性质
考试要求
1.理解n维向量的概念、向量的线性组合与线性表示的概念.
2.理解向量组线性相关、线性无关的概念,掌握向量组线性相关、线性无关的有关性质及判别法.
3.理解向量组的极大线性无关组和向量组的秩的概念,会求向量组的极大线性无关组及秩.
4.理解向量组等价的概念,理解矩阵的秩与其行(列)向量组的秩之间的关系
5.了解n维向量空间、子空间、基底、维数、坐标等概念.
6.了解基变换和坐标变换公式,会求过渡矩阵.
7.了解内积的概念,掌握线性无关向量组标准规范化的施密特(SChnddt)方法.
8.了解标准正交基、正交矩阵的概念,以及它们的性质.
四、线性方程组
考试内容
线性方程组的克莱姆(又译:克拉默)(Cramer)法则 齐次线性方程组有非零解的充分必要条件 非齐次线性方程组有解的充分必要条件 线性方程组解的性质和解的结构 齐次线性方程组的基础解系和通解 解空间 非齐次线性方程组的通解
考试要求
l.会用克莱姆法则.
2.理解齐次线性方程组有非零解的充分必要条件及非齐次线性方程组有解的充分必要条件.
3.理解齐次线性方程组的基础解系、通解及解空间的概念,掌握齐次线性方程组的基础解系和通解的求法。
4.理解非齐次线性方程组解的结构及通解的概念.
5.掌握用初等行变换求解线性方程组的方法.
五、矩阵的特征值和特征向量
考试内容
矩阵的特征值和特征向量的概念及性质 相似变换、相似矩阵的概念及性质 矩阵可相似对角化的充分必要条件及相似对角矩阵 实对称矩阵的特征值、特征向量及相似对角矩阵
考试要求
1.理解矩阵的特征值和特征向量的概念及性质,会求矩阵的特征值和特征向量 2.了解相似矩阵的概念、性质及矩阵可相似对角化的充分必要条件,掌握将矩阵化为相似对角矩阵的方法。
3.掌握实对称矩阵的特征值和特征向量的性质. 六、二次型考试内容
二次型及其矩阵表示 合同变换与合同矩阵 二次型的秩 惯性定理 二次型的标准形和规范形 用正交变换和配方法化二次型为标准形 二次型及其矩阵的正定性
考试要求
1.掌握二次型及其矩阵表示,了解二次型秩的概念,了解合同变化和合同矩阵的概念 了解二次型的标准形、规范形的概念以及惯性定理.
2.掌握用正交变换化二次型为标准形的方法,会用配方法化二次型为标准形.
3.理解正定二次型、正定矩阵的概念,并掌握其判别法----(考试要求中将“3.了解二次型和对应矩阵的正定性及其判别法”调整为“3.理解正定二次型、正定矩阵的概念,并掌握其判别法”。)-----概率论与数理统计初步
一、随机事件和概率
考试内容
随机事件与样本空间 事件的关系与运算 完全事件组 概率的概念 概率的基本性质 古典型概率 几何型概率 条件概率 概率的基本公式 事件的独立性 独立重复试验
考试要求
1.了解样本空间(基本事件空间)的概念,理解随机事件的概念,掌握事件的关系与运算.
2.理解概率、条件概率的概念,掌握概率的基本性质,会计算古典型概率和几何型概率,掌握概率的加法公式、减法公式、乘法公式、全概率公式,以及贝叶斯公式.
3.理解事件的独立性的概念,掌握用事件独立性进行概率计算;理解独立重复试验的概念,掌握计算有关事件概率的方法.
二、随机变量及其概率分布
考试内容
随机变量及其概率分布 随机变量的分布函数的概念及其性质 离散型随机变量的概率分布 连续型随机变量的概率密度 常见随机变量的概率分布 随机变量函数的概率分布
考试要求
1.理解随机变量及其概率分市的概念.理解分布函数F(x)P{Xx}(x)的概念及性质.会计算与随机变量有关的事件的概率.
2.理解离散型随机变量及其概率分布的概念,掌握0-1分布、二项分布B(n,p)、几何分布、超几何分布、泊松(Poisson)分布P()及其应用.
3.了解泊松定理的结论和应用条件,会用泊松分布近似表示二项分布.4.理解连续型随机变量及其概率密度的概念,掌握均匀分布U(a,b)、正态分布N(,2)、指数分布及其应用,其中参数为(0)的指数分布E()的概率密度为
exf(x)0
5.会求随机变量函数的分布.
若x0若x0
三、多维随机变量及其概率分布-----(二维随机变量及其分布(改为“多维随机变量及其分布”))----
考试内容
多维随机变量及其分布---(将“二维随机变量及其概率分布”调整为“多维随机变量及其分布”)---二维离散型随机变量的概率分布、边缘分布和条件分布 二维连续性随机变量的概率密度、边缘概率密度和条件密度 随机变量的独立性和相关性 常用二维随机变量的概率分布 两个及两个以上随机变量简单函数的分布---(将“两个随机变量简单函数的分布”调整为“两个及两个以上随机变量简单函数的分布”)----
考试要求
1. 理解多维随机变量的概念,理解多维随机变量的分布的概念和性质---(将“1.理解二维随机变量的概念,理解二维随机变量的分布的概念和性质”调整为“1.理解多维随机变量的概念,理解多维随机变量的分布的概念和性质”)----理解二维离散型随机变量的概率分布、边缘分布和条件分布;理解二维离散型随机变量的概率密度、边缘密度和条件密度.会求与二维连续型随机变量相关事件的概率.
2. 理解随机变量的独立性及不相关性的概念,掌握随机变量相互独立的条件---(将“2.理解随机变量的独立性及不相关的概念,掌握离散型和连续性随机变量独立的条件”调整为“2.理解随机变量的独立性及不相关性的概念,掌握随机变量相互独立的条件”,)----
22N(,;,;),理解其中参数121
23.掌握二维均匀分布,了解二维正态分布的概率密度的概率意义.
4. 会求两个随机变量简单函数的分布,会求多个相互独立随机变量简单函数的分布---(将“4.会求两个随机变量简单函数的分布”调整为“4.会求两个随机变量简单函数的分布,会求多个相互独立随机变量简单函数的分布”)----
四、随机变量的数字特征
考试内客
随机变量的数学期望(均值)、方差和标准差及其性质 随机变量函数的数学期望 矩、协方差 相关系数及其性质
考试要求
1.理解随机变量数字特征(数学期望、方差、标准差、协方差、相关系数)的概念,会运用数字特征的基本性质,并掌握常用分布的数字特征
2.会根据随机变量的概率分布求其函数的数学期望。
五、大数定律和中心极限定理
考试内容
切比雪夫(Chebyshev)不等式 切比雪夫大数定律 伯努利大数定律 辛钦(Khinchine)大数定律 棣莫弗-拉普拉斯(De Moivre-…lace)定理 列维-林德伯格(Levy-Undbe)定理
考试要求
1.了解切比雪夫不等式.
2.了解切比雪夫大数定律、伯努利大数定律和辛钦大数定律(独立同分布随机变量序列的大数定律)----(将“2.了解切比雪夫大数定律、伯努利大数定律和辛钦大数定律(独立同分布随机变量的大数定律)”调整为“2.了解切比雪夫大数定律、伯努利大数定律和辛钦大数定律(独立同分布随机变量序列的大数定律)”;)---
3.了解棣莫弗-拉普拉斯定理(二项分布以正态分布为极限分布)和列维-林德伯格定理(独立同分布随机变量序列的中心极限定理)“---(将”3.了解棣莫弗-拉普拉斯定理(二项分布以正态分布为极限分布)和列
维-林德伯格定理(独立同分布的中心极限定理)“调整为”3.了解棣莫弗-拉普拉斯定理(二项分布以正态分布为极限分布)和列维-林德伯格定理(独立同分布随机变量序列的中心极限定理)“)---
六、数理统计的基本概念
考试内容
总体 个体 简单随机样本 统计量 样本均值 样本方差和样本矩 x2分布 t分布 F分布 分位数 正态总体的某些常用抽样分布
考试要求
1.理解总体、简单随机样本、统计量、样本均值、样本方差及样本矩的概念,其中样本方1n2S(XiX)2n1i1差定义为:
22.了解分布、t分布和F分布的概念及性质,了解上侧分位数的概念并会查表计算.
3.了解正态总体的某些常用抽样分布.
七、参数估计
考试内容
点估计的概念 估计量与估计值 矩估计法 最大似然估计法 估计量的评选标准 区间估计的概念 单个正态总体的均值和方差的区间估计 两个正态总体的均值差和方差比的区间估计
考试要求
1.理解参数的点估计、估计量与估计值的概念.
2.掌握矩估计法(一阶、二阶矩)和最大似然估计法.
3.了解估计量的无偏性、有效性(最小方差性)和一致性(相合性)的概念,并会验证估计量的无偏性.
4.理解区间估计的概念---(将”4.了解区间估计的概念“调整为”4.理解区间估计的概念“)----会求单个正态总体的均值和方差的臵信区间,会求两个正态总体的均值差和方差比的臵信区间.
八、假设检验
考试内容
显著性检验 假设检验的两类错误 单个及两个正态总体的均值和万差的假设检验
考试要求
1.理解显著性检验的基本思想,掌握假设检验的基本步骤,了解假设检验可能产生的两类错误.
2.掌握单个及两个正态总体的均值和方差的假设检验---(将”2.了解单个及两个正态总体的均值和方差的假设检验“调整为”2.掌握单个及两个正态总体的均值和方差的假设检验")---硕士研究生入学数学考试历年是考生们感到很棘手的问题,很多考生由于数学没考好而痛失深造的机会。考研的数学内容包括三个部分:微积分、线性代数、概率论与数理统计;同时还分为四个类别,即:数
一、数
二、数三和数四,报考不同的专业要求考核不同的类别,这四种类别虽然考查的难度和侧重点不同,但作为数学学科特点是一样的,复习的方法也大体相同,而且数学相对于英语来说,只要方法得当,提高就非常快。